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Abstract:  This study employs a deep learning strategy and a CNN model 

with three convolutional modules to improve the accuracy and applicability 

of existing mechanical performance prediction models for pervious concrete. 

The coarse and fine aggregate, water, admixture, cement, fly ash, and silica 

fume content are the eight input variables used in the model to predict the 

28-day compressive strength of pervious concrete. There are 111 sample sets 

in the dataset, with an additional 12 sets added for robustness. Contrasted 

with Backpropagation (BP) brain organizations, the CNN model shows a 

higher coefficient of assurance (0.938) and a mean outright rate mistake of 

9.13%, demonstrating predominant precision and general material. 

Keywords: pervious concrete; convolutional neural network; compressive 

strength; prediction model 
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1. Introduction 

Pervious cement is an imaginative and eco-accommodating development material known for its 

great porousness, antislip properties, erosion obstruction, and strength. Urban development and 

environmental protection are two areas where it can be used. Compressive strength is an essential 

presentation pointer, imperative for upgrading the plan and nature of designs utilizing this material. The 

effects of various materials and mix proportions on compressive strength have been the subject of 

extensive research into the performance indicators of pervious concrete. Studies have changed fly debris 

replacement rates, total sorts, and concrete assortments to figure out their effects. Late exploration has 

additionally analyzed the impact of novel materials, for example, filaments and development squander, 

on pervious substantial execution, close by factors like restoring conditions and porosity. High level 

strategies, including Examining Electron Microscopy (SEM), have been utilized to concentrate on 

pervious cement at the tiny level. For example, Kelly Patrícia Torres Vieira et al. found that rising reused 

total extent diminishes compressive strength, while Xiaoyan Zheng et al. examined salt-initiated 

materials' belongings utilizing field emanation SEM and X-beam diffraction. These examinations give 

itemized experiences into compressive strength varieties and guide future plan and development of 

pervious cement [1-4]. 

Due to varying materials and mix proportions, traditional empirical formulas frequently fail to 

accurately predict the compressive strength of pervious concrete, particularly as new materials emerge 

and regional construction methods differ. For accurate predictions of pervious concrete's 28-day 

compressive strength, it is essential to make use of existing data due to the limitations of previous 

research and resource-intensive experiments. Advances in deep learning and machine learning have 

demonstrated the capacity to predict concrete compressive strength from large datasets. Models like BP 

brain organizations and CNNs have exhibited high exactness. For example, a CNN model by Ziyue 

Zeng et al. accomplished a R² of 0.967 in foreseeing concrete compressive strength, outflanking 

customary techniques [5-7].  

By incorporating the characteristics of the material and data from previous studies, this study 

develops a CNN model to predict the 28-day compressive strength of pervious concrete. The model's 

use of component content as input makes it easier to use and more practical. Important contributions 

include:  

• Fostering a CNN model that shows prevalent execution in foreseeing compressive strength, as 

confirmed by decency of fit, normal outright rate blunder, root mean square mistake, and mean 

outright mistake. 

• Integrating existing blend extent data into the model, lessening designers' responsibility.  

• Accomplishing an integrity of fit more prominent than 0.9 and a normal outright rate mistake 

underneath 10%, showing dependable strength expectations across various materials. Insights 

for future research can be gleaned from this study's robust and practical method for predicting 

the strength of pervious concrete. 

2.  Testing of the Data Source and Model 

This section will discuss the data sources used to train the CNN, the methods used to collect 

experimental data, the structural information of the CNN, and the particulars of the training and testing 

processes in order to guarantee experimental reproducibility. 

