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Abstract 

Chronic wounds impose a substantial healthcare impact. This may not 

heal as quickly as they should, which can lead to additional wound 

complications like infection and even amputation. This review 

manifests, how smart upgrades are perhaps a good solution to address 

conventional wound dressing problems.A brief discussion regarding 

wound biology as well as the procedure for rebuilding is provided in 

this overview, with an emphasis on the key elements affecting a good 

closure. This context addresses the emerging risks of resistance to 

bacteria in wound care and go over antibacterial tactics. The discussion 

then turns to stimuli-responsive antibacterial nanomaterials, which are a 

vital element of smart patches that plays a key role in both improved 

antibacterial activity and tailored drug delivery. In addition to this it 

explores the idea of "all-in-one" smart patches, combining multiple 

features for all-encompassing wound care. A critical analysis of several 

smart patches that researchers have designed, each with a variety of 

features are included. Conclusion infused with the current constraints of 

smart patches and delineate fascinating prospects for this emerging 

domain. This review also sets the stage for the development of smart 

patches in clinical wound healing by providing an up-to-date and 

thorough analysis of the technology. 
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Introduction  

Recent data released by Trusted Market Research projects, the worldwide wound care market 

to develop at an average yearly rate of 4.61% from 2023 to 2030 (Sen CK, 2023). In Europe, 

there are over 1.5–2 million people with chronic wounds, while in the US, there are over 6.5 

million. These individuals place a heavy financial strain on the healthcare sector, having 

annual treatment costs up to 250 million USD (Zimlichman E etal.,2013;and Phillips CJ 

etal.,2016). Chronic wound occurrences amongst senior citizens are rising exponentially as 

diabetes and obesity become increasingly prevalent in this demographic (Clayton Jr 

Wetal.,2009),( Sen CKetal.,2009), (Standl Eetal.,2019). 

Approximately $15 billion is spent on things related to wound closure, and an additional $12 

billion is spent on skin scar management. Together, these wound healing treatments represent 

a significant economical activity (Han G etal.,2017).The whole external layer of the human 

physique is wrapped by skin, that is in regular contact with the outside world. It senses 

stimuli from outside the body, controls the internal temperature, and shields the body from 

harm (Dąbrowska AK etal.,2018). 

The body of an individual might become considerably more susceptible to infections as a 

result of skin damage (Bayram Y etal.,2013). Skin has exceptional rejuvenation qualities that 

enable it to mend from damages quickly(Singer AJ etal.,1999).But some deep wounds that 

result in substantial skin damage, like burns, or deeper medical conditions like diabetes, may 

exceed the skin's ability to regenerate itself (Bjarnsholt T etal.,2008).The typical healing 

processes of inflammation, proliferation, and maturation do not take place in these kinds of 

wounds. One of the main problems with chronic wounds is infection; patients should be 

monitored for symptoms of infection by medical specialists either regularly or in a hospital. 

This will increase the expense of therapy (James GA etal.,2008),( Edwards R etal.,2004).It is 

quite helpful to have smart solutions that can keep an eye on the condition of wounds without 

requiring dressing changes or visit to the hospital  (Saghazadeh S etal.,2018). The latest 

advances in wearable intelligent medical devices for disease detection and management are 

getting better with the advent of modular electronics (Jin Y etal.,2020). It is possible to put 

together several sensors and actuators within one unit that can keep skin in an uniform 

proximity (Najafabadi AH etal.,2014). A good way to keep an eye on bacterial infections is 

by tracking the acidity of the wound area (Lu N etal.,2012),( Schneider 

LAetal.,2007).Standard wounds that heal have a pH around 5.5 and 6.5 while they are 

healing. The pH will be higher than 6.5 in infected wounds that are not healing (Rahimi 

Retal.,2017).This review mainly focuses on the different types of stimuli responsive 

antibacterial nanomaterials, where the bactericides can be exposed or precisely release on 

demand. Indeed, This strategy has a lot of potential to notice theproblem of overusing 

bactericides and mitigating the emergence of drug-resistant bacteria. And focuses on ALL IN 

ONE type of patches that combine biosensors and responsive drug release systems which 

have become a novel strategy to accelerate wound healing. 

