
Kamlesh Kumar Bakariya /Afr.J.Bio.Sc. 6(Si3) (2024)                                  ISSN: 2663-2187 
 

https://doi.org/10.48047/AFJBS.6.Si3.2024.2196.-2202 

 

NON COMMON FIXED POINT OF NON-EXPANSIVE MAPPING FOR 

MULTISTEP ITERATION IN BANACH SPACES 

Kamlesh Kumar Bakariya 1*, Ram Narayan Yadava* 

 

*Madhyanchal Professional University, Bhopal (M.P.) India 
1Govt. SGS PG College, Ganjbasoda, (M.P.) India 

 

                                     Email- kamlesh05bakariya@gmail.com, dryadava@gmail.com 

 

 

Article History  

Volume 6, Issue Si3 2024  

Received: 12/03/2024 

Accepted: 18/05/2024  

Doi: 10.48047/AFJBS.6.Si3.2024.2196-2202 

 

 

 

 

 

 

 

 

1. INTRODUCTION: 

There are many results on fixed point on non-expansive and quasi-non-expansive mapping in 

Banach space and matric space for example, the strong and weak convergence of the 

sequence of certain iterates to a fixed point of  quasi-non-expansive map was studies by 

Petryshyn and Williamson [1], Aoyama and Kohsaka [17], Kirk and Sims [18], Temir and 

Gul [19], and  Zhou et al. [20] Their analysis was related to the convergence of Mann iterates 

studies by Doston [2]. Subsequently the convergence of Ishikawa iterates of quasi-non-

expansive mapping in Banach space was discussed by Ghosh and Debnath [3]. In the weakly 
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convergence theorem for i-asymptotically quasi-non –expansive mapping Defined in Hilbert 

space was proved in [4], convergence theorem of iterative schemes for non-expansive 

mapping have been presented and generalized in [5], Rhoades and Temir considered t and i 

self-maapping of k, where t is an-non-expansive mapping. they  established the weak 

convergence of the sequence of Mann iterates to a  common fixed  point  of t  and i. in [15], 

Shahzas considered t and  i  non-self-mapping of k, where t is  an  i-non-expansive mapping 

they established  the weak convergence  of  the sequence of modified  Ishikawa iterates to a 

common fixed point of t. 

2. PRELIMINARIES AND DEFINITION: 

let e be a normed liner  space k, a non-empty, convex subset of  e  and t a self map of k three 

most popular iteration procedures for obtaining fixed point of t if they exist are Mann 

iteration [6], defined by  

𝑢1 ∈ 𝐾, 𝑢𝑛+1= (1-𝛼𝑛 ) 𝑢𝑛+𝛼𝑛𝑇𝑢𝑛 , n≥ 1.                                             (1.1) 

ISHIKAWA ITERATION [7], DEFINED BY, 

𝑍1∈𝑘,𝑍𝑛+1 = (1 − 𝑎𝑛)𝑍𝑛 + 𝑎𝑛 𝑌𝑛                                               (1.2) 

𝑦𝑛 = (1 - 𝛽𝑛)𝑧𝑛 + 𝛽𝑛T𝑧𝑛, n ≥ 1. 

Noor iteration [40], defined b 

V1 ∈ K, 𝑣𝑛+1 = (1-𝛼𝑛 ) 𝑣𝑛+𝛼𝑛 T𝑤𝑛                                                         (1.3)  

𝑤𝑛  = (1-𝛽𝑛) 𝑣𝑛+ 𝛽𝑛T𝑡𝑛 

𝑡𝑛 = (1 - 𝑦𝑛) 𝑣𝑛 + 𝑦𝑛T𝑡𝑛, n ≥ 1 

for certain choices of  {𝛼𝑛 },{𝛽𝑛}and {𝛾𝑛} ∁ [0.1]. 

The multistep iteration [8], arbitrary fixed order p≥  2definet by 

Xn+1 = (1-αn ) 𝑋𝑛 + αn T𝑦𝑛
1 

𝑦𝑛
1  = (1- 𝛽𝑛

𝑖 ) 𝑋𝑛 + 𝛽𝑛
𝑖  t𝑦𝑛

𝑖+1, I = 1, 2, 3,……. 

𝑦𝑛
𝑝−1 = (1-𝛽𝑛

𝑝−1) 𝑋𝑛+ 𝛽𝑛
𝑝−1T𝑥𝑛                                                                   (1.4)  

 Where for all n∈N. 

