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ABSTRACT: Nowadays, energy management is one of the current 

research topics in power systems by means of controlling the system 

control variables to balance the abnormal load demand and fault 

conditions. In such cases, the optimal power flow was considered for 

determining the energy balancing in past research activities. In this 

research, the Whale Optimization Algorithm (WOA) is applied for 

providing the optimal power flow. It extends our previous research on 

rescheduling and congestion management of generators. Here, the 

performance WOA algorithm is checked with the IEEE test networks 

such as (a) IEEE 30-bus and (b) IEEE 50-bus test systems. The 

optimal power flow control by the change in real power of generators 

with minimization of total congestion cost. The overall process was 

carried out with MATLAB development tool to verify the power 

system outcome. The simulation results demonstrated that the WOA is 

effective in testing and it proves that it is one of the best congestion 

management (CM) scheme. 

Keywords: Optimal power flow, Generator real power 

rescheduling,  Optimization,  Whale Optimization Algorithm. 
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1. INTRODUCTION  

Recent years demand of electricity utilization continuously increasing due to the luxurious life style of 

humans beings. Similarly the generation capability increased with renewable energy sources due to lack of 

fossil fuels for balance the demand growth. The generation of output electricity is not-constant due to 

variable input energy sources. The power system control and co-ordination is crucial task for independent 

system operator (ISO) for maintaining the power system secure operation. The optimal power flow is one of 

the authoritative tool for maintaining the equality and inequality constraints. In recent years, the evolutionary 

optimization techniques in such as differential evolution algorithm combined with effective constraint 

handling techniques[1], artificial bee colony algorithm[2], moth swarm algorithm[3], improved strength 

Pareto evolutionary algorithm[4], Symbiotic organisms search algorithm[5], etc., have been applied for 

solving the OPF problem. Apart from single evolutionary algorithm, the hybrid algorithms, such as hybrid 

differential evolution and harmony search algorithm [6], modified bio-inspired optimisation algorithm with a 

centroid decision making approach [7], Hybrid genetic algorithm and particle swarm optimization [8] etc., 

have been applied for solving OPF problems. Duman (2017) utilized the Symbiotic Organisms Search (SOS) 

algorithm to solve the Optimal Power Flow (OPF) problems in recent modern power systems [10]. For 

verifying the functionary, it was tested with the modified IEEE 30-bus test system. The problem was 

separated into four different processes of with and without valve-point effect and with and without prohibited 

zones. Zamani et al., (2017) presented the Chaos embedded Symbiotic Organisms Search (CSOS) technique. 

It was tested with the IEEE 26-bus Reliability Test System for verifying the functionality of the CSOS. It 

summarizes that the CSOS is a good optimizer for FACTs devices when comparing it with the Particle 

Swarm Optimization and Evolutionary Programming. Some recent techniques to solve for optimal FACTS 

device allocation, are improved cuckoo search algorithm [12], Adaptive Hybrid Optimization Algorithm 

[13], Fuzzy unscented transform for uncertainty quantification of correlated wind/PV microgrids [14], etc. 

Other traditional algorithms have also been considered for processing the constraints based optimal power 

flow, but the limitations faced by them are increases in cost, losses and improper synchronizing of power 

iterations or fluctuation in power system module. 

Zhang et al., (2017) proposed a population based parallel DE approach for solving the short-term optimal 

hydrothermal scheduling. The objective is to minimize the total fuel cost of the thermal unit generations with 

power balancing, water balance and other constraints in hydro or thermal units. It also considers the short-

term hydrothermal scheduling (STHS) problem that arises due to the valve-point effect. The process is 

carried out based on the population size. It deploys the parallel DE approach to solve the low diversity in 

each process. It is implemented with a small population with communication among different running 

processes. To verify the standard of the model, transmission networks of standard IEEE 9-bus and IEEE 39-

bus are considered [15]. Heidari et al., (2017) concentrated on optimal reactive power dispatch problem. It is 

effectively solved by the Gaussian bare-bones water cycle algorithm (NGBWCA) with IEEE 30, 57 and 118 

bus streams [16]. 