2.1. Data Basis 

We used experimental data from a variety of studies to confirm the universality of our CNN 

predictive model for pervious concrete, focusing on compressive strengths between 2 and 40 MPa. We 

included samples with standard mix compositions in order to improve the model's applicability in light 

of the diverse mix compositions that were reported. The types and contents of coarse and fine aggregate, 

water content, admixture content, cement content, fly ash content, silica fume content, and 28-day 
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compressive strength were among the data gathered. Also, we led 12 new examinations to additional 

upgrade the dataset. To increase robustness, different sets were used for each model run, and each 

sample was randomly assigned to either the training set (70 percent) or the testing set (30 percent). To 

address the absence of freely accessible datasets with point-by-point blend extents, we dismissed 

explicit total and concrete sorts, zeroing in rather on approximating material planning during model 

preparation. The eight input variables and their 28-day compressive strength were the nine variables in 

the dataset for each sample. The CNN model is able to accurately predict the compressive strength of 

pervious concrete for a variety of materials and mix proportions thanks to this strategy [8]. 

2.2. CNN Structure 

CNNs have been broadly investigated by analysts for anticipating concrete compressive strength. 

For example, Deng et al. fostered a brain network with a convolutional layer part and a secret layer 

containing four neurons, using four info highlights to foresee reused total cement. On the other hand, 

Zeng et al. contended that as the quantity of info pointers expands, the CNN's design ought to be 

changed likewise. As a result, they looked for the optimal number of neurons in the fully connected 

layer between 4 and 128 and increased the number of convolutional kernels. The convolutional structure 

is improved in line with the significant differences in raw materials between the samples in this study. 

A convolutional layer with a kernel size of 3 1 1, a pooling layer with a kernel size of 1 1, a batch 

normalization layer, and a ReLU activation function layer make up each convolutional structure. The 

gathered information enters the model through the information layer. In the wake of going through 

fundamental preparation with three convolutional structures, repetitive information is disposed of 

through dropout layers. Data fusion is then accomplished by fully connected layers. A regression layer 

is used to perform data prediction after the model has been trained [9]. 

3. Results and Discussion 

3.1. CNN Model Predictive Performance 

To outwardly exhibit the prescient capacities of the CNN model for the compressive strength of 

pervious concrete, this study presents results from a particular examination. The CNN model's predicted 

compressive strength over the course of 28 days is shown on the vertical axis, while the actual 

compressive strength is shown on the horizontal axis. In the subsequent diagram, information focuses 

group around the corner-to-corner line, showing areas of strength for a between the model's 

expectations and the noticed outcomes. This example recommends a serious level of concordance 

among anticipated and genuine compressive strength values, showing the model's exactness. The CNN 

model's ability to predict the compressive strength of pervious concrete is demonstrated by the data 

points' proximity to the diagonal line [10]. 

3.2. Improvements in CNN Model Training 

3.2.1. Enhancements for Improved Robustness of the Model 

However, the model's predictions for the compressive strength of pervious concrete within this 

range may be inaccurate due to a lack of training data in the 10 to 20 MPa range. Experimental data on 

the measured 28-day compressive strength in the range of 10 to 20 MPa will be added to the model to 

increase its robustness and ensure that minor variations in the material composition of pervious concrete 

do not significantly affect the prediction results. This extra information expects to expand the 

preparation set of the CNN prescient model, working on its relevance to various sorts of pervious 

cement. 

3.2.2. Method for Enhancing Model Robustness 

1) Experimental Materials 

For the experiments on pervious concrete, this study used a variety of materials, including grade 

42.5 Ordinary Portland Cement (OPC). The OPC has a standard consistency of 27.1%, a particular 

surface area of 357 m2/kg, an underlying setting season of 203 min, and a last setting season of 250 

min. The Jinying Hardware Business Department's 5–20 mm aggregates from the Jiangning District in 
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Nanjing were chosen as the coarse aggregates. These aggregates have a crushing value of 3.04 percent, 

an apparent density of 3.0149 g/cm3, a bulk density of 3.0045 g/cm3, and a compacted bulk density of 

2.9246 g/cm3. Additionally, Nanjing Thermal Power Plant low-calcium Class I fly ash with a density 

of 2.04 g/cm3, a water demand ratio of 0.95, and a fineness of 6% (remaining on the 45 m sieve) was 

utilized. A high-performance polycarboxylate superplasticizer from Wuhan Greelan Building Material 

Technology Co., Ltd., which is located in Wuhan City, Hubei Province, China, was introduced to 

improve the performance of concrete. This gray-white powdered superplasticizer reduces the amount 

of water in mortar by 25 to 30 percent and has a bulk density of 350 to 450 kg/m3. The water utilized 

in substantial blending stuck to the guidelines illustrated in JGJ63-2006 for substantial water utilization 

[11]. 

