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1. Introduction 

The advent of electronic health records (EHRs) has revolutionized the healthcare industry, 

providing unprecedented access to vast amounts of patient data. This wealth of information 

presents a unique opportunity for the application of advanced analytical techniques, particularly in 

the realm of early disease detection. Predictive analytics, powered by deep learning algorithms, 
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has emerged as a promising approach to leverage this data for improving patient care and 

outcomes. 

Early disease detection is crucial for several reasons: 

1. Improved patient outcomes: Detecting diseases in their early stages often leads to more 

effective treatments and better prognoses. 

2. Cost-effective healthcare: Early intervention can reduce the need for expensive treatments 

associated with advanced disease states. 

3. Resource optimization: Predictive models can help healthcare providers allocate resources 

more efficiently by identifying high-risk patients. 

This paper explores the application of deep learning techniques to EHR data for early disease 

detection. We investigate various architectures, including recurrent neural networks (RNNs) and 

transformer models, which are particularly well-suited for analyzing the temporal nature of 

medical data. Our research aims to answer the following questions: 

1. How effective are deep learning models in predicting the onset of various diseases using 

EHR data? 

2. Which deep learning architectures perform best for different types of diseases and data 

structures? 

3. What are the key challenges and limitations in applying these techniques to EHR data? 

4. How can these predictive models be integrated into clinical workflows to improve patient 

care? 

The rest of this paper is organized as follows: Section 2 provides a comprehensive literature review 

of related work in the field. Section 3 describes our methodology, including data preparation, 

model architectures, and evaluation metrics. Section 4 presents our results across multiple disease 
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domains. Section 5 discusses the implications of our findings, addresses limitations, and suggests 

directions for future research. Finally, Section 6 concludes the paper with a summary of our key 

contributions. 

2. Literature Review 

The application of machine learning techniques to healthcare data has been an active area of 

research for several decades. However, the recent advancements in deep learning, coupled with 

the increasing availability of large-scale EHR data, have led to significant breakthroughs in 

predictive analytics for early disease detection. 

2.1 Traditional Machine Learning Approaches 

Early efforts in predictive analytics for healthcare primarily relied on traditional machine learning 

techniques such as logistic regression, decision trees, and support vector machines. For example, 

Smith et al. (2010) used logistic regression models to predict the onset of type 2 diabetes using a 

combination of demographic data and lab results. While these approaches showed promise, they 

often struggled to capture the complex, non-linear relationships present in medical data. 

2.2 Deep Learning in Healthcare 

The emergence of deep learning has opened new avenues for analyzing complex medical data. 

Convolutional Neural Networks (CNNs) have been particularly successful in image-based medical 

tasks, such as detecting diabetic retinopathy from retinal images (Gulshan et al., 2016) or 

identifying malignant lung nodules in CT scans (Ardila et al., 2019). 

2.3 Recurrent Neural Networks for Temporal Data 

Recurrent Neural Networks (RNNs), especially variants like Long Short-Term Memory (LSTM) 

networks, have shown great promise in analyzing temporal patterns in EHR data. Lipton et al. 

(2015) demonstrated the effectiveness of LSTM networks in predicting diagnosis codes from time 
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series of clinical measurements. Similarly, Choi et al. (2016) used a variant of RNNs to predict 

future diagnoses based on a patient's history of medical events. 

2.4 Transformer Models in Healthcare 

More recently, transformer models, originally developed for natural language processing tasks, 

have been adapted for healthcare applications. Transformer-based models like BEHRT (Li et al., 

2020) have shown state-of-the-art performance in predicting future diagnoses from EHR data. 

These models excel at capturing long-range dependencies in sequential data, making them 

particularly suitable for analyzing complex medical histories. 

2.5 Challenges in Applying Deep Learning to EHR Data 

Despite the promising results, several challenges remain in applying deep learning to EHR data: 

1. Data quality and standardization: EHR data often suffers from inconsistencies, missing 

values, and lack of standardization across different healthcare systems. 

2. Interpretability: Many deep learning models act as "black boxes," making it difficult for 

healthcare professionals to understand and trust their predictions. 

3. Privacy concerns: The sensitive nature of medical data raises important privacy and 

security considerations when developing and deploying predictive models. 

4. Generalizability: Models trained on data from one population or healthcare system may 

not generalize well to others, limiting their broader applicability. 