In this research, the contribution of meta-heuristic optimisation is deployed in matching the objective of 

reducing the cost and energy. The major limitations of previous algorithms are sensitivity problems, converge 

to local optimum solutions, inefficient cost and transmission losses [9]. Apart from a fore-mentioned 

limitations, the iteration of each target is important in all swarm algorithms. Hence, the selection of 

algorithms is important to achieve the exact optimal result by encircling the objective. In the proposed 

modified WOA model, the impartial function is expressed as a constrained nonlinear optimization problem, 

to solve the identified issues with the generation rescheduling.  

 

2. MATHEMATICAL CALCULATION 

The main objective function of the proposed work has reduced the cost of congestion and at the same time 

satisfying the transmission network constraints without violation. The CM issue is solving by the method of 

generator real-power rescheduling. The cost associated with a change in real power output of the generator 

depends on the generating company’s (Generating Companies.) price bids. Therefore, the objective of the 

problem may be stated as in  Eq.(1) [6]. 

Minimize 

 Fc = ∑ (akPgj
+ + bkPgj

−) $/h
j∈Ng

    (1) 

The equality and inequality constraints have taken for the optimization problem as given below. 

2.1. Equality constraints 

The real and reactive power flow equations stated by Eq. (2)–(5) [7]. 

Pgk − Pdk = ∑ |Vj||Vk||Ykj|cos (k
j

− j − kj);  j = 1,2, … . , Nb (2) 
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Qgk − Qdk = ∑ |Vj||Vk||Ykj|sin (k
j

− j − kj);  j = 1,2, … . , Nb (3) 

Pgk = Pgk
c + Pgk

+ − Pgk
− ;  k = 1,2, … . , Ng    (4) 

Pdj = Pdj
c ;  j = 1,2, … . , Nd      (5) 

The Eq.(2) and Eq.(3) represent the active and reactive power balances at each node whereas Eq.(4) and 

Eq.(5) represent the final power as a function of market clearing price. 

2.2. Inequality constraints 

The details of the inequality constraints of operating and physical limits of all the generators, transmission 

lines, transformers are stated by Eq.(6) - (10) [7]. 

Pgk
min ≤ Pgk ≤ Pgk

max, kNg     (6) 

Qgk
min ≤ Qgk ≤ Qgk

max, kNg     (7) 

(Pgk − Pgk
min) =  Pgk

min ≤ Pgk ≤ Pgk
max = (Pgk

max − Pgk)  (8) 

Vn
min ≤ Vn ≤ Vn

max, kNl     (9) 

Pij ≤ Pij
max       (10) 

Where the superscripts min and max represent the minimum and the maximum values of the respective 

variables and Nl represents the number of lines. 

3. WHALE OPTIMIZATION ALGORITHM 

The Whale optimization, work based on the principle of bubble-net attacking method for survival of life. It 

introduced by Mirjalili and Lewis in 2016[17]. The whales have spindle cells similar to the humans. It 

provides smart work and can able to think and learn to communicate over the life [18].  The levels of 

smartness of whales are high mostly for killer whales because they create their own language. A whale can 

live alone or in groups. Most of the time, they will be noticed in groups. It merits saying here that bubble-net 

feeding is an extraordinary conduct that can be seen in humpback whales. In this research the spiral bubble-

net feeding manoeuvre is scientifically displayed with a specific end goal to perform improvement in solving 

OPF problems. 

 

 

 
 

Figure 1: Exploration mechanism implemented in WOA (Mirjalili and Lewis, 2016) [16]. 

 

 

 

Humpback whales know the areas of prey and encompass them. They consider the present best hopeful 

arrangement as the best gotten arrangement and close to the ideal arrangement. Subsequent to allocating the 

best hopeful arrangement, alternate specialists attempt to refresh their positions towards the best hunt 

operation as in the following condition.  