2) Experimental Procedure 

In this review, twelve arrangements of pervious cement were ready with various blend extents, 

point by point in Table 1, utilizing the slurry covering strategy. At first, coarse totals were blended in 

with roughly 3% water for 30 seconds to guarantee exhaustive pre-wetting, upgrading bond to solidify. 

After that, all-cement water, additives, and cement were added, and the mixture was stirred for 180 

seconds to form a highly flowable slurry that prevented aggregates from crushing and reduced friction 

between them. This cycle considered uniform covering of the totals, advancing a round structure and 

upgrading porosity. The new concrete was then filled 100 × 100 × 100 mm³ cubic molds, compacted 

by vibration, demolded following 24 hours, and relieved in a standard chamber for 28 days. The 

"Standard for Test Method of Mechanical Properties of Ordinary Concrete" (GB/T 50081-2002) was 

used to test the specimens' compressive strength. The experimental outcomes, recorded in Table 2, 

expected to fill the information hole in the 10-20 MPa range, showed moderately close compressive 

strength values with a standard deviation of roughly 4.63 MPa [12]. 

Table 1. Pervious Concrete Mix Ratios. 

Mixture 

Coarse Cement 

Aggregates 

(kg/m (kg/m3) 

Fly Ash 

(kg/m3) 

Water 

(kg/m3) 

Fresh 

Concrete 

Bulk Density 

(kg/m3) 

Mix 1 1532 300 90 90 1863 

Mix 2 1532 300 178 110 1945 

Mix 3 1532 300 279 111 2065 

Mix 4 1532 350 74 94 1884 

Mix 5 1532 350 144 109 1967 

Mix 6 1532 350 237 123 2039 

Mix 7 1532 400 40 94 1876 

Mix 8 1532 400 115 109 1958 

Mix 9 1532 400 189 120 2098 

Mix 10 1532 450 10 98 1855 

Mix 11 1532 450 69 104 1965 

Mix 12 1532 450 159 117 2075 
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Table 2. Pervious Concrete Porosity and Compressive Strength Test Results. 

Mixture 

28 d Compressive Strength 

Measured Porosity (%) 

(MPa) 

Mix 1 24.9 10.8 

Mix 2 20.4 12.9 

Mix 3 15.9 16.4 

Mix 4 24.3 12.8 

Mix 5 19.2 14.6 

Mix 6 16.5 18.8 

Mix 7 23.2 16.3 

Mix 8 21.1 18.9 

Mix 9 14.3 24.4 

Mix 10 24.5 18.9 

Mix 11 21.1 21.8 

Mix 12 15.3 25.6 

3.2.3. Predictive Performance after Model Training Enhancement 

Actual data from a variety of sources were compared to their corresponding predicted values, 

which were generated by the model, in order to visually demonstrate the predictive performance of the 

CNN developed in this study for estimating the compressive strength of pervious concrete with various 

material compositions. Quiet, the extra information consolidated in this concentrate effectively tended 

to the information hole inside the 10~20 MPa range. The CNN model had good predictive accuracy 

across all sample data following the retraining process, with data points tightly grouped around the 

diagonal line. Subsequent to integrating extra preparation information, the expectation execution of the 

CNN model on both the preparation and test. With very few absolute errors, it is evident that the model's 

predicted values closely match the actual values in the test and training sets. This indicates that the 

model, after being retrained with new data, has excellent predictive capabilities without experiencing 

issues with underfitting or overfitting. The model reliably accomplishes high exactness in anticipating 

the 28-day compressive strength of assorted kinds of pervious cement. This paper uses histograms to 

visually present the distribution of relative errors between predicted and actual values in both the 

training and test sets, in addition to the indicators previously mentioned. The calculations indicate that 

the training set's minimum relative error may reach 0.03%, while the test sets may reach 0.08%. 

