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Introduction 

Implantation is a finely orchestrated interplay involving a receptive uterus and a 

competent blastocyst [1]. It involves the embryo attaching to the uterine endometrial 

surface, infiltrating the epithelium, and integrating into the maternal circulation to 

form the placenta [2]. The combined impact of ovarian hormones E2 and P4 on the 

uterus supports embryo implantation, while the pro-inflammatory cytokine, leukemia 

inhibitory factor (LIF), is instrumental in preparing the uterus for this process [3]. It 

appears that the main function of early E2 is to stimulate the production of LIF. 

Cheng and colleagues showed that a solitary application of LIF effectively triggered 

normal implantation and aided subsequent developmental stages, even without early 

E2 presence [4].  

Leukemia inhibitory factor (LIF), categorized as a pro-inflammatory cytokine within 

the interleukin-6 (IL-6) family, has been consistently associated with various studies 

[5, 6, 7]. Oliveira et al., noted that the TP53 gene significantly regulates blastocyst 

implantation by impacting genes within its pathway, among them LIF [8]. Specific 

members of the HOXA and HOXB genes are thought to play a role in causing 

leukemia, as shown by their ability to trigger leukemia in murine HSCs 
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(Hematopoietic Stem Cell) [9]. Wu et al., discovered that inflammatory stress can 

lead to heightened mRNA levels of LIF expression in uterine tissues at the stage of 

embryonic implantation [10]. 

LIF carries out its biological functions by specifically interacting with its receptor, 

LIFR [11]. The presence of LIFR has been confirmed across various pre-embryonic 

stages, from the 2-cell phase to the expanded blastocyst [12]. When LIF connects with 

LIFR, it sets off a receptor complex that includes glycoprotein 130 (gp130). This 

complex then activates multiple signaling pathways, such as Janus kinase/signal 

transducer and activator of transcription 3 (JAK/STAT3), mitogen-activated protein 

kinase (MAPK), and phosphatidylinositol-3 kinase (PI3K) [13]. STAT3, identified as 

a transcription factor, plays a crucial role as a mediator in LIF signaling pathways, 

serving as a pivotal component in this cascade [14]. 

 

 

 

Incidence and Prevalence 

The recent study by Hassab et al., showcased a notably higher implantation success 

rate of 32.43% among Iraqi women undergoing IVF, contrasting starkly with a 67.57% 

failure rate. Examining 74 women dealing with infertility, aged 19 to 45, the research 

highlighted significant factors affecting success. Abnormal ovulation cases notably 

increased to 51.35%, surpassing unexplained infertility at 27.03%. Uterine factors 

were identified in 14.86% of cases, with endometriosis and tubal issues at 4.05% and 

2.70%, respectively. The study conducted across various Iraqi IVF centres between 

December 2019 and November 2020, underlines the prevalence of factors influencing 

IVF implantation outcomes among this population [15]. 

Research conducted at a hospital in Rome, Italy, involved the transfer of mosaic 

embryos to patients and the findings were published. The study revealed that 25% (8 

cases) of implanted mosaic embryos resulted in a biochemical pregnancy, while the 

remaining led to the birth of healthy babies. This percentage closely mirrored the 

initial rate of mosaic embryos transferred, which was 33.3% [16]. In another study by 

Fragouli et al., 12% of transferred mosaic embryos ended in miscarriage, and 26% 

resulted in ongoing pregnancies, although information regarding deliveries and infant 

follow-ups was unavailable [17]. Both studies demonstrated similar implantation rates, 

ranging between 38% and 45% [16, 17]. 
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In the study led by Lee et al., the occurrence rates of successful implantation varied 

significantly based on whether embryos had undergone Preimplantation Genetic 

Screening (PGS) and the cycle type used for transfer. The implantation rate for 

chromosomally normal embryos transferred in Frozen Embryo Transfer (FET) cycles 

stood notably higher at 50.9% compared to unscreened embryos, whether in fresh 

(23.8%) or FET (25.4%) cycles. The frequency of live births per transferred embryo 

was significantly greater in PGS-FET cycles (45.5%) than in cycles without PGS, 

whether fresh (15.8%) or FET (19.0%). The incidences of live birth per implanted sac 

were comparable across PGS-FET cycles (89.3%), fresh cycles without PGS (66.7%), 

and FET cycles without PGS (75.0%), showing no significant differences. This 

study's findings highlight the advantages of employing PGS in enhancing both 

implantation rates and live birth rates per transferred embryo [18]. 