The biology and healing of wounds  

Systematic and meticulously timed biological processes that are abnormal in chronic wounds 

lead to wound repair. Proper wound healing can be adversely affected by a number of both 

local and systemic variables, such as infection, chronic inflammation, insufficient dietary 

content, elevated local pressure, and inadequate perfusion (Guo SA etal.,2010). Evidently 

have endured numerous investigations on the a part of extremely controlled aspects engaged 

in wound healing, like  inflammatory tissues, cytokines, and chemical messengers in wound 
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healing. There are four major stages in wound healing. Namely, Hemostasis, Inflammation, 

Proliferation and Remodeling which are depicted in figure.1 

 
Figure 1. Stages of wound healing 

Formation of resistance to bacteria and antibacterial techniques 
The term "bacterial resistance" describes a bacteria's capacity to tolerate the adverse reactions 

of antibiotics, either by becoming susceptible to them or by decreasing its sensibility to them 

with continued administration, which eventually results in ineffectual therapy (Clatworthy 

AE etal.,2007). Most scientists agree that the main ways that bacteria develop resistance to 

antibiotics are by changing the shape of their cell walls to prevent drug entry (Darby EM 

etal.,2023) and by elevating eliminating enzymes that break down medicines, making them 

futile (Gupta A etal.,2019) decreasing the likelihood of binding of antibiotics and their 

intended targets by changing the number and shape of antibiotic binding sites (Schaenzer AJ 

etal.,2020). Excessive expression of efflux pumps that work to remove medicines, hence 

lowering intrinsic level of drugs to ineffectual levels (Walsh C etal.,2000). Furthermore, 

bacteria are able to create biofilms, which constitute communal defensive survivability . As a 

form of protection, biofilms help bacteria fend off the entry to immunological chemicals or 

antibiotics. They can therefore cause bacterial resistance and show reduced responsiveness to 

antibiotics (Makabenta JM etal.,2021). 

Antibacterial nanomaterials attuned to stimuli 
In the war over bacteria, specifically those that are resistant to conventional antibiotics, 

Antibacterial Nanomaterials attuned to Stimuli offer immense potential as a novel and 

effective weaponry. These nanomaterials fall into two categories: those that respond to 

exogenous stimuli and those that respond to endogenous stimuli. These are depicted in 

figure.2. Personalised therapy and self-adjusting antibacterial systems were enabled by 

nanomaterials that respond to cues derived from bacterial byproducts (Zhang J etal.,2023). 
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Figure 2. Stimuli-Responsive Antibacterial Nanomaterials 

Antibacterial nanomaterials attuned to endogenous stimuli 
It is well established that the microenvironment of biofilms constructed by bacteria and 

diseased tissues is distinct from that of healthy tissues.  Numerous characteristics, including 

low pH, elevated Reactive oxygen species (ROS), and activated enzymes, define this 

microenvironment which is depicted in figure.3. Theoretically, nanoparticles' stimuli-

responsive nature provides an advantage since it can be selectively triggered upon arrival at 

the site of infection, greatly increasing medication bioavailability.  

 
Figure 3. Types of Endogenous stimuli 

pH-responsive antibacterial nanomaterials 

Acidity is a common feature of the milieu of bacterial infections. fermentation that is 

anaerobic brought on by hypoxia may lead to bacteria that alter the ambient pH of tissue that 

is infected. Two main categories exist forthe underlying process of pH-responsiveness: (1) 

protonation/deprotonation of carboxylic and amine categories, and (2) breaking of bonds 

between molecules. Development of pH-responsive small platforms is frequently achieved 

through the protons from forming of groups of amines.As an outcome, many different pH-

responsive antibacterial nanoparticles with greater efficacy in the management of infections 

caused by bacteria have been identified. pH responsive based nanomaterials were designed 

by various researchers (Wu S etal.,2021), (Shi Y etal.,2022), (Wang C etal.,2020), (Tan P 

etal.,2023), (Pal VK etal.,2022) presented in Table 1. 
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Enzyme-responsive antibacterial nanomaterials 