The sequence {αn } is such that for all n∈N  

{αn } ∈(0,1), lim
𝑛→∞

αn  = 0, ∑ αn
∞
𝑛=1  =0. 

and for all n∈N. 

{𝛽𝑛
𝑖 } c (0, 1), 1≥  i ≥  p – 1, 
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lim
𝑛→∞

𝛽𝑛
𝑖  = 0. 

In the above taking p = 3in (1.4), we obtain iteration (1.3). 

Taking p = 2 in (1.4), we obtain iteration (1.2). 

Let k be a subset of normed linear space E = (E, ll. ll) and T self mapping of K then T is 

called non-expansive on k if   

llTx – Tyll ≤ ll x – y ll.                                                                                 (1.5) 

For all x, y ∈ 𝐾, 𝑙𝑒𝑡 𝐹(𝑇) = {𝑥 ∈ 𝐾: 𝑇𝑥 = 𝑥} 

be denoted as the set of fixed point of  a mapping 𝑇. 

 In [9], let k be a subset of normed linear space  

E = (E, ll. ll) and T and I self mapping of K. Then T is called I-non expansive on K if   

𝑙𝑙 𝑇𝑥 − 𝑇𝑦 𝑙𝑙 ≤  𝑙𝐼 𝐼𝑥 –  𝐼𝑦 𝑙𝑙                                                                    (1.6) 

for all 𝑥, 𝑦 ∈  𝐾. 

T is called I – quasi - non-expansive on K if  

𝑙𝑙 𝑇𝑥 − 𝑓 𝑙𝑙 ≤  𝑙𝑙 𝐼𝑥 − 𝑓 𝑙𝑙                                                                        (1.7) 

for all 𝑥, 𝑦 ∈  𝐾 and 𝑓 ∈  𝐹 (𝑇) ∩ 𝐹(𝐼). 

Let E be a real Banach space [10].  A subset  K of E is  said  to be a retract of E if there exists 

a continuous map  R:E → K such that  Px  = for all x ∈ K. A map P:E→E  is said to be a  

relaction if P2 =p. It follows that if a map P is a reaction, than Py = y For all y in the range of 

P. A set K is  optimal if each  point outside  K can be move  to be closer to all points of K. 

Note that every non-expansive retract is optimal in  strictly convex Banach space optimal sets  

are closed and convex. However every closed convex subset of a Hilbert space is optimal and 

also a non-expansive retract. 

Recall that a Banach space E is said to satisfy Opial’s condition [11] if for each sequence 

{𝑋𝑛} in E, the condition Xn  → X implies that  

lim
𝑛→∞

‖𝑥𝑛 − 𝑥‖ < lim
𝑛→∞

‖𝑥𝑛 − 𝑦‖ 

For all 𝑦 ∈  𝐸 with 𝑦 ≠  𝑥. 

 

The first non-linear Ergodic theorem was proved by Baillon [12] for general no-expansive 

mappings in Hilbert space H: if K is a closed and conves subset of h and T has a fixed point, 

then for every x ∈ K, {Tnx} is weakly almost Convergent, as n x} is weakly almost 

Convergent, as n → ∞, to a fixed point of T. It was also  
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Shown by Pazy [16] that if H is a real Hilbert space and 
1

2
∑ 𝑡𝑖𝑋𝑛−1

𝑖−0  converge weakly, as 𝑛 →

∞ 𝑡𝑜 𝑦 ∈  𝐾, then 𝑦 ∈  𝐹, (𝑇).  

The concept of a quasi- no- expansive mapping was initiated by Tricomi in 1914 for real 

function. Diaz and Metcalf [13] and Dotson [2] studies quasi – nonexpansive mapping ib 

Banach space. Recently this concept was given by Kirk [14] in metric space which we adapt 

to normed space as T is called a quasi - non-expansive aping provided 

                                                          ‖𝑇𝑥 − 𝑓‖ ≤ ‖𝑥 − 𝑓‖                          (1.9)  

For all x∈ K and ∈ F, (T). 

 Let E be a normed linear space, K be a non- empty convex subset of E with P as a 

non-expansive retraction. Let T: K → E be a given non-self mapping the modified multistep 

iteration scheme {𝑋𝑛} is defined by arbitrary fixed order p≥ 2. 

