https://doi.org/10.33472/AFJBS.6.9.2024.2838-2857

Antibacterial activity against glucansucrase of Streptococcus mutans, in silico molecular docking analysis, ADMET analysis of isothiocyanates and glucosinolates compounds from Brassica oleracea l. var. italica ¹S.Swathi ,²Dr. Jogikalmat Krithikadatta, ³Dr. M. Sangeetha Postgraduate ,Department of Conservative Dentistry and Endodontics,Saveetha Dental College and Hospitals,Saveetha Institute of Medical and Technical Sciences,Saveetha University,Chennai-77 Swathisureshkc18@gmail.com,Orchid ID – 0000-0002-7586-479X Professor,Department of Conservative Dentistry and Endodontics,Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences,Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences,Saveetha University,Chennai-77 Associate Professor,Sri Ramachandra Faculty of Pharmacy,Sri Ramachandra Institute of Higher Education and Research,Porur, Chennai.Mail Id: sangeetha.m@sriramachandra.edu.in Orcid ID- 0000-0002-8116-2276

CORRESPONDING AUTHOR: Dr. Jogikalmat Krithikadatta

Volume 6, Issue 9, May 2024

Received: 09 March 2024

Accepted: 10 April 2024

Published: 20 May 2024 doi:10.33472/AFJBS.6.9.2024.2838-2857

Abstract:

INTRODUCTION: Medicinal plants have been essential to the development of primary healthcare and are a rich source of novel bioactive chemicals for medication discovery. The bioactive components of Brassica oleracea var. Italica and their roles in supporting health are diverse. The aim of the study is used to confirm the mode of binding for antibacterial activity, elucidating quantum chemical properties, and ADME-drug-likeness of isothiocyanates and glucosinolates isolated from Brassica oleracea. L. Var. Italica.

METHODS: Docking studies were performed against 3AIC employing a flexible ligand docking approach using Autodock vina. SwissADME prediction and toxicology predictions were done using ADMET. The optimized structure and electrostatic potential of the isolated compounds were predicted by DFT analysis using B3LYP/31G basis levels.

RESULTS AND DISCUSSION:

Docking results revealed that Indole-3 acetic acid and Glucobrassicin showed better docking scores compared to other compounds. The SwissADME prediction results showed that Indole-3 acetic acid and Glucobrassicin having higher affinity value with Indole-3 acetic acid satisfying Lipinski's rule of five with zero violations. Toxicological prediction results suggested that compounds are non-hepatotoxic, noncarcinogenic, non-irritant, immunogenic, and non-cytotoxic. The DFT analysis suggesting better bioactivity and chemical reactivity with considerable intramolecular charge transfer between electron-donor to electron-acceptor groups.

CONCLUSION: Indole-3 acetic acid and Glucobrassicin compound may serve as a lead molecule and further work is recommended for functional group inclusion, modification, and SAR study to develop novel antibacterial agents with therapeutic activity against *S. mutans*.

KEYWORDS: Lux S binding domain, de novo DFT, flavonoids, phenolic and docking studies

INTRODUCTION:

Broccoli seedlings are a superior source of phytochemicals that promote health, such as nitrogen-sulfur derivatives like glucosinolates and isothiocyanates, polyphenols like derivatives of chlorogenic and sinapic acids and flavonoids, minerals like selenium, potassium, and manganese, and vitamins like A, C, K, and B6 (Baenas, Moreno, and García-Viguera 2012)(Aparna et al. 2021). The usage of pesticides and herbicides is eliminated, food waste is decreased, and the amount of phytochemicals that are beneficial to health is increased by ten times when compared to commercial adult plants when using sprouts and microgreens as a novel way for functional meals. (Le, Chiu, and Hsieh 2020) (Janani et al. 2020). Due to their high nutritional value and bioactive content, vegetable crops are an essential part of the human diet and may help to increase food security and nutritional quality (Montaner et al. 2022) (Johnson et al. 2022). Since broccoli (Brassica oleracea L. var. Italica) contains significant amounts of health-promoting compounds like vitamins, glucosinolates, phenolic compounds, and dietary essential minerals, it offers benefits to health beyond just basic nutrition. As a result, consumption of broccoli has been rising over time.(Ares, Nozal, and Bernal 2013)(Nasim and Professor and Head, Departm...). A vast class of secondary plant metabolites known as glucosinolates has physiologically active substances and nutritional benefits (Prieto, López, and Simal-Gandara 2019). The most significant GLSs in broccoli are glucoraphanin, which makes up more than half of the total, glucoiberin, glucoerucin, glucobrassicin, and neoglucobrassicin. (Orlando et al. 2022).