Another feature of the infection with bacteria  is the production of enzymes. The area of 

infection is given a distinct microenvironment by these enzymes. Because of their 

outstanding selection as well as effectiveness under mild physiological settings, enzymes are 

thought of being the most clever drug delivery technique (Hu Q etal.,2014). Smart 

nanomaterials can be designed with enzyme-labile links to enable on-demand and responsive 

release of drugs upon enzyme stimulation, therefore reducing the side effects of medicinal 

medications (Huang Y etal.,2024), (Zhang Y etal.,2022), (Gaut JP etal.,2001), (Long Y 

etal.,2021).Enzyme responsive based nanomaterials were developed by various researchers 

(Wu K etal.,2022), (Liu Y etal.,2019), (Cheng X etal.,2020), (Li Y etal.,2016) presented in 

Table 1. 

High levels of H2O2, H2S-responsive antibacterial nanomaterials 
Higher H2O2 and H2S concentrations are often found near bacterial infection sites and are 

important in the pathophysiology of infections (Shatalin K etal.,2021). Multiple 

investigations have proven that almost all bacteria have the enzymes that are necessary to 

create H2S as a defence against oxidative stress One effective tactic to prevent bacterial 

resistance is to inhibit the formation of H2S (Zhu J etal.,2021), (Fei Y etal.,2020), (Park D 

etal.,2016), (Gao Q etal.,2018), (Manoharan D etal.,2019),(Su Z etal.,2022).This type of 

nanomaterials were designed by various researchers (Yang N etal.,2021), (Guo G etal.,2020) 

which is presented in Table 1. 

Antibacterial nanomaterials attuned to exogenous Stimuli 
External stimulus-responsive nanoparticles are capable of being triggered by a variety of 

exogenous stimuli, including light, ultrasonic, magnetic, and electric fields. The term 

exogenous stimuli-responsive nanoplatforms, which hold considerable promise for attaining 

spatiotemporally regulated medication administration due to their ease of controllability over 

these external stimuli like light, temperature, electric, magnetic and ultrasound which is 

presented in figure. 4. (Ran Betal.,2021), (Huo Jetal.,2021). 

 
Figure 4. Types of Exogenous stimuli 

Photo-responsive antibacterial nanomaterials 
As chromophores with the ability to transform stimuli from light to chemical-based or the 

energy outputs, photo-responsive antibacterial nanomaterials are frequently employed in 

light-mediated therapies. This is due to their inherent optical characteristics, as well as when 

they work in tandem with photosensitive substances and photothermal agents for therapeutic 

purposes (RenYetal.,2020).These tactics comprise a variety of methods, such as 

photodynamic therapy (PDT) and photothermal therapy (PTT) (Wei Getal.,2020). PTT is a 

type of thermal treatment that works by converting light energy to heat energy by means of 
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nanomaterials that have a significant photothermal transformation rate upon exposure to an 

external illumination source.PDT's ability to be repeated without causing unwanted drug 

resistance is a noteworthy benefit over traditional antibiotic-based therapy. (Xu Xetal.,2018), 

(Zhang Hetal.,2021), (Li Retal.,2021), (Aksoy Ietal.,2020). Photo-responsive based 

nanomaterials were designed by various researchers (Li Zetal.,2021), (Xu Qetal.,2020), (Dai 

Xetal.,2018). which is presented in Table 1. 

Thermally responsive antibacterial nanomaterials 

Unlike light-thermal nanomaterials, that are considered as another kind of "smart" 

nanomaterial, these have the capacity to alter their physical characteristics (e.g., shape, size, 

etc.) in accordance with slight variations in temperature, leading to a controlled release of 

drug(Wang Letal.,2017), (Dutta Ketal.,2020). Poly(N-isopropylacrylamide) (pNIPAM) is the  

thermoresponsive polymer which is utilised most extensively amongst other materials.  it can 

reversibly change from a hydrophilic spiral form into a hydrophobic globule form. This 

change in state is easily controlled by modifying the level of concentration of the polymer 

and by introducing surfactants and copolymers (Cui Jetal.,2021). These nanomaterials were 

developed by various researchers (ZhanJetal.,2018), (Yan Xetal.,2019)which is  presented in 

the Table 1. 