𝑋_(𝑛 + 1 )  =  𝑃((𝑙 − 𝛼_𝑛) 𝑋_𝑛 + 𝛼_𝑛 𝑇𝑦_𝑛^1) 

𝑦_𝑛^𝑖 =  𝑃((1 − 𝛽_𝑛^𝑖 𝑋_𝑛)  +  𝛽_𝑛^𝑖𝑇𝑦_𝑛^(𝑖 + 1)), 𝑖 = 1,2, … , 𝑝 − 2 

𝑦_𝑛^(𝑝 − 1)  =  𝑃((1 − 𝛽_𝑛^(𝑝 − 1)) 𝛼_𝑛 +  𝛽_𝑛^(𝑝 − 1)𝑇𝑋_𝑛 

Where the sequence {𝛼𝑛}is such that for all 𝑛 = 𝜀 

{𝛼_𝑛}𝑐(0,1),〖𝑙𝑖𝑚〗┬(𝑛 → ∞) =  0  ∑_(𝑛 = 1)^∞ =  𝛼 

And for all 𝑛 ∈  𝑁 

{𝛽𝑛
𝑖 } 𝑐(0,1), 1 <  𝑖  ≤ 𝑝 − 1, 𝑙𝑖𝑚

𝑛→∞
𝛽𝑛

𝑖 = 0 

Clearly if T is self map then (𝛼 ) reduces to an iteration scheme (1.4). 

3 MAIN RESULTS:  

Theorem: Let K be a closed convex bounded subset of uniformly convex Banach space E, 

which satisfies Opial’s condition, and let T, l I non-self mapping of K with T an I – non 

expansive mapping, I a non-expansive mapping of K then for 𝑋𝑜 ∈  𝐾 the sequence {𝑋𝑛}of 

modified multistep iterates converges weakly to common fixed point of 𝐹(𝑇)  ∩  𝐹(𝐼) is non-

empty and a singleton then the proof is complete. We will assume that 𝐹(𝑇)  ∩  𝐹(𝐼) is not a 

singleton  

𝛪𝛪 𝑋_(𝑛 + 1) − 𝑓 𝛪𝛪 =  𝛪𝛪 𝑝(1 − 𝛼_𝑛) 𝑋𝑛 + (𝛼_𝑛𝑇𝑦_𝑛) − 𝑓 𝛪𝛪 

≤  𝛪𝛪 (1 −  𝛼_𝑛) 𝑋_𝑛 (𝛼_𝑛𝑇𝑦_𝑛^′) − 𝑓 𝛪𝛪 

≤  𝛪𝛪 (1 − 𝛼_𝑛)( 𝑋_𝑛 − 𝑓) +  𝛼_𝑛[ 𝑝 (1 − 𝛽_𝑛^, ) 𝑋_𝑛 + 𝛽_𝑛^, 𝑇𝑦_𝑛^(2 )  −  𝑓 𝛪𝛪 

≤  𝛪𝛪 (1 − 𝛼_𝑛)( 𝑋_𝑛 − 𝑓)  +  𝛼_𝑛[(1 − 𝛽_𝑛^, ) 𝑋_𝑛 + 𝛽_𝑛^, 𝑇𝑦_𝑛^(2 )  −  𝑓 𝛪𝛪 

≤   (1 − 𝛼_𝑛) 𝛪𝛪 ( 𝑋_𝑛 − 𝑓)  +  𝛼_𝑛 𝛪𝛪 (1 − 𝛽_𝑛^, ) 𝑋_𝑛 + 𝛽_𝑛^, 𝑇𝑦_𝑛^(2 )  −  𝑓 𝛪𝛪 

≤   (1 − 𝛼_𝑛) 𝛪𝛪  𝑋_𝑛 − 𝑓 𝛪𝛪 + 𝛼_𝑛 𝛪𝛪 (1 − 𝛽_𝑛^, ) ( 𝑋_𝑛 − 𝑓) + 𝛽_𝑛^, [𝑝(1

− 𝛽_𝑛^′2) 𝑋_𝑛] +  𝛽_𝑛^′2𝑇𝑋_𝑛 − 𝑓 𝛪𝛪 
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≤   (1 − 𝛼_𝑛) 𝛪𝛪  𝑋_𝑛 − 𝑓 𝛪𝛪 +  𝛪𝛪(1 − 𝛽_𝑛^, ) ( 𝑋_𝑛 − 𝑓)  + 𝛽_𝑛^, [𝑝(1 − 𝛽_𝑛^′2) 𝑋_𝑛