Furthermore, more than 60% of the relative errors in the training set are below 10%, and a similar 

percentage of over 60% of the relative errors in the test set are below 10%. The training set has a relative 

error rate of 9.30%, while the test set has an error rate of 8.11%. These results show that the CNN model 

can accurately and reliably estimate the compressive strength of pervious concrete with different 

material compositions [13]. 

3.3. Comparative Analysis between CNN and Other Prediction Methods 

This study trained and tested both models on the same dataset in order to emphasize the CNN 

model's superiority. The BP Neural Network is a widely used neural network. The outcomes showed 

that while the two models had information focuses bunched around the askew line, demonstrating great 

prescient execution, the CNN model's expectations were strikingly nearer to the real qualities. The CNN 

model's superior accuracy and dependability in predicting the 28-day compressive strength of pervious 

concrete was demonstrated by this visual comparison. A relative diagram was created to portray the 
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anticipated qualities against the genuine qualities for the two models outwardly. The predictions made 

by the CNN model outperformed those made by the BP model because of their tighter clustering around 

the actual values. The CNN model had a higher overall predictive performance than the BP model, with 

a R2 of 0.931 as opposed to 0.893. The CNN model consistently outperformed the BP model, as 

evidenced by further examination of the Mean Absolute Percentage Error (MAPE), Mean Absolute 

Error (MAE), and Root Mean Square Error (RMSE) metrics. More specifically, the BP model had a 

MAPE of 14.40%, which was higher than the desired 10% threshold and suggested that certain mix 

ratios might be off from the actual values. The CNN model, on the other hand, had all MAPE values 

below ten percent, indicating superior predictive performance. Consequently, the CNN model gives 

dependable and exact expectations to the 28-day compressive strength of pervious cement with different 

material organizations, making it more reasonable for down to earth applications [14-15]. 

4. Conclusions 

This paper introduces a Convolutional Neural Network (CNN) model designed to predict the 28-

day compressive strength of pervious concrete using eight input parameters related to mixture 

proportions. The model was trained and validated using a dataset comprising 123 samples gathered 

from literature and experimental studies. The study yields several significant findings: First, the CNN 

model demonstrated strong predictive accuracy with a Mean Absolute Percentage Error (MAPE) of 

9.13% and an R² value of 0.938 on the test set. These metrics indicate that the CNN model effectively 

predicts the compressive strength of pervious concrete across diverse material compositions, 

underscoring its stability and ability to maintain prediction errors within acceptable limits. Second, 

comparative analysis with a traditional BP neural network showed that the CNN model outperformed 

in terms of both R² and lower prediction error metrics (RMSE, MAE, and MAPE), highlighting its 

superior predictive performance and robustness. Third, the study included experimental data covering 

a specific compressive strength range of 10-20 MPa for pervious concrete, enhancing the model's 

capability to predict data from various sources and experimental conditions. Despite these 

advancements, limitations exist due to factors such as aggregate characteristics, cement grades, and 

curing methods not being included as input variables, potentially impacting the model's performance 

across different types of pervious concrete. Future research directions should focus on integrating a 

broader array of material data and preparation conditions into CNN models, leveraging larger and more 

diverse experimental datasets to ensure comprehensive model validation and improve prediction 

accuracy. Additionally, as the dataset expands, optimizing hyperparameters like learning rate and decay 

factor will be critical, necessitating advanced algorithms to handle complexity and enhance the model's 

practical utility. 
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