Ultrasound/microwave-responsive antibacterial nanomaterials 

During ultrasonic or microwave stimulation, nanomaterials that are particularly susceptible to 

these stimuli typically produce reactive oxygen species (ROS) or heat, both of which are 

extremely deadly to a variety of bacteria that are drug-resistant (Xiang Yetal.,2023), (Pang 

Xetal.,2019), (Guan Wetal.,2019), (Li Getal.,2021), (Yu Yetal.,2021), (Wang Retal.,2022). 

because of its benefits of non-invasiveness, superior tissue penetration, and restricted 

ultrasonic site irradiation, which produces antibacterial effects, this indicates enormous 

possibilities in the management of deep infections (Ma Letal.,2023), (Wei Setal.,2021). This 

type of  nanomaterials were developed by various researchers (Yang SRetal.,2023), (Sun 

Xetal.,2023), (Wei Setal.,2021) presented in Table 1. 

Magnetic-responsive antibacterial nanomaterials 

Magnetically triggered antibacterial techniques are being developed as a result for the ability 

of magnetically sensitive nanomaterials that can be triggered by magnetic fields. Because 

tissue from humans is transparent to magnetic fields, magnetic stimulation has the benefit of 

deep tissue absorption and stimulation over light-based methods. Research has focused on 

two fundamental pathways: 

(1) Localised variations in temperature brought about by magnetic stimulation are known as 

hyperthermia caused by magnetic fields. (2) Magnetophysical action: upon exposure to an 

induced magnetic field, nanoparticles demonstrate antibacterial activity prompted by 

kinematic pressures (Rabbi MAetal.,2021), (Wang Petal.,2022), (Hou 

Xetal.,2021).Magnetic- responsive based nanomaterials were designed by various researchers 

(Elbourne Aetal.,2020), (Liu Getal.,2022)which is presented in Table 1. 

 

Table 1. Work done by various researchers using different types of stimulus responsive 

nanomaterials 

S.No Type of work done Type of stimulus References 

1 Photodynamic 

nanoparticles 

 

pH, Photo  responsive 

stimulus 

(Wu S etal.,2021) 

2 Self  activated nano reactors pH responsive stimulus (Shi Y etal.,2022) 
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3 Cage like polymeric 

nanoparticles 

pH responsive stimulus (Wang C etal.,2020) 

 

4 Chimeric  peptide nano 

assemblies 

pH responsive stimulus (Tan P etal.,2023) 

5 Bioactive  peptide nano 

assemblies 

pH responsive stimulus (Pal VK etal.,2022) 

 

6 Cage like frame nano 

spheres 

Enzyme  responsive stimulus  (Wu K etal.,2022) 

7 Mesoporous ruthenium 

nanocarriers 

Enzyme responsive stimulus (Liu Y etal.,2019) 

8 Metal-organic framework 

nanoparticles 

Enzyme responsive stimulus (Cheng X etal.,2020) 

 

9 Polymeric vesicles 

 

Enzyme responsive stimulus (Li Y etal.,2016) 

10 Copper oxide nanoparticles H2O2, H2S-Responsive 

stimulus 

(Yang N etal.,2021)  

11 CuFe5O8 nanocubes 

 

pH, H2O2 stimulus (Guo G etal.,2020) 

12 Methylene blue (MB) and 

lysozyme (LYZ)-loaded 

upconversion nanoparticles 

Photo responsive stimulus (Li Zetal.,2021) 

13 Multifunctional composite 

hydrogel 

Photo responsive stimulus (Xu Qetal.,2020) 

 

14 water-soluble galactose- 

based on BODIPY 

Photo responsive stimulus (Dai Xetal.,2018) 

 

17 Reversible Exposure and 

Hiding of Antimicrobial 

Peptides on an Implant 

 