+ 𝛽_𝑛^′2𝑇𝑋_𝑛 − 𝑓 𝛪𝛪 

≤   (1 − 𝛼_𝑛) 𝛪𝛪  𝑋_𝑛 − 𝑓 𝛪𝛪 𝛼_𝑛 (1 − 𝛽_𝑛^, ) 𝛪𝛪  ( 𝑋_𝑛 − 𝑓)  + 𝛽_𝑛^,

𝛪𝛪 (1 − 𝛽_𝑛^′2) 𝑋_𝑛 +  𝛪𝛪𝛽_𝑛^2𝑇𝑋_𝑛 − 𝑓 𝛪𝛪 

≤   (1 − 𝛼_𝑛) 𝛪𝛪  𝑋_𝑛 − 𝑓 𝛪𝛪 𝛼_𝑛 (1 − 𝛽_𝑛^, ) 𝛪𝛪  ( 𝑋_𝑛 − 𝑓) 𝛪𝛪 + 𝛼_𝑛 𝛽_𝑛^,

𝛪𝛪(1 − 𝛽_𝑛^′2)( 𝑋_𝑛 − 𝑓) +  𝛽_𝑛^′2(𝑋_𝑛 − 𝑓) 𝛪𝛪 

≤   (1 − 𝛼_𝑛) 𝛪𝛪  𝑋_𝑛 − 𝑓 𝛪𝛪 𝛼_𝑛 (1 − 𝛽_𝑛^, ) 𝛪𝛪  ( 𝑋_𝑛 − 𝑓) 𝛪𝛪 + 𝛼_𝑛 𝛽_𝑛^,

𝛪𝛪 (1 − 𝛽_𝑛^2) 

𝛪𝛪 ( 𝑋_𝑛 − 𝑓) 𝛪𝛪 + 𝛼_𝑛 𝛽_𝑛^, (1 − 𝛽_𝑛^2) 𝛪𝛪 𝑋_𝑛 −  𝑓 𝛪𝛪 =  𝛪𝛪 𝑋_𝑛 − 𝑓 𝛪𝛪 

For 𝛼_𝑛 ≠ 0 and 𝛽_𝑛^𝑖 ≠  0 {𝛪𝛪 𝑥_𝑛 −  𝑓 𝛪𝛪} is non-increasing sequence then  lim
𝑛→∞

𝐼𝐼 𝑋_𝑛 −

𝑓 𝛪𝛪 exists 

Now we show that {𝑋_𝑛} converges weakly to a common fixed point of T and I the sequence 

{𝑋𝑛} contain a subsequence which converges weakly to a point in K Let {𝑋𝑛𝑘} and {𝑋𝑚𝑘}be 

two subsequences of {𝑋𝑛} which converges weakly to f and q, respectively. We will show 

that f=g. Suppose that E satisfies Opial’s condition ans that f ≠ q is in weak limit set of the 

sequence {𝑋𝑛}. Then {𝑋𝑛𝑘} → and {𝑋𝑚𝑘} → q, respectively since lim
𝑛→∞

 ΙΙ 𝑋𝑛-f ΙΙ exists for 

any f  ∈ F (T) ∩ F (I) by Opial’s condition, we   conclude that  

𝑙𝑖𝑚┬(𝑛 → ∞) 𝛪𝛪 𝑋_𝑛 − 𝑓  𝛪𝛪 =  lim
𝑛→∞

𝐼𝐼   𝑋_𝑛  −  𝑓  𝛪𝛪 

<   lim
𝑛→∞

𝐼𝐼   𝑋_(𝑛𝑘 ) −  𝑞 𝛪𝛪 

=  lim
𝑛→∞

𝐼𝐼   𝑋_𝑚𝑗 − 𝑞 𝛪𝛪 

<  lim
𝑛→∞

𝐼𝐼  〖𝑋〗_𝑚𝑗 − 𝑓  𝛪𝛪 

=  lim
𝑛→∞

𝐼𝐼   𝑋_𝑛  −  𝑓  𝛪𝛪. 

Tish is a contradiction. Thus, {𝑋𝑛} converges weakly to a common fixed point of F (T) ∩ 

F(I). 
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