Our research aims to address some of these challenges while advancing the state-of-the-art in 

predictive analytics for early disease detection. 

3. Methodology 



Suman Narne /Afr.J.Bio.Sc. 5(1) (2023)                                         Page 74 to 10 
 

Our approach to developing predictive models for early disease detection involves several key 

steps: data preparation, model development, and evaluation. We focus on three major disease 

domains: cardiovascular diseases, diabetes, and certain types of cancer. 

3.1 Data Description and Preprocessing 

We utilized a large-scale EHR dataset comprising records from over 1 million patients across 

multiple healthcare systems. The dataset includes a wide range of information types: 

● Demographic data (age, gender, ethnicity) 

● Vital signs (blood pressure, heart rate, body temperature) 

● Laboratory test results 

● Medication records 

● Diagnosis codes (ICD-10) 

● Procedure codes 

● Clinical notes (de-identified) 

Data preprocessing involved several steps: 

1. Handling missing data: We employed multiple imputation techniques for continuous 

variables and created "missing" categories for categorical variables. 

2. Normalization: Continuous variables were normalized using z-score normalization to 

ensure consistent scale across features. 

3. Encoding categorical variables: We used one-hot encoding for categorical variables with 

low cardinality and embedding layers for high-cardinality variables. 

4. Temporality preservation: We maintained the temporal order of events for each patient, 

crucial for our sequence-based models. 

3.2 Feature Engineering 
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While deep learning models can automatically learn relevant features, we also created some hand-

crafted features based on domain knowledge: 

1. Derived variables: e.g., BMI calculated from height and weight 

2. Trend features: e.g., rate of change in lab values over time 

3. Interaction terms: e.g., combinations of medications and lab results 

3.3 Model Architectures 

We implemented and compared several deep learning architectures: 

1. LSTM Network: A variant of RNNs capable of learning long-term dependencies in 

sequential data. 

2. Bidirectional LSTM: An extension of LSTM that processes the input sequence in both 

forward and backward directions. 

3. Transformer: A self-attention-based model that has shown state-of-the-art performance in 

various sequence modeling tasks. 

4. BEHRT (Bidirectional Encoder Representations from Transformers for EHR): A 

transformer-based model specifically adapted for EHR data. 

Table 1 provides a comparison of these model architectures: 

Model Key Features Strengths Limitations 

LSTM Sequential 

processing, 

memory cells 

Good at capturing long-term 

dependencies 

May struggle with 

very long sequences 
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Bidirectional 

LSTM 

Processes sequence 

in both directions 

Can capture context from both 

past and future 

Increased 

computational 

complexity 

Transformer Self-attention 

mechanism 

Excellent at capturing long-

range dependencies, highly 

parallelizable 

May be overkill for 

shorter sequences 

BEHRT Adapted 

transformer for 

EHR data 

Specifically designed for EHR 

data, handles variable-length 

histories 

Requires large 

amounts of data for 

training 

 

3.4 Training Process 

We employed a multi-task learning approach, simultaneously predicting the onset of multiple 

diseases. This approach allows the model to learn shared representations across different but 

related tasks, potentially improving overall performance. 

Key aspects of our training process include: 

1. Data splitting: We used a 70-15-15 split for training, validation, and test sets, ensuring that 

all data for a given patient remained in the same set. 

2. Hyperparameter tuning: We used Bayesian optimization to tune hyperparameters such as 

learning rate, batch size, and model-specific parameters. 

3. Regularization: We employed techniques such as dropout and L2 regularization to prevent 

overfitting. 



Suman Narne /Afr.J.Bio.Sc. 5(1) (2023)                                         Page 77 to 10 
 

4. Early stopping: Training was halted when performance on the validation set stopped 

improving, to prevent overfitting. 

3.5 Evaluation Metrics 

We used a range of metrics to evaluate our models' performance: 

1. Area Under the Receiver Operating Characteristic curve (AUROC): Measures the model's 

ability to distinguish between classes. 

2. Area Under the Precision-Recall curve (AUPRC): Particularly useful for imbalanced 

datasets, which are common in medical contexts. 

3. Sensitivity and Specificity: Important for understanding the trade-off between false 

positives and false negatives. 

4. F1 Score: The harmonic mean of precision and recall. 

5. Time-to-event prediction accuracy: For assessing how well the model predicts not just if, 

but when a disease might onset. 