 

 

 

Materials and Methods 

The research heavily relied on an extensive exploration of scholarly literature through 

reputable databases like PubMed, Google Scholar, and Sci-hub. Through a rigorous 

selection process, 90 key articles on the Leukemia Inhibitory Factor gene's role in 

implantation were carefully chosen from 64,700, ensuring they met high standards of 

quality, relevance, and research alignment. The use of specific keywords like 

"Leukemia Inhibitory Factor gene" and "Implantation" ensured that the retrieved 

articles were precisely relevant to the topic at hand. The methodology upheld 

stringent criteria, including peer-reviewed publication, alignment with research 

objectives, and relevance to human adult subjects. The systematic data retrieval 

strategy methodically arranged important discoveries, including statistical information, 

experimental findings, and clinical outcomes. 

 

Implantation  

Psychoyos, defines that implantation as the phase when the embryo affixes to the 

uterine lining, infiltrating the epithelium, and subsequently establishes connections 

with the maternal circulation, leading to placental formation [2]. The restructuring of 

the uterus for successful implantation relies on hormonal orchestration primarily by 

estrogen and progesterone, as highlighted by Krege et al., [19]. Progesterone plays a 
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pivotal role in preparing the uterus for optimal embryo development, a point 

underscored by Greening et al., [20]. This hormone triggers the creation of pinopodes, 

altering epithelial cells by reducing cell adhesion and prompting the development of 

smooth protrusions on the cell surface, as described by Martel et al., and Thie et al., 

[21, 22]. Notably, studies like those by Simón et al., highlighted that reducing 

estrogen levels during the preimplantation phase in In Vitro Fertilization and Embryo 

Transfer (IVF-ET) patients can bolster uterine receptivity [23]. 

Implantation encompasses three crucial stages: apposition, adhesion, and invasion, as 

described by Bischof & Campana [24]. 

(A) Apposition and Adhesion: Implantation initiation occurs with the blastocyst's 

apposition to the uterine epithelium, typically occurring 2-4 days post-morula entry 

into the uterine cavity [25]. Van der Weiden et al., and Lim et al., emphasized that 

implantation is characterized by an inflammatory process, influenced by 

prostaglandins derived from Cyclooxygenase (Cox), which elevate the permeability of 

the endometrial blood vessels [26, 27]. The increase of Prostaglandin E2 in both 

mouse and human implantation sites indicates its involvement in attachment and the 

localized increase in blood vessel permeability within the endometrium. This 

particular prostaglandin plays a pivotal role in regulating human trophoblast invasion 

by activating essential signaling proteins [28]. 

In the apposition phase, the blastocyst undergoes differentiation into the embryo and 

placental trophectoderm. Simultaneously, adjacent stromal cells undergo 

decidualization, transitioning into specialized decidual cells. The link between the 

blastocyst's outer layer and the endometrial surface relies on various molecules like 

integrins, cadherins, selectins, and immunoglobulins [29]. This connection is 

highlighted by Fukuda & Sugihara and McEwan et al., with Lyall observing these 

molecules on the invasive trophoblasts surfaces. These molecules engage in specific 

time and location-based interactions with substances expressed by the lining of the 

uterus [30, 31, 32]. Specifically, Lessey et al., link integrins as specific markers of the 

menstrual cycle, showing increased levels during the mid-luteal phase, which marks 

the period suitable for embryo implantation [33]. 

(B) Invasion: Burrows and colleagues explained that during the initial phase of 

invasion, cells from the developing fetus move into the lining of the mother's uterus. 

As part of the implantation process, these cells organize into groups of different types, 

namely cytotrophoblasts and syncytiotrophoblasts. These specialized cells then alter 
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the structure of the mother's spiral arteries, changing them from muscular tubes into 

wider, more flexible sacs covered with fetal cells inside the blood vessels [34]. 

Hunkapiller et al., highlighted that this invasion serves to transform the mother's 

spiral arteries, making it easier for blood to flow between the mother and the growing 

fetus. Essentially, this process replaces smaller, more restrictive blood vessels with 

larger, less restrictive ones to enhance the exchange of blood and nutrients [35]. 