D = |C. X∗(t) − X(t)| 
X(t + 1) = X∗(t) − A. D 

where is the current instant, A and C are coefficient vectors, X* is the position vector of the best solution, 

and X indicates the position vector of a solution, | x | means absolute value of x. Figure 1 displays that the X∗ 

as a randomly chosen search agent. For encircling prey, the vectors A and C are calculated as follows: 

A = 2a. r. a 

C = 2. r 

where components of ‘a’ are linearly decreased from 2 to 0 over the course of iterations and r is a random 

vector in [0; 1] 
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3.1.Pseudo code for WOA algorithm  
 

To Define the initial population size (n).  

Initialize the parameters and coefficients (α,A,C, Maxiter).     

Initialize the counter (t=0) 

While (t<Max iteration) 

for (i=1;i≤n)  

% Selection Phase 

Random allocation of population 

% assigning the best search agent 

Proceed with the steps by incrementing the step size (t) 

% updating phase 

Update the parameters with the respective search agents 

Find the random position of current agent 

% fitness evaluation 

Update the exact search agent represented as X* and find the terminating condition 

Find the fitness evaluation based on the search agent 

Achieve the best result 

Terminate  

From the pseudo code, it is demonstrated that the standard WOA is initiated by setting the initial values of 

the population size (n), parameter (a), coefficients (A & C) and the maximum number of iterations (Maxiter). 

Based on the respective functions, the iteration counter is calculated and updated with the new position. Then 

update the iteration count (t). Generate the initial population (n) randomly with the search agent Xi in the 

population and by compute its fitness function f (Xi). Mention the best search agent by repeating the task 

until its termination criterion is satisfied. 
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Figure 2: Flow chart for WOA 

3.2. PROPOSED MBMMOA ALGORITHM FOR CM  

In this work, the dimension is the number of generators participating in the CM problem. The penalty 

functions added to the objective function to construct the fitness function from transferred inequality 

constraints. The equality constraints and the reactive-power inequality constraints efficiently managed by 

Newton–Raphson power flow while the real-power inequality constraints are dealing with during the 

iteration process. Other inequality constraints of line power flow and load bus voltage considered as 

quadratic penalty functions. The fitness function of CM problem analyzed by the following: 

Minimize F=Fc + PF1 × ∑ (Pij − Pij
max) +

vol

i=1
PF2 × ∑ (( ∆Vj)

2

j
+  Pij

max) +
VBL

j=1
PF3 × ( ∆Pg)2 

     (19) 

Where 

∆ Vj={
(Vj

min − Vj); if Vj ≤ Vj
min

(Vj − Vj
max); if Vj ≤ Vj

max
    (20) 

∆ Pg= {
(Pg

min − Pg); if Pg ≤ Pg
min

(Pg − Pg
max); if Pg ≤ Pg

max
    (21) 

Here, F is the fitness function, vol represent the line overloading, VBL represents the line limit and   PF i(i 

= 1, 2, 3) represents the penalty factor taken as 10, 000 throughout the simulation process [10]. 

4. RESULTS AND DISCUSSION 

Start 

Initialize the values (n,A,a,C) 

Initialize the iteration count 

Calculate the fitness value 

Assign best search agent(x) 

Condition If 

(t=t+1) 

Update the parameters 

Apply exploration  

Update best search agent 

Stop 

Termination criteria 

No Yes 

Yes 

No 
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Based on the above procedure, the fitness value of each element is calculated through the given objective 

function. The real-value position of a whale consists of active and reactive power generation, generator /load 

bus voltages, transformer taps and shunt capacitors/inductors. The normal position is improved with the help 

of mixed-variable vector that is used to calculate the objective function based on Newton–Raphson power 

flow analysis. 

The proposed WOA is tested for CM to verify the effectiveness of the different test cases mentioned in 

the Table 6. 