According to their metabolic development and production of quorum sensing (QS)-controlled virulence factors, bacterial species of the Streptococcus genera are classified as either commensal bacteria or prospective pathogens.(Bernabè et al. 2022)(Kamath et al. 2020)(Siddique et al. 2020). According to their metabolic evolution and production of virulence factors controlled by quorum sensing (QS), bacteria of the Streptococcus genera are classified as either commensal bacteria or potential pathogens (Krzyściak et al. 2014)(Kamath et al. 2022) .Quorum sensing is a form of communication used by bacteria to organise a population's response.(Shanker and Federle 2017). The two-component signal transduction system used by quorum sensing in S. mutans produces a signal that suppresses the formation of bacteriocin and genetic competence. (Lemos et al. 2019)(Nasim et al. 2022)

Computational pharmacology is a fast-growing research field focusing on the development of techniques for employing software and databases to generate and analyze molecular, biological and medical data from diverse sources.(Bitew et al. 2021). Although access to physical samples is restricted, the design and development of pharmacological molecules need earlier evaluation of pharmacokinetic characteristics, absorption, distribution, metabolism, and excretion (ADME).(Daina, Michielin, and Zoete 2017). Compared to experimental methodologies, computer-aided methods in the search for novel drug-like compounds conserve time, human, and material resources.(Plewczynski et al. 2011).

In the present study, a computational de novo design approach was used to confirm the mode of binding for antibacterial activity, elucidating quantum chemical properties and ADMET-drug-likeness of phenolic and flavonoids isolated from Brassica oleracea. L. Var. Italica.

MATERIALS AND METHODS:

MOLECULAR STRUCTURES:

The 2D structures (.mol) of each chemical were generated and scrutinised using ChemDraw 16.0. All of the compounds are converted into 3D structures using Chem3D 16.0. The RCSB Protein Data Library is used to find the protein target 3AIC. Canonical Simple Molecular Input Line Entry System (SMILE) of the secondary metabolites were retrieved using the zinc database.

MOLECULAR DOCKING STUDIES OF ISOLATED COMPOUNDS:

For molecular docking, AutoDockTools, a free graphic user interface (GUI) for the AutoDockVina programme, was utilised. 23 Brassica oleracea l. var. italica secondary metabolites such as isothiocyanates and glucosinolates were docked using autodock vina against streptococcus mutans glucansucrase (3AIC). The post-docking analysis made use of PyMOL and AutoDock Tools. Using PyMOL, the interactions between the target receptor and the ligands were examined by selecting the conformations with the most (least) favourable free binding energies.

Physicochemical property, drug likeness, and pharmacokinetic predictions:

Brassica oleracea l var italica's secondary metabolites were anticipated to have physical characteristics that are relevant to medicine.(Dufour, Stahl, and Baysse 2015). The physicochemical characteristics (molar refractivity, topological polar surface area, number of hydrogen bond donors/acceptors, lipophilicity (logPO/w), pharmacokinetics characteristics (gastrointestinal (GI) absorption, blood-brain barrier (BBB) permeation, P-gp substrate, cytochrome-P enzyme inhibition, skin permeation (log Kp), and drug likeness (Lipinski's rule of five) that are crucial parameters for prediction of the absorption and distribution of drugs within the body (Daina, Michielin, and Zoete 2017).

ADMET AND TOXICITY PROPERTIES OF THE COMPOUNDS:

Predictions of the physicochemical properties (logS, logD, and logP) were made using the ADMETlab web server; Human intestinal absorption (HIA), 20% bioavailability (F20%), 30% bioavailability (F30%), CaCO3 permeability (CaCO2), and P-gp inhibitor/substrate (Pgp); Blood Brain Barrier (BBB), Volume Distribution (VD), Plasma Protein Binding (PPB), Excretion: Half Life (T1/2), and Clearance (CI). A total of 19 parameters were predicted to study the toxicity profile of the sixteen flavonoids and the two controls. The toxicological endpoints (Hepatotoxicity, Carcinogenicity, Immunotoxicity, Mutagenicity) and the level of toxicity (LD50, mg/Kg) of the studied flavonoids were determined using ProTox-II server (Banerjee et al. 2018). The median lethal dose (LD50) values were found to be in the range from 159–3919 mg/Kg. The compound possessing molecular weight greater than 500 and LogP value greater than 5 has poor absorption or permeation.