 

Leukemia Inhibitory Factor  

LIF is first synthesized as a 202-amino acid precursor, then modified post-translation 

to a 20 kDa form by removing 22 N-terminal amino acids. Its structure has been 

determined using X-ray crystallography and NMR [36, 37]. It takes on a compact 

structure with four helices arranged in an up-up-down-down configuration. The 

portion identified as Helix A, commencing from Leu44 (equivalent to residue 22 in 

the mature chain), connects with the N-terminal segment. The area preceding Helix A 

holds considerable importance because it forms crucial chemical bonds (Cys34-

Cys156 and Cys40-Cys153) connecting it to the C-terminal part of Helix 3. 

Particularly, this N-terminal portion is noteworthy for its involvement in interacting 

with receptors [38]. Laird et al., found notably lower LIF release in uterine flushings 

and tissue samples from infertile women during specific phases of the menstrual cycle. 

Moreover, reported sporadic changes in the LIF gene among women experiencing 

infertility [39, 40]. Charnock-Jones et al., observed increased levels of LIF in the 

glands of the uterine lining before the implantation of the embryo, in both mice and 

humans [41]. This increase could potentially be affected by higher estrogen levels 

present throughout the menstrual cycle. The widespread distribution of LIF receptors 

and its diverse activities across various organ systems, particularly in the endocrine 

and reproductive systems, are highlighted [42]. Nicola and Babon pointed out that 

while LIF induces similar signaling pathways, such as the JAK1/STAT3, PI3K/Akt, 

and MAPK pathways, variations in signaling outcomes might result from differing 

levels of activation within these pathways [43]. 

 

Downstream LIF signaling pathways 

As per Boulton et al., LIF primarily targets JAK1 kinase, activating the JAK/STAT, 

MAPK, and PI3K pathways. Among these pathways, STAT3 is considered the main 

mediator of cellular effects triggered by LIF/LIFR [44]. A crucial downstream target 
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of STAT3 is SOCS3, identified by Nicola and Babon for its role in providing negative 

feedback to control the JAK/STAT and MAPK signaling pathways [43]. Nicholson et 

al. report that SOCS1 can inhibit LIF signaling by blocking the JAK/STAT pathway 

[45]. Despite the prevailing belief that tyrosine kinase pathways dominate LIF actions, 

Davis et al., emphasized the significance of alternative pathways associated with LIF 

and their consequential effects [46]. 

 

 

 

 

 

 

 

 

Table 1: Influence of Modifying LIF Pathway Members in Living Organisms and 

ESCs 

Protein/Gene 

 

Overexpression in vivo 

 

Overexpression in 

ESCs 

 

References 

LIF 

 

LIF is deadly and prevents 

the development of 

specialized tissue, 

disrupting normal embryo 

formation and gastrulation. 

Under typical culture 

conditions, it's 

impossible to derive LIF-

deficient ESCs. 

 

[47, 48, 49] 

 

gp 130 

 

gp130-deficient embryos 

survive diapause but fail to 

maintain the epiblast 

compartment. However, 

they succumb to 

developmental issues and 

die between E12.5 and E16. 

 

Under regular culture 

conditions, it's 

impossible to derive 

gp130-deficient ESCs. 

Slight increases in gp130 

levels boost self-renewal 

without external LIF, but 

higher receptor 

expression promotes 

differentiation. 

[50, 51, 49, 52] 
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STAT3 

 

Stat3 null embryos initially 

form and grow the epiblast 

normally, but their 

gastrulation process gets 

disrupted. 

 

Stat3 null ESCs are only 

obtainable under specific 

2i conditions. 

Overexpressing STAT3 

alone is enough to 

sustain ESCs' 

pluripotency even 

without LIF. 

[53, 54, 55] 

JAK1 

 

JAK1 plays a crucial role in 

trophoblast differentiation. 

Jak-deficients will die 

within the initial 24 hours 

after birth. 

In ESCs, JAK1 is vital 

for LIF signaling. 

[56, 57, 58, 59] 

JAK2 

 

Jak2-deficient embryos 

experience anemia and 

perish around day 12.5 

postcoitum.  

 

Jak2-deficient ESCs 

respond appropriately to 

LIF signaling. JAK2 is 

involved in early lineage 

determination. 