Table 1. Details of creating contingency on IEEE bus systems with the various test cases 

 

Bus system Test case Contingency considered 

 

Modified 

IEEE 30-bus 

1A 

1B 

Line terminate in-between 1–2 

Line terminate in-between 1-7 at same time increase the load 50% at 

all buses 

Modified 

IEEE 57-bus 

2A 

 

2B 

Reduced the power carrying capacity of the lines from  200 MW to 

175 MW and  50 MW to 35 MW in-between 5-6 and 6-12 

Power carrying capacity reduced from 85 MW to 20 MW in-between  

line 2–3 

IEEE 118-bus 3 Line terminate in-between 8-5 at the same time load increased 57% at 

buses 11-20 

 
Table 2. Details of the line flow of the IEEE-bus system with different Cases 

Test Classes 
Line in-between 

buses 

Line flow(MW) 
Particular of the 

line limit, 

(MW) 
Before 

CM 

After 

CM 
 

1A 1–7 147.57 129.5 130 

 7–8 140.23 125.04 130 

1B 

1–2 314.01 130 130 

2–8 97.86 63.35 65 

2–9 103.66 64.81 65 

2A 
5–6 188.69 172.74 175 

6–12 49.53 18.16 35 

2B 2–3 36.60 17.22 20 

3 

16–17 209.24 98.91 175 

30–17 580.29 498.62 500 

8–30 363.52 141.92 175 

The modified IEEE 30-bus test system contains 41 transmission lines, 6 generator buses and 24 load 

buses. The total testing network real-power is 283.4 MW and reactive-power is 126.2 MVAR. In this test 

system, two different cases are taken as shown in table.1 for evaluating the performance of the proposed 

algorithm, viz. Case 1A and 1B. 

Table 3: Comparative results of cost with changed in real-power for the case 1A and Case 1B with 

different algorithms 

CASE 1A 

Parameters SA  RSM  PSO  FA WOA [Proposed] 

TCC, $/h 719.86 716.25 538.95 511.8737 509.642 

ΔPG1, MW −9.076 −8.808 −8.61 −8.7783 -8.75734 

ΔPG2, MW 3.133 2.647 10.4 15.0008 14.12063 

ΔPG3, MW 3.234 2.953 3.03 0.1068 0.10019 

ΔPG4, MW 2.968 3.063 0.02 0.0653 0.25014 
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CASE 1B 

TCC, $/h 6068.7 5988 5335.5 5304.4 5296.53 

ΔPG1, MW NR NR NR −8.5798 -9.00530 

ΔPG2, MW NR NR NR 75.9954 74.66020 

ΔPG3, MW NR NR NR 0.0575 41.05022 

ΔPG4, MW NR NR NR 42.9944 2.08224 

ΔPG5, MW NR NR NR 23.8325 25.96590 

ΔPG6, MW NR NR NR 16.5144 13.50039 

TGR, MW 164.53 164.5 168 167.974 166.264 

 

In Case 1A, congestion is created in the test system by considering an terminating of line between the 

buses 1-2. Due to the termination of line, congestion occurs in the lines between 1–7 and 7-8. For secured 

operation, corrective actions are taken to alleviate these over loading lines. The proposed modified WOA 

algorithm is applied for the minimization of congestion cost. The proposed WOA is compared with those 

reported in the literature like SA, RSM, PSO and FA in Table 3. The proposed WOA obtained best optimal 

value of total congestion cost is found to be 509.642 $/h as shown in Table 3. In Case 1A, after congestion 

management losses reduced  from 16.13 MW to 13.29 MW. 

`
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c d 

 

Figure 3: Simulation results for Case 1A. (a) Voltage magnitude in p.u.; (b) change in generator real-

power in MW (c) congestion cost $/hr (d) convergence profile 

The voltage magnitude, obtained after CM while using modified WOA is shown in Fig. 3 (a).  It is 

observed that, after CM, the voltage magnitude is within limits between 0.9 and 1.1. A comparative graphical 

representation of the real power rescheduling and congestion cost with different algorithms is shown in Fig. 