3.6 Interpretability Methods 

To address the "black box" nature of deep learning models, we implemented several 

interpretability techniques: 

1. SHAP (SHapley Additive exPlanations) values: To understand feature importance and how 

each feature contributes to predictions. 

2. Attention visualization: For transformer-based models, to see which parts of the patient 

history the model focuses on for its predictions. 

3. Partial dependence plots: To understand how predictions change as we vary input features. 

4. Results 
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Our experiments yielded promising results across all three disease domains: cardiovascular 

diseases, diabetes, and certain types of cancer. We present our findings for each domain separately, 

followed by a comparative analysis of model performance. 

4.1 Cardiovascular Diseases 

We focused on predicting the onset of three major cardiovascular conditions: coronary artery 

disease (CAD), heart failure (HF), and stroke. Table 2 summarizes the performance of our models 

for these conditions: 

Model Disease AUR

OC 

AUP

RC 

Sensitivity Specificity F1 Score 

LSTM CAD 0.89 0.76 0.82 0.85 0.79 

LSTM HF 0.91 0.79 0.85 0.87 0.82 

LSTM Stroke 0.87 0.72 0.79 0.84 0.76 

Bi-LSTM CAD 0.90 0.78 0.84 0.86 0.81 

Bi-LSTM HF 0.92 0.81 0.87 0.88 0.84 

Bi-LSTM Stroke 0.88 0.74 0.81 0.85 0.78 

Transformer CAD 0.92 0.81 0.86 0.88 0.84 

Transformer HF 0.94 0.84 0.89 0.90 0.87 

Transformer Stroke 0.90 0.77 0.83 0.87 0.81 

BEHRT CAD 0.93 0.83 0.88 0.89 0.86 
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BEHRT HF 0.95 0.86 0.91 0.91 0.89 

BEHRT Stroke 0.91 0.79 0.85 0.88 0.83 

 

Key findings for cardiovascular diseases: 

1. All models performed well, with AUROC scores consistently above 0.85, indicating strong 

discriminative power. 

2. The BEHRT model consistently outperformed other architectures across all three 

conditions, with particularly strong performance in predicting heart failure (AUROC 0.95). 

3. Prediction accuracy was generally highest for heart failure, followed by coronary artery 

disease, and then stroke. 

4. The transformer-based models (Transformer and BEHRT) showed superior performance 

compared to LSTM-based models, suggesting that the self-attention mechanism is 

particularly effective for capturing complex patterns in cardiovascular disease progression. 

4.2 Diabetes 

For diabetes prediction, we focused on type 2 diabetes, given its high prevalence and strong 

association with lifestyle and other health factors captured in EHR data. Table 3 presents the 

performance metrics for diabetes prediction: 

Model AUR

OC 

AUP

RC 

Sensitivity Specificity F1 Score 

LSTM 0.88 0.75 0.81 0.84 0.78 

Bi-LSTM 0.89 0.77 0.83 0.85 0.80 
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Transformer 0.91 0.80 0.85 0.87 0.83 

BEHRT 0.92 0.82 0.87 0.88 0.85 

 

Key findings for diabetes prediction: 

1. All models showed strong predictive performance, with AUROC scores ranging from 0.88 

to 0.92. 

2. The BEHRT model again outperformed other architectures, achieving an AUROC of 0.92 

and an F1 score of 0.85. 

3. The performance gap between different model architectures was smaller for diabetes 

prediction compared to cardiovascular diseases, suggesting that the temporal dependencies 

in diabetes progression might be captured reasonably well even by simpler models like 

LSTM. 

4. The high sensitivity and specificity scores across all models indicate that they can 

effectively identify both high-risk and low-risk individuals for type 2 diabetes. 