[60, 58] 

 

(A)  JAK-STAT Signaling 

The JAK-STAT signaling pathway, which relies on the IL-6 cytokine family, involves 

two receptor types: non-signaling α-receptors and signaling receptors. According to 

Gearing and colleagues, LIF first binds to its signaling receptor, LIF-R, and then 

recruits glycoprotein 130 (GP130) to form a complex that facilitates downstream 

signal transmission [61]. On the other hand, other cytokines in the IL-6 family first 

attach to specific low-affinity non-signaling receptor parts (like IL-6R, IL-11R, CT-

1R, and CNTFR-1). Afterward, they trigger either the formation of GP130 receptor 

pairs or the coupling of LIF-R and GP130, as explained by Hibi et al., [62]. Protein 

inhibitor of activated STAT3 (PIAS3) independently oversees the suppression of 

STAT3, establishing a swift and effective feedback system that manages JAK-STAT 

signaling, as demonstrated by Chung et al., [63]. The absence of STAT3 leads to 

severe outcomes, resulting in embryos perishing shortly after implantation [64]. While 

JAK-STAT signaling isn't necessary for initiating pluripotency after fertilization, it 
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holds a crucial role in maintaining it. Additionally, GP130 signaling helps maintain 

pluripotency in the early embryo's epiblast during difficult reproductive conditions 

termed diapause [65]. Levy and Lee observed extensive instances of JAK-STAT 

signaling in the later stages of embryo development following implantation [66]. 

 

(B)  MAPK signaling 

Among the numerous intracellular signaling pathways, the MAPK (Mitogen-activated 

protein kinase) pathway is particularly noteworthy for its involvement in cell 

proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. 

Eukaryotic cells exhibit four well-known MAPK cascades: the ERK, JNK/stress-

activated protein kinase, p38 MAPK, and ERK5 signal transduction pathways. Each 

cascade comprises at least three tiers: MAP3K, MAPKK, and MAPK [67, 68]. The 

MAPK pathway plays a crucial role in various aspects of implantation. It stimulates 

granulosa cell proliferation, cumulus expansion, and, in conjunction with the ERbB 

pathway, facilitates the resumption of meiosis in the oocyte [69,70]. In humans, a 

significant portion of extracellular vesicle miRNAs is anticipated to influence targets 

that govern the WNT, ErbB, MAPK, and TGFβ signaling pathways. These pathways 

operate throughout various sections within the ovarian follicle and play roles in 

follicular development, the resumption of meiosis, and the process of ovulation. This 

insight, shared by Sohel and colleagues in their study, highlighted the potential impact 

of these miRNAs on crucial mechanisms governing ovarian functions. This pathway's 

involvement in implantation underscores its significance in orchestrating key 

processes necessary for successful embryo implantation [71]. 

 

(C) P13K Signaling 

The PI3K-PKB signaling pathway's key downstream element is mTOR, as 

highlighted by Rohde et al., [72]. This mTOR pathway is pivotal in embryo 

implantation with Martin et al., emphasizing its significance [73]. Gangloff et al., 

observed that mTOR deficiency led to embryonic demise shortly after implantation 

[74]. Martin et al., also stressed the critical role of the PI3K/PKB/mTOR pathway in 

amino acid signaling and its importance in embryo implantation [73]. Riley et al., 

noted that inhibiting the PI3K/PKB pathway affected blastocyst physiology and 

hatching [75]. Wortmannin, identified as a PI3K inhibitor, hinders the 
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phosphorylation and activation of PKB, as discussed by Riley et al., and this 

inhibition resulted in fetal resorptions and unfavorable pregnancy outcomes [76]. 

Vanhaesebroeck et al., identified three distinct classes of PI3Ks, namely class I, class 

II, and class III, each exhibiting specific substrates and unique effectors beyond Akt 

[77]. Class I PI3Ks, crucial in cancer development, modulate downstream effectors 

shared among serine/threonine kinases from the AGC kinase family, tyrosine kinases 

seen in hepatocellular carcinoma (TEC family), and guanine nucleotide exchange 

factors [78]. Class II PI3Ks possess additional protein-binding domains and an 

elongated N-terminal segment, influencing their intracellular localization [78]. 

 

 

Fig.1: Catalytic isoforms of Class I P13K 

 

 

Fig.2: Catalytic isoforms of Class II P13K 
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Notably, unlike class I and III PI3Ks, class II PI3Ks do not produce PIP3 in vitro but 

can generate PIP2 from PIP, presenting a significant functional disparity [79]. On the 

other hand, class III PI3K VPS34, also known as PIK3C3, holds a unique role in 

regulating autophagy and macrophage phagocytosis. Its function involves binding to a 

protein complex composed of a regulatory and catalytic subunit [80]. 