3(b) and 3(c). Similarly the case 1B details are shown in table 3 and Fig.4. In the case of IB losses reduced to 

15.83 MW after congestion management instead of 37.24 MW before the congestion management. 
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C d 

 

Figure 4: IEEE 57: Simulation results with comparison of different algorithms for Class-2A 

. (a) Voltage magnitude in p.u.; (b) change in generator real-power in MW  (c) congestion cost in $/hr (d) 

convergence profile 

 

Table 4: Comparative results of cost with changed in generator real-power for the case 2A and Case 2B 

with different algorithms 

Parameters SA RSM  PSO  FA WOA[Proposed] 

CASE 2A 

TCC, $/h 7114.3 7967.1 6951.9 6150.1 6031.4 

ΔPG1, MW 74.499 59.268 23.13 5.6351 5.07306 

ΔPG2, MW 0 0 12.44 2.523 2.60977 

ΔPG3, MW −1.515 37.452 7.49 0.5098 0.40739 

ΔPG4, MW 9.952 −47.39 −5.38 0.107 0.44053 

ΔPG5, MW −85.92 −52.12 −81.21 −39.1514 -39.15113 

ΔPG6, MW 0 0 0 −35.1122 -34.74636 

ΔPG7, MW 0 0 39.03 63.1938 62.1982 
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TGR, MW 168.78 196.23 171.87 146.227 144.6264 

CASE 2B 

TCC, $/h 4072.9 3717.9 3117.6 2618.1 2103.34 

ΔPG1, MW NR NR N 0.3704 -0.22150 

ΔPG2, MW NR NR NR −27.5084 1.08662 

ΔPG3, MW NR NR NR 31.6294 22.04924 

ΔPG4, MW NR NR NR 0.3308 0.17019 

ΔPG5, MW NR NR NR −2.2549 -10.50832 

ΔPG6, MW NR NR NR −1.9354 -0.00000 

ΔPG7, MW NR NR NR −0.5101 16.00743 

TGR, MW 97.88 89.32 76.314 64.5393 50.04330 
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Figure 5: IEEE 57: Simulation results with comparison of different algorithms for Class-2A. (a) Voltage 

magnitude in p.u.; (b) change in generator real-power in MW (c) congestion cost in $/hr (d) convergence 

profile 

In Case 2A, the details of the congested line flow is given in the Table 2. The optimum value of the 

generator real power rescheduling performed by using a proposed WOA algorithm completely alleviates the 

violation of the overloading lines. The WOA based bus voltages, as obtained after the application of CM are 

displayed in Fig. 5(a) which is an acceptable one. The generator real-power rescheduling and congestion cost 

of the proposed WOA method compared with other algorithms is shown in Fig. 5(b) and Fig.5(c). Fig.5(d) 

shows the convergence profile. The total system loss before CM was 69.64 MW and it decreased to 27.71 

MW after the CM. 

 

 

 

a b 

 

 

c d 

Figure 6: IEEE 57: Simulation results with comparison of different algorithms for Class-2B. (a) Voltage 

magnitude in p.u.; (b) change in real power rescheduling concept (c) congestion cost (d) convergence profile 

Case 2B shows in Table 4, the results obtained after applying the proposed modified WOA. It clearly 

shows the cost incurred for CM is only 2103.34 $/h for the proposed modified WOA method and it is the 

lowest among all the costs obtained so far. The comparative congestion costs, offered by different algorithms 

and the proposed WOA method are displayed in Fig. 6(c).  In this case, after CM losses reduced to 29.32 

MW instead of 78.23 MW before CM.  

5. CONCLUSION 

The major objectives of congestion cost, power loss minimization are achieved by Whale Optimization 

Algorithm (WOA). From the investigation, it is noticed that the proposed algorithm is capable of providing 

the best optimal power flow in power system. The proposed approach of utilizing WOA is compared with 

existing algorithms in literature such as SA, RSM, PSO, FA, EP, RCGA and DE. The results depict the 

superiority of WOA over these algorithms. The process of balancing the objective function is estimated with 

IEEE 30-bus and 57-bus systems. The evaluation proves that the proposed algorithm is best, when compared 

with other optimizations.  
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