Thermal responsive stimulus (ZhanJetal.,2018) 

18 In Situ forming hydrogel 

 

Thermal responsive stimulus (Yan Xetal.,2019) 

23 Engineering-based 

microneedle 

Ultrasound responsive 

stimulus 

(Yang SRetal.,2023) 

24 Sono-Immunotherapeutic 

Nanocapturer 

Ultrasound responsive 

stimulus 

(Sun Xetal.,2023) 

25 Engineering of Red 

Phosphorous–Metal 

Ultrasound responsive 

stimulus 

(Wei Setal.,2021) 

26 Levofloxacin-Loaded 

Nanosonosensitizer 

Ultrasound responsive 

stimulus 

(Li Getal.,2021) 

27 Single-Atom Catalysis 

 

Ultrasound responsive 

stimulus 

(Yu Yetal.,2021) 

28 Sonodynamic therapy in 

antibacterial application 

Ultrasound responsive 

stimulus 

(Wang Retal.,2022) 
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29 Nanocomposite hydrogels Ultrasound responsive 

stimulus 

(Yang SRetal.,2023) 

30 Sonodynamic Bacterial 

Inactivation 

Ultrasound responsive 

stimulus 

 (Sun Xetal.,2023) 

31 Nanocrystalline jute 

cellulose nanocomposites 

Magnetic responsive stimulus  

(RabbiMAetal.,202

1) 

32 Multifunctional hydrogel Magnetic responsive stimulus (Wang Petal.,2022) 

33 Biofilm treatment Magnetic responsive stimulus  (Elbourne 

Aetal.,2020) 

 

34 Nanosheets Magnetic responsive stimulus (Liu Getal.,2022) 

 

All-in-one patches 

Wound patches which integrate biological sensors along with responsive medication release 

mechanisms have come about as a unique approach for speeding up healing of wounds, 

owing to the development of adaptable electronics. The patch itself has the ability to give 

medication locally while also doing real-time  monitoring. Wireless device included within 

the patch can be utilised  to facilitate wound healing as well as fulfil the goals of prompt 

diagnosis and controlled therapy (Wang Yetal.,2021). 

Table 2. Fabrication of smart patches by different researchers for wound healing activity 

Sl.n

o 

Title Stimulu

s 

Sensor

s 

Stimulus 

used 

Sensors 

Incorporated 

Author 

1. Polymer 

Hydrogel-

Based 

Multifunctiona

l Theranostics 

for Managing 

Diabetic 

Wounds 

 

  

pH 

responsiv

e 

stimulus, 

Redox 

responsiv

e stimulus 

Electrochemica

l sensor 

(Gong 

Xetal.,2024) 

2. Design and 

fabrication of 

the paper 

fluidic–based 

wound sensor 

patch 

  

 

 

     --- 

PETAL Paper 

sensor 

(Zheng 

XTetal.,2023

) 

3. Design of the 

fully integrated 

stretchable 

wearable 

bioelectronic 

system 

  

Electrical 

responsiv

e stimulus 

Electrochemica

l sensor, 

Glucose sensor, 

pH and 

Temperature 

sensors. 

 

(Shirzaei 

Sani 

Eetal.,2023) 
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4. Flexible, 

Wearable and 

Fully-printed 

Smart Patch 

for pH and 

Hydration 

Sensing in 

Wounds 

  

 

 

     --- 

pH & hydration 

sensors. 

(Iversen 

Metal.,2022) 

5. Intelligent Silk 

Fibroin Based 

Microneedle 

Dressing (i-

SMD) 

  

Thermo 

responsiv

e stimulus 

 

 

        --- 

(Gao 

Betal.,2020) 

6. Smart Flexible 

Electronics-

combined 

dresssings for 

wounds  

  

 

 

    --- 

Temperature 

Sensor 

(Pang 

Qetal.,2020) 

7. A pH-

regulated Drug 

Delivery 

transdermal 

Patch 

  

pH 

responsiv

e stimulus 

 

 

 