 

LIF Gene Polymorphism 

The LIF gene, essential for various human functions and produced by diverse cell 

types like hepatocytes, fibroblasts, osteoblasts, monocytes, macrophages, and T cells, 

plays a crucial role in successful human pregnancy [81, 82, 83, 84, 85, 86]. Increased 

LIF levels in follicular fluid correspond to improved embryo quality, underscoring its 

significance in ovulation and early embryonic development [87]. LIF governs the 

preparation of the uterus for blastocyst implantation and influences trophoblastic 

function by stimulating proliferation, invasion, and differentiation, as highlighted by 

Fitzgerald et al.,. These findings are outlined in the studies conducted by these 

specific researchers [88] . 

Investigations into the SNP rs929271 (T/G) located in the 3′ untranslated region of the 

LIF gene have revealed intriguing associations [89]. Kang et al., noted a significant 

prevalence of the G allele among individuals under 35, particularly those utilizing 

fertility treatments, linking this allele to infertility in younger patients [90]. Ucisik-

Akkaya et al. suggested a gender-specific effect of the LIF T/G genotype on embryo 

survival, while Fraga et al. found no association between the LIF SNP T/G (rs929271) 

and recurrent pregnancy loss [91, 92]. Similarly, Paskulin et al. reported no link 

between this SNP and conditions like endometriosis or IVF failure [93]. Tagliani-

Ribeiro et al. also found no differences in the allelic or genotypic frequency of LIF 

T/G (rs929271) between dizygotic and monozygotic twins [94]. 

 

LIF's Crucial Role in Embryo Implantation: Insights and Implications 

Studies by Tian et al.,; Mariee et al.,; and Salleh & Giribabu collectively highlight 

how crucial endometrial Leukemia Inhibitory Factor (LIF) is in aiding embryo 

implantation [95, 96, 97]. Reduced LIF protein activity due to changes in the LIF 

gene, particularly in a heterozygous state, has been associated with implantation 

difficulties and infertility in women who haven't conceived before [98]. Functional 

variations in the LIF gene have been observed notably in women experiencing 
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unexplained infertility, suggesting their potential involvement in the causes of 

infertility [99]. 

Specifically, the single nucleotide polymorphism (SNP) rs929271/c.1414T > G 

located in the 3′ untranslated region (3′ UTR) of the LIF gene has drawn attention due 

to its link with recurrent fetal loss in women with low levels of this gene [100]. When 

the LIF receptor is activated in the endometrium, it initiates multiple signaling 

pathways such as Jak/STAT, MAPK, and PI3-kinase pathways. Across the menstrual 

cycle, both LIF protein and mRNA display consistent expression patterns, reaching 

peak levels during the mid- and late-secretory phases and early pregnancy [101, 102]. 

Notably, LIF mRNA is prominently expressed in human decidual leukocytes at the 

implantation site, indicating its potential role in facilitating interactions between 

maternal decidual leukocytes and invading cytotrophoblasts during implantation. 

These connections emphasize the pivotal role of LIF in the process of embryo 

implantation [103]. 

 

LIF and Its Significance in Maternal-Fetal Interaction 

Implantation marks the close connection between the developing blastocyst and the 

maternal endometrium (decidua), shifting the blastocyst's growth dependency to the 

maternal environment. Both embryonic and maternal factors contribute to successful 

implantation. While not fully comprehended, research highlights the crucial 

involvement of autocrine and paracrine factors like CSF-1, interleukin (IL)-1, and LIF. 

These factors, along with other peptides and steroid hormones, orchestrate a complex 

interplay to prepare the uterus for implantation, crucial for the progression of a 

pregnancy [104]. 

LIF is crucial for embryo and endometrium growth, aiding in blastocyst formation, 

attachment, and penetration into the endometrium [105]. LIF and LIF-R levels 

decrease during cell proliferation but rise after ovulation, peaking during the mid-

luteal phase and remaining high until the end of the cycle [106, 107, 108]. Laird et al., 

Aghajanova et al., and Lass et al. report that LIF levels peak between days 7 and 12 

post-ovulation, while LIF-R and gp130 levels peak between days 19 and 25 of the 

menstrual cycle [109, 110, 104]. 