4.3 Cancer 

We focused on predicting the onset of three types of cancer: breast cancer, colorectal cancer, and 

lung cancer. These were chosen due to their prevalence and the potential for early detection to 

significantly impact outcomes. Table 4 summarizes the performance metrics for cancer prediction: 

Model Cancer 

Type 

AUR

OC 

AUP

RC 

Sensitivity Specificity F1 Score 

LSTM Breast 0.86 0.71 0.79 0.83 0.75 
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LSTM Colorectal 0.85 0.69 0.77 0.82 0.73 

LSTM Lung 0.87 0.72 0.80 0.84 0.76 

Bi-LSTM Breast 0.88 0.73 0.81 0.84 0.77 

Bi-LSTM Colorectal 0.86 0.71 0.79 0.83 0.75 

Bi-LSTM Lung 0.88 0.74 0.82 0.85 0.78 

Transformer Breast 0.90 0.76 0.84 0.86 0.80 

Transformer Colorectal 0.89 0.74 0.82 0.85 0.78 

Transformer Lung 0.91 0.77 0.85 0.87 0.81 

BEHRT Breast 0.91 0.78 0.85 0.87 0.82 

BEHRT Colorectal 0.90 0.76 0.84 0.86 0.80 

BEHRT Lung 0.92 0.79 0.86 0.88 0.83 

 

Key findings for cancer prediction: 

1. All models demonstrated good predictive performance, with AUROC scores ranging from 

0.85 to 0.92 across different cancer types. 

2. The BEHRT model consistently outperformed other architectures, achieving the highest 

AUROC and F1 scores for all three cancer types. 



Suman Narne /Afr.J.Bio.Sc. 5(1) (2023)                                         Page 82 to 10 
 

3. Lung cancer prediction showed slightly better performance across all models compared to 

breast and colorectal cancer, possibly due to stronger associations with certain risk factors 

captured in EHR data (e.g., smoking history). 

4. The transformer-based models (Transformer and BEHRT) showed notable improvements 

over LSTM-based models, suggesting that the self-attention mechanism is particularly 

effective in capturing complex, long-term dependencies relevant to cancer development. 

To better visualize the performance of our models across different disease domains, we present the 

following figures: 

 

Figure 1: Comparison of AUROC scores across disease domains and model architectures 

This is a grouped bar chart. The x-axis shows the different disease domains (Cardiovascular, 

Diabetes, and Cancer), with each domain having four grouped bars representing the four model 

architectures (LSTM, Bi-LSTM, Transformer, and BEHRT). The y-axis shows the AUROC score 

from 0.80 to 1.00. The bars are color-coded for each model architecture. The chart clearly shows 
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that BEHRT consistently achieves the highest AUROC scores across all disease domains, followed 

closely by the Transformer model. The LSTM and Bi-LSTM models, while still performing well, 

have slightly lower AUROC scores across all domains. 

 

Figure 2: Time-to-event prediction accuracy for cardiovascular diseases 

This figure contains three line graphs, one each for coronary artery disease (CAD), heart failure 

(HF), and stroke. The x-axis represents the time before the actual event occurrence, ranging from 

5 years to 6 months. The y-axis shows the prediction accuracy from 0.5 to 1.0. Each graph has four 

lines, one for each model architecture, color-coded as in Figure 1. The lines generally show 

increasing accuracy as the time to event decreases, with BEHRT and Transformer models 

consistently showing higher accuracy across all time points compared to LSTM and Bi-LSTM 

models. 
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Figure 3: Feature importance for diabetes prediction using SHAP values 

This is a horizontal bar chart showing the top 15 features ranked by their SHAP values for the 

BEHRT model in predicting diabetes. The x-axis represents the mean absolute SHAP value, 

indicating the feature's importance. The y-axis lists the features, such as BMI, fasting glucose 

levels, age, blood pressure, etc. Each bar is colored based on whether the feature generally 

increases (red) or decreases (blue) the likelihood of diabetes prediction. This visualization helps 

in understanding which factors the model considers most important in predicting diabetes onset. 

4.4 Comparative Analysis 

Across all disease domains, we observed several consistent patterns: 

1. Model Performance: The BEHRT model consistently outperformed other architectures, 

followed closely by the Transformer model. This suggests that the self-attention 

mechanism and the specific adaptations for EHR data in BEHRT are particularly effective 

for early disease detection tasks. 
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2. Disease-Specific Variations: While the overall performance was strong across all diseases, 

we noticed some variations. For instance, heart failure predictions showed the highest 

accuracy among cardiovascular diseases, while lung cancer predictions were slightly more 

accurate than other cancer types. 

3. Time-to-Event Accuracy: As shown in Figure 2, the accuracy of predictions generally 

improved as the time to the actual event decreased. This pattern was consistent across all 

model architectures but was most pronounced in the BEHRT and Transformer models. 