QUANTUM COMPUTATIONAL STUDIES:

Knowing the coordinates of a reaction and its transition state is crucial for the creation of mechanismbased inhibitors, which often mimic the transition state(Anza et al. 2021). Density functional theory (DFT) is emerging as a viable tool to analyze biomolecular systems, performed using Gaussian 09 and visualized through gauss view 5.0. B3LYP/6-31G used to predict the electrostatic potential properties of isolated compounds (Eswaramoorthy et al. 2021). The molecular DFT analysis was done for the compounds satisfying lipinski rule of five, having molecular weight less than 500 (g/mol), non-toxic to immunogenicity, carcinogenicity. Mutagenicity. (Figure 1)

RESULTS AND DISCUSSION:

B) Indole 3 acetic acid

FIGURE 1: The 2D and 3D binding interactions of compounds Glucobrassicin(a) and Indole 3 acetic acid (b) against glucansucrase (3AIC) of streptococcus mutans. Hydrogen bond between compounds and amino acids are shown as green dashed lines, hydrophobic interactions are shown as pink lines

MOLECULAR DOCKING AGAINST 3 AIC Glucansucrase:

Molecular docking analysis of isolated compounds showed better docking score within the active site of S mutans. Among 15 Compounds in glucosinolates and 17 compounds in isothiocyanates, 13 compounds of glucosinolates and 2 compounds in isothiocyanates (-8.4, -8.3, -7.9 and -6.9 kcal/mol, respectively) showed equal to better docking affinity than the control drug chloroquine (-6.6 kcal/mol) and

erythromycin (-6.2 Kcal/mol), whereas 2 compounds in glucosinolates showed smaller docking affinity (-6, -6.1 kcal/mol) and 15 compounds of isothiocyantes showed smaller docking affinity value (-4, -4.3, - 4.4kcal/mol) compared to control drug when tested against 3aic protein of Streptococcus mutans. Among the 15 Compounds in glucosinolates 5 compounds followed Lipinski's rule of five and among 17 compounds in isothiocyanates all compounds followed Lipinski's rule.

In-Silico PHARMACOKINETICS (Drug-likeness) analysis and toxicity analysis:

Research on the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of isolated compounds was forecasted using Swiss ADMET. (Anza et al. 2021).

Kp values of all compounds ranged from -4.75 to -10.61 cm/s suggesting low skin permeability and glucosinolates compounds (1, 8) and all isothiocyantes compounds satisfying the lipinski's rule of 5 with zero violations, The CYP's interaction result showed that all glucosinolates compound and isothiocyantes compound (16-28, 31)) are inhibitors of CYP1A2, and CYP2D6, CYP3A4 except isothiocyantes compound (29,30, 32) are not inhibitors of CYP1A2 and the molecular weight of the compounds should be lesser than 500g/mol. Among 15 Compounds in glucosinolates, all compounds had molecular weight less than 500g/mol and among 17 compounds in isothiocyantes, all compounds had lesser molecular weight. The lipophilicity values (ilogP)must be lesser than 5, all the molecules of glucosinolates and isothiocyantes had kp value in between -2.37 to 2.75. Acute toxicity values (LD 50) and the toxicological endpoints (Hepatotoxicity, Carcinogenicity, Immunotoxicity, Mutagenicity) was evaluated among the 15 compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of glucosinolates and 17 compounds of isothiocyantes, in that all compounds of carcinogenicity, mutagenicity and cytotoxicity. (Table 1-4)

Table 1: ADME Predictions of Compo	ounds, Computed	by Swiss ADMI	E and PreADMET
---	-----------------	---------------	----------------

s. no	Molecule	log Kp cm/ s	GI Absorp tion	BBB Permeab ility	Inhibito (SwissA	Inhibitor Interaction (SwissADME/PreADMET)					
					P-gp Subst rate	CYP1 A2 Inhibi tor	CYP2 C19 Inhibit or	CYP2 C9 Inhibi tor	CYP2 D6 Inhibi tor	CYP3 A4 Inhibi tor	
1	Sinigrin	- 9.48	Low	No	Yes	No	No	No	No	No	