 

Role of LIF in Follicular Fluid and Ovarian Cell Dynamics 
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The microenvironment within human follicles plays a pivotal role in fostering normal 

oocyte development, folliculogenesis, and timely ovulation. Within this context, 

follicular fluid emerges as a crucial factor shaping the environment for oocyte 

maturation, thereby impacting their potential for fertilization and subsequent 

embryonic development. Notably, in assisted reproductive technologies, follicular 

fluid has demonstrated its capacity to enhance human pre-embryo development in 

vitro, positively correlating with resulting pregnancy rates [111, 112]. 

Cytokines, as diverse signaling molecules, play a crucial role in regulating ovarian 

function, including gonadal steroid secretion, corpus luteum activity, embryonic 

development, and implantation [113]. Research from two independent groups has 

examined LIF in human follicular fluid and ovarian cells, enhancing our 

understanding of its impact on these functions [114]. 

 

Variations in LIF Expression across the Endometrial Cycle and its Impact on 

Implantation 

Successful blastocyst implantation depends on complex interactions between the 

developing embryo and the endometrium, which undergoes constant and rapid 

remodeling. Throughout the menstrual cycle and early pregnancy, the endometrium 

responds to steroid hormones, locally produced growth factors, and cytokines [93]. 

Vogiagis et al., and Chen et al., delved into LIF expression within the endometrium 

by analysing uterine tissue across different menstrual cycle phases. Employing 

immunohistochemistry to pinpoint LIF cellular localization and Northern blot for 

mRNA analysis, they observed low LIF levels during the proliferative phase. 

However, following ovulation, LIF levels rose, maintaining a relatively high presence 

until the cycle's end before dropping to baseline [115, 116]. 

Remarkably, LIF mRNA was only observable during the later stages of secretion, 

specifically from day 20 onwards during the menstrual cycle. This heightened 

occurrence of LIF and its transcripts in the human endometrium corresponds to the 

anticipated period for implantation, hinting at a potential involvement of LIF in 

endometrial function, possibly acting in a paracrine or autocrine manner, as suggested 

by [104].  

 

Modulating Factors Influencing Endometrial LIF Expression and Biosynthesis 
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Research by Arici et al., revealed that specific factors such as IL-1, tumor necrosis 

factor-α, platelet-derived growth factor (PDGF), transforming growth factor, and 

epidermal growth factor play significant roles in inducing LIF expression in 

endometrial stromal cells cultured in a manner dependent on dosage and time. 

Interestingly, interferon-γ demonstrated an inhibitory effect on LIF expression. 

Surprisingly, steroid hormones like estradiol and progestin did not exhibit the same 

enhancing effect on LIF expression in cultured endometrial cells. This timing of LIF 

expression within the endometrium suggests a potential role in implantation, hinting 

at its regulation playing a crucial role in both physiological and pathological processes 

associated with human implantation [117]. 

Contrastingly, Hambartsoumian et al., showcased a different facet, illustrating that 

endometrial LIF production is governed by sex hormones. Their study indicated that 

progesterone administration in women without ovarian function inhibited the capacity 

of explants to produce LIF in culture [118]. This finding contradicts the observations 

of other researchers in normally menstruating women [116, 117]. Furthermore, 

Piccinni et al., demonstrated in their recent publication that LIF expression can be up-

regulated by IL-4 and progesterone [119]. They suggested that the regulation of LIF 

secretion in women with regular menstrual cycles might be influenced by ovarian 

growth factors, absent in patients without ovarian function. This points to a 

multifaceted regulation of LIF in the endometrium, influenced by various factors and 

hormonal dynamics [120]. 

 

Localization of LIF in Reproductive Tissues: Insights into Implantation 

Dynamics 

Kojima et al., revealed substantial LIF mRNA expression in human first-trimester 

pregnancy decidua and endometrial tissue, presenting estimated sizes of 4 kb and 1.8 

kb. Interestingly, the secretory-phase endometrium showed higher levels of LIF 

mRNA compared to the proliferative phase. While the first-trimester chorionic villus 

and term placenta displayed detectable yet low levels of LIF mRNA, differences in 

LIF expression were observed between epithelial-enriched and stromal-enriched 

fractions in both secretory and proliferative-phase endometrium [121]. Particularly, 

epithelial-enriched fractions exhibited more abundant LIF expression than stromal-

enriched fractions. Furthermore, in the fallopian tube, high and constitutive levels of 
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LIF were observed in the ampullary section, suggesting a potential role for LIF during 

early embryonic development, as highlighted by Keltz et al., [122]. 