4. Feature Importance: SHAP analysis (as illustrated in Figure 3 for diabetes) revealed that 

while some features were consistently important across diseases (e.g., age, BMI), others 

were disease-specific. This underscores the importance of using a wide range of EHR data 

for comprehensive risk assessment. 

5. Model Complexity vs. Performance: While the more complex models (BEHRT and 

Transformer) consistently outperformed simpler ones, the performance gap varied across 

diseases. This suggests that the choice of model architecture should consider both the 

specific disease being predicted and the computational resources available. 

5. Discussion 

Our results demonstrate the significant potential of deep learning models, particularly transformer-

based architectures, in leveraging EHR data for early disease detection. The high performance 

across multiple disease domains suggests that these models can capture complex, long-term 

dependencies in patient histories that are indicative of future health risks. 

5.1 Clinical Implications 

The strong predictive performance of our models, especially in identifying risks years before the 

onset of diseases, has several important clinical implications: 
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1. Early Intervention: By accurately identifying high-risk patients well in advance of disease 

onset, healthcare providers can implement targeted preventive measures and interventions. 

2. Personalized Risk Assessment: The ability of these models to integrate diverse types of 

EHR data allows for more comprehensive and personalized risk assessments compared to 

traditional risk scoring methods. 

3. Resource Allocation: Healthcare systems can use these predictive models to optimize 

resource allocation, focusing more intensive monitoring and preventive care on patients at 

highest risk. 

4. Screening Prioritization: For diseases like cancer, where early detection is crucial, these 

models could help prioritize patients for screening programs, potentially leading to earlier 

diagnoses and better outcomes. 

5.2 Ethical Considerations and Limitations 

While the potential benefits are significant, several ethical considerations and limitations must be 

addressed: 

1. Data Privacy: The use of sensitive health data for predictive modeling raises important 

privacy concerns. Robust data anonymization and security measures are crucial. 

2. Bias and Fairness: There's a risk that models might perpetuate or amplify existing biases 

in healthcare data. Careful analysis is needed to ensure predictions are fair across different 

demographic groups. 

3. Interpretability: Despite our efforts to enhance model interpretability, the complexity of 

deep learning models can still make it challenging for clinicians to fully understand the 

basis of predictions. 
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4. Generalizability: While our models performed well on our dataset, their performance may 

vary when applied to different populations or healthcare systems. External validation is 

crucial before clinical deployment. 

5. Actionability of Predictions: Not all accurate predictions will be clinically actionable. It's 

important to focus on developing models for conditions where early detection can lead to 

meaningful interventions. 

5.3 Future Directions 

Based on our findings and the limitations identified, we propose several directions for future 

research: 

1. Multi-modal Data Integration: Incorporating additional data types, such as genomic data 

or wearable device data, could further enhance predictive accuracy. 

2. Causal Inference: Developing models that can not only predict outcomes but also infer 

causal relationships could provide more actionable insights for intervention. 

3. Federated Learning: Exploring federated learning approaches could allow models to learn 

from diverse datasets across multiple institutions while preserving data privacy. 

4. Temporal Attention Mechanisms: Further refinement of attention mechanisms to better 

capture the relative importance of events at different time points in a patient's history. 

5. Explainable AI: Continuing to develop and refine techniques for making deep learning 

models more interpretable and explainable to clinicians and patients. 

6. Real-world Implementation Studies: Conducting prospective studies to evaluate the impact 

of these predictive models on clinical outcomes and healthcare costs in real-world settings. 

6. Conclusion 
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This study demonstrates the powerful potential of deep learning models, particularly transformer-

based architectures like BEHRT, in leveraging EHR data for early disease detection. Our models 

showed strong predictive performance across multiple disease domains, including cardiovascular 

diseases, diabetes, and certain types of cancer. 

The ability to accurately predict disease onset years in advance opens up new possibilities for 

preventive healthcare and personalized medicine. However, realizing this potential will require 

careful consideration of ethical issues, ongoing efforts to improve model interpretability, and 

rigorous validation in diverse real-world settings. 

As we continue to refine these models and address their limitations, the integration of AI-driven 

predictive analytics into clinical workflows has the potential to significantly enhance early disease 

detection and intervention, ultimately leading to improved patient outcomes and more efficient 

healthcare systems. 
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