2	Glucoraphani n	- 10.4 3	Low	No	Yes	No	No	No	No	No
3	Progoitrin	- 10.0 1	Low	No	Yes	No	No	No	No	No
4	Glucochlearin	- 8.88	Low	No	yes	No	No	No	No	No
5	Glucoiberviri n	-9.4	Low	No	Yes	No	No	No	No	No
6	Glucoiberin	- 10.6 1	Low	No	Yes	No	No	No	No	No
7	Glucorapheni n	- 10.3 8	Low	No	Yes	No	No	No	No	No
8	Glucoerucin	- 9.23	Low	No	Yes	No	No	No	No	No
9	Glucoraphani n	- 10.4 3	Low	No	Yes	No	No	No	No	No
10	Glucoalyssin	- 10.2 7	Low	No	Yes	No	No	No	No	No
11	Glucohirsutin	- 9.37	Low	No	Yes	No	No	No	No	No
12	Glucosinalbin	-9.3	Low	No	No	No	No	No	No	No

13	Gluconasturti in	- 8.83	Low	No	Yes	No	No	No	No	No
14	Glucobrassici n	-9.1	Low	No	No	No	No	No	No	No
15	Neoglucobras sicin	- 9.03	Low	No	Yes	No	No	No	No	No
16	Butyronitrile	- 6.35	High	Yes	No	No	No	No	No	No
17	Allyl isothiocyanat e	- 5.19	High	Yes	No	No	No	No	No	No
18	2-Methyl-2- nitropropane	-6.1	High	Yes	No	No	No	No	No	No
19	4- (Methylthio)- butanenitrile	- 7.02	High	No	No	No	No	No	No	No
20	Butyl isothiocyanat e	- 4.93	High	Yes	No	No	No	No	No	No
21	Isobutyl isothiocyanat e	-5	High	Yes	No	No	No	No	No	No
22	Iberin	- 6.55	High	No	No	No	No	No	No	No
23	4- Isothiocyanat o-1-butene	- 5.24	High	Yes	No	No	No	No	No	No

24	3- Methylbutyl isothiocyanat e	- 4.75	High	Yes	No	No	No	No	No	No
25	Isoamyl methyl sulfoxide	- 5.59	High	Yes	No	No	No	No	No	No
26	Erucin	- 5.18	High	Yes	No	No	No	No	No	No
27	Sulforaphene	- 6.32	High	No	No	No	No	No	No	No
28	Sulforaphane	- 6.38	High	No	No	No	No	No	No	No
29	Indole-3- carbinol	- 6.45	High	Yes	No	Yes	No	No	No	No
30	Indole-3- carboxylic acid	- 5.87	High	Yes	No	Yes	No	No	No	No
31	Indole-3- acetic acid	- 6.37	High	Yes	No	No	No	No	No	No
32	1- Methoxyindol e-3- carbaldehyde	- 6.04	High	Yes	No	Yes	No	No	No	No

Table 2: Drug-Likeness Predictions of Compounds, Computed by SwissADME

s no	Molecule	Mol.Wt. (g/mol)	NHD	NHA	NRB	TPSA (A°2)	LogP (cLogP)	Lipinski's Rule of Five Violation
1	Sinigrin	397.46	4	10	7	202.62	-2.37	0
2	Glucoraphanin	436.5	4	11	10	215.84	-2.35	1
3	Progoitrin	389.4	6	11	8	220.02	-1.71	2
4	Glucochlearin	375.42	9	20	19	199.79	-0.79	0
5	Glucoibervirin	407.48	5	10	9	238.59	-0.77	0
6	Glucoiberin	423.48	5	11	9	236.07	-1.83	1
7	Glucoraphenin	435.49	5	11	9	236.07	-1.45	1
8	Glucoerucin	420.5	4	10	10	227.92	-0.5	0
9	Glucoraphanin	436.5	4	11	10	238.9	-1.61	1
10	Glucoalyssin	451.53	5	11	11	236.07	-1.09	1
11	Glucohirsutin	493.61	5	11	14	236.07	0.1	1
12	Glucosinalbin	425.43	6	11	7	220.02	-0.94	2
13	Gluconasturtiin	423.46	5	10	8	199.79	-0.23	0
14	Glucobrassicin	448.47	6	10	7	215.58	-0.45	2
15	Neoglucobrassicin	478.49	5	11	8	213.95	-0.08	1