Additionally, the heightened LIF expression in cases of ectopic implantation, coupled 

with cytokine-induced secretion in the tubal stroma, hints at potential connections 

between inflammation, LIF, and tubal ectopic pregnancy. Collectively, these findings 

underscore the significant role of LIF within the local reproductive tract environment, 

implying its potential influence on implantation outcomes [104].    . 

 

Role of LIF Receptor Complex in Early Embryonic Development and Placental 

Function 

The LIF receptor complex consists of two subunits: the LIF-specific LIFR-α subunit 

and the gp130 subunit, shared by cytokines like IL-6, IL-11, among others. This 

complex, composed of LIFR-α/gp130 heterodimers, can respond to oncostatin M, 

ciliary neutrophic factor and cardiotrophin, aside from LIF [85]. Van et al., 

demonstrated the expression of LIF receptor component transcripts from the oocyte 

stage through early preimplantation stages, with subsequent confirmation of 

expression in blastocysts [123, 124, 108]. However, not all blastocysts showed 

detectable messages, possibly correlating with arrested or developmentally limited 

blastocysts. The direct correlation between receptor component expression and 

successful growth remains uncertain [125]. 

While non-LIF cytokines using the gp130 receptor, like IL-11, play crucial roles in 

mouse implantation, evidence for functional LIF receptors (LIFR-α/gp130 

heterodimers) on human embryos was established through observations showing 

increased blastocyst formation rate and improved quality (reduced fragmentation) 

when cultured in the presence of LIF [126]. Moreover, the presence of LIFR-α in 

trophoblasts suggests its importance in proper placental function and vascularization, 

potentially contributing to conditions like pre-eclampsia. These findings emphasize 

the significance of LIF receptor expression in oocytes, preimplantation embryos and 

placental tissues, hinting at its pivotal role in early embryonic development and 

placental function [104]. 
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Figure 3: LIF's multifaceted role in embryo implantation and placental 

development depicted in sequential steps. 

 

Therapeutic Implications of LIF 

LIF holds a critical function within the stem cell environment, ensuring the balance 

and renewal of various somatic tissues like the intestine, neurons, and muscles. 

Additionally, it plays a pivotal role in regulating immunity, acting as a safeguard 

against several immunopathological conditions such as infection, inflammatory bowel 

disease (IBD), and graft-versus-host disease (GVHD) as indicated by Wang et al., 

[127]. 

Lass et al., found that in the endometrium, LIF expression varies across the menstrual 

cycle, peaking during implantation. LIF levels in uterine flushing are notably reduced 

in women with unexplained infertility compared to fertile women. Unlike fertile 

women, most infertile women do not exhibit an increase in LIF production during the 

secretory phase, and there are considerable fluctuations in LIF levels during the 

proliferative phase. This suggests potential clinical implications of altered LIF 

expression in human reproduction, particularly in understanding infertility in women 

[104]. 
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Figure 4: LIF in cancers 

 

 

Conclusion 

The research underscores the pivotal role of Leukemia Inhibitory Factor (LIF) genes 

in implantation processes, revealing compelling insights. The LIF SNP T/G (rs929271) 

has surfaced as a potential indicator for forecasting implantation success and 

pregnancy results. This suggests promising implications for utilizing LIF in infertility 

treatments or conversely, exploring LIF antagonists for contraceptive purposes. 

Additionally, associations between LIF gene polymorphism, gene expression, and 

implantation outcomes have been delineated, highlighting their impact on success or 

failure. The study accentuates LIF's indispensable function in initiating and regulating 

embryo-endometrial interaction, crucial for successful implantation. Decreased levels 

of LIF in maternal plasma were notably linked to increased risk of early pregnancy 

loss, highlighting the crucial function of LIF in ensuring successful implantation. 

Additionally, the observed moderate to high LIF expression during certain menstrual 

cycle phases in fertile women, contrasted with lower expression in infertile women, 

underlines the importance of LIF in supporting effective implantation. These findings 

collectively underscore the multifaceted and critical involvement of LIF in the 

intricate process of implantation, opening avenues for potential therapeutic 

interventions and enhancing our understanding of fertility dynamics. 
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