          --- 

(Jiang 

Hetal.,2019) 

8. A pH-

Mediated 

Electronic 

Wound 

Dressing for 

Controlled 

Drug Delivery 

  

Electrical 

responsiv

e stimulus 

pH Sensor (Kiaee 

Getal.,2018) 

9. Smart Bandage 

for Monitoring 

and Treatment 

of Chronic 

Wounds 

 

  

Thermo 

responsiv

e stimulus 

pH and 

Temperature 

Sensors 

(Mostafalu 

Petal.,2018) 

10. Bacteria-

responsive 

intelligent 

wound 

dressing 

  

Photo 

responsiv

e stimulus 

 

 

 

         --- 

(Zhou 

Jetal.,2018) 

11. An Advanced 

Hydrogel  

Dressing  
  

 

 

      ---   

pH Sensor (Mirani 

Betal.,2017) 

12. Textile based 

dressing    

Thermo 

responsiv

e stimulus 

 

 

          --- 

(Mostafalu 

Petal.,2017) 

 

 

Smart patches: limitations and future scopes 
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Eventhough many different formulations like emulgels (Sonule M etal.,2023), Nanoemulgels 

(Eman M.E. Dokla etal.,2023), Solid lipid nanoparticles (Kumar Kk etal.,2024). The 

improved intelligent patch produced by experts recently making a  significant difference in 

the therapeutic treatment of wounds. 

The implementation of novel innovations, such as 3D/4D printing along with the alteration of 

suitable natural resources, has led to the development of quicker and simpler ways to 

manufacture the ideal components for smart wound patches (Wang Yetal.,2021). 

While these investigations have shown promising outcomes in lab studies, there are a very 

least amount of translation of these outcomes into healthcare settings (Saghazadeh 

Setal.,2018) and we cannot reliably determine the sort of pathogen or the level of infection 

via measurement of wound factors including pressure, temperature, and pH. 

Although wearable technology has revolutionised  therapy for managing the wounds, A lot of 

innovations are limited to only use in lab environments.Electronics and sensors ought to be 

suitable with the human body. This is particularly crucial for wounds that are visible. The 

associated electronics shouldn't cause harm to an already-existing wound. Human skin 

frequently interacts withelectronic parts connected to sensors and intelligent dressings, that 

could lead to biocompatibility issues. Clinical validation is a prerequisite for releasing 

sensors to end users.  

The sensing capabilities of currently available wound-sensing gadgets are limited. 

Incorporating a diverse variety of sensors within wound dressings could allow the monitoring 

of many chemical and physical markers with great specificity and sensitivity in actual time, 

providing useful data for analysing the evolution of wounds (Lu SHetal.,2022).The 

integration of medication release and tracking has been included due to the advancement of 

exceptionally interconnected technology. While there is considerable potential for 

advancement in smart wound patches, This developing sector still has a lot of problems 

which have to be solved. 

 

Conclusion 

Individuals who have chronic wounds, experience great distress on both bodily and mental 

level, which places a heavy cost on medical systems around the globe. Though they work 

well, conventional wound dressings contain drawbacks. Eliminating them may result in more 

harm, and their inability to track in actual time may impede the best possible healing of 

wounds. A potential fix for these issues is the use of intelligent patches. 

This review thoroughly examined how intelligent patches could transform the therapy for 

managing the persistent wounds. Hence the idea of "all-in-one" intelligent patches has 

developed as an intriguing potential route for complete wound care, which includes features 

like medicine administration, surveillance, and antibacterial action. 

This review concludes by presenting a convincing image of intelligent patches as a game-

changing innovation for treating the persistent wounds and research done on smart patches by 

different researchers are embodied. They hold the potential of quicker healing, lower 

infection rates, and better patient outcomes by combining the strength of cuttingedge 

materials, continuous surveillance, and targeted medicines. In order to drastically improve 

patient outcomes and lessen the strain on healthcare systems, intelligent patches have an 

opportunity to change the paradigm of chronic wound treatment with ongoing studies and 

advancements aimed at surpassing current constraints and preserving ethical standards. 
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