1	Ì	1	1	1	1	1	1	
16	Butyronitrile	69.11	0	1	1	23.79	0.88	0
17	Allyl isothiocyanate	99.15	0	1	2	44.45	1.99	0
18	2-Methyl-2- nitropropane	103.12	0	2	1	45.82	0.45	0
19	4-(Methylthio)- butanenitrile	130.21	1	2	3	75.11	0.48	0
20	Butyl isothiocyanate	115.2	0	1	3	44.45	2.47	0
21	Isobutyl isothiocyanate	115.2	0	1	2	44.45	2.38	0
22	Iberin	163.26	0	2	4	80.73	1.58	0
23	4-Isothiocyanato-1- butene	159.27	0	1	4	69.75	2.72	0
24	3-Methylbutyl isothiocyanate	129.22	0	1	3	44.45	2.75	0
25	Isoamyl methyl sulfoxide	190.35	0	1	6	36.28	2.8	0
26	Erucin	161.29	0	1	5	69.75	2.8	0
27	Sulforaphene	175.27	0	2	4	80.73	1.92	0
28	Sulforaphane	177.29	0	2	5	80.73	1.93	0
29	Indole-3-carbinol	147.17	2	1	1	36.02	1.45	0

30	Indole-3-carboxylic acid	161.16	2	2	1	53.09	1.56	0
31	Indole-3-acetic acid	175.18	2	2	2	53.09	1.51	0
32	1-Methoxyindole-3- carbaldehyde	175.18	0	2	2	31.23	1.66	0

Table 3: Prediction of Toxicity of Compounds, Computed by Pro-Tox II and OSIRIS PropertyExplorer

S. no	Molecules	Organ Tox	icity			_		
		Hepatoto xicity	Carcinoge nicity	Immunoge nicity	Mutagen icity	Cytotox icity	LD50(Mg /Kg)	Acut e toxic ity class
1	Sinigrin	No	No	No	No	No	15	2
2	Glucoraphani n	No	No	No	No	No	16	2
3	Progoitrin	No	No	No	No	No	16	2
4	Glucochleari n	No	No	No	No	No	16	2
5	Glucoiberviri n	No	No	No	No	No	16	2
6	Glucoiberin	No	No	No	No	No	16	2

7	Glucorapheni n	No	No	No	No	No	n.a	n.a
8	Glucoerucin	No	No	No	No	No	16	2
9	Glucoraphani n	No	No	No	No	No	16	2
10	Glucoalyssin	No	No	No	No	No	n.a	n.a
11	Glucohirsuti n	No	No	No	No	No	n.a	n.a
12	Glucosinalbi n	No	No	No	No	No	n.a	n.a
13	Gluconasturti in	No	No	No	No	No	n.a	n.a
14	Glucobrassic in	No	No	No	No	No	n.a	n.a
15	Neoglucobra ssicin	No	Yes	No	No	No	n.a	n.a
16	Butyronitrile	No	No	No	No	No	24	2
17	Allyl isothiocyanat e	No	No	No	Yes	No	112	3
18	2-Methyl-2- nitropropane	No	No	No	No	No	455	4

1		I	I	I	I	1	I	
19	4- (Methylthio)- butanenitrile	No	No	No	No	No	1750	4
20	Butyl isothiocyanat e	Yes	No	Yes	No	No	1190	4
21	Isobutyl isothiocyanat e	No	No	No	No	No	112	3
22	Iberin	No	No	No	No	No	4550	5
23	4- Isothiocyanat o-1-butene	No	No	No	No	No	112	3
24	3- Methylbutyl isothiocyanat e	No	No	No	No	No	150	3
25	Isoamyl methyl sulfoxide	No	No	No	No	No	1990	4
26	Erucin	No	No	No	No	No	1000	4
27	Sulforaphene	No	No	No	No	Yes	112	3
28	Sulforaphane	No	No	No	No	No	1000	4
29	Indole-3- carbinol	No	No	No	No	No	1000	4

30	Indole-3- carboxylic acid	Yes	No	No	No	No	2190	5
31	Indole-3- acetic acid	Yes	No	No	No	No	1200	4
32	1- Methoxyindo le-3- carbaldehyde	Yes	No	Yes	No	No	1190	4

Table 4: Molecular Docking Scores and Residual Amino Acid Interactions of Compounds AgainstLux S Binding Domain

S.NO	MOLECULE	AFFINITY (kcal/mol)	H-bond	Residual Hydrophobic/Pi- Cation/Pi-Anion/Pi-Alkyl Interactions
				TVD 610 I EU 282 I EU 422
				TRP-517 GLU-515 ALA- 478
				ASD 477 ADC 475 HIS 587
				ASP - 477, ARO - 475, IIIS - 387, ASP - 588 TVD 016 ASN 014
				ASP-300, 11R-910, ASIN-914,
	<i>.</i>			ASP-909, ASN-862, PHE-907,
1	Sinigrin	-7.1	ASN-481, GLN-592	SER-589, ASP-593
				TYP 120 4 CD 100 4 CN 101
				TYR-430, ASP-480, ASN-481,
				ALA-478, LEU-433, GLU-515,
				TYR-916, ASN-862, ASN-914,
			ASP-477, TRP-517,	PHE-907, LEU-434, GLN-592,
2	Glucoraphanin	-7.1	ASP-909, HIS-587	SER-589, ASP-588

	1			
				ARG-475, LEU-433, GLU-515,
				ALA-478, ASN-481, TRP-517,
				TYR-610, GLN-592, ASP-588,
				ASP-593, ASN-862, ASN-914,
3	Progoitrin	-6.8	ASP-477	TYR-916, HIS-587
	0			
				GI N-960 HIS-587 TVR-916
				ASN-914 PHF-907 ASN-862
				LEU-433 LEU-382 ASN-481
			ASN-481 TRP-517	ASP-588 TRP-517 ASP-593
4	Glucochlearin	-6	ASP-909, ASP-477	TYR-610
•		0		
				ASN-914, TYR-916, HIS-587,
				ARG-475, GLU-515, ALA-478,
				LEU-433, TYR-61, SER-589,
			ASP-477, ASP-909,	ASP-593, ASP-480, ASP-588,
5	Glucoibervirin	-6.2	TRP-517, ASN-481	PHE-907
				ASP-480, ASP-588, LEU-434,
				ASN-862, ASN-914, HIS-587,
			TRP-517, ASP-909,	TYR-916, GLN-960, GLU-515,
6	Glucoiberin	-6.6	ASP-477, GLN-592	LEU-382, TYR-610
				TYR-916, GLN-960, ASP-477,
				LEU-433, ASN-481, TRP-517,
				ASP-480, TYR-430, TYR-610,
				SER-589, VAL-591, GLU-590,
			GLN-592, ASP-593,	PHE-907, ASN-914, ASN-862,
7	Glucoraphenin	-6.9	ASP-909, HIS-587	LEU-434
				SER-589, ASP-477, TYR-916,
				HIS-587, ASN-862, PHE-907,
				LEU-382, LEU-433, TRP-517,
8	Glucoerucin	-6.1	ASP-909, GLN-592	ASN-481,TYR-610, ASP-588
				GLN-960, IYK-916, ASN-914,
				LEU-434, IYK-430, GLY-429,
0			ASP-909, GLN-592,	ASP-480, LEU-433, ASP-588,
9	Glucoraphanin	-6.9	ASP-477, ASN-481	GLU-515, TRP-517, ALA-478

	1			1 1
				SER-589. TYR-610. ASP-588.
				LEU-382, PHE-907, ASP-588,
				HIS-587, ASP-909, TYR-916,
			TRP-517, ASN-862,	ASN-481, ALA-478, ARG-475,
10	Glucoalyssin	-6.4	GLU-515, GLN-592	ASP-577, LEU-433, LEU-434
				VAL 057 ASD 477 TVD 016
				AL-937, ASI-477, TTR-910, ASN-914 LEU-434 ASP-909
				ASN 862 AI A 478 I EU 433
				ASN-481 $ASP-480$ TRP-517
				TVP 430 TVP 610 SEP 580
			GIN 060 ASP 503	VAI 501 ASD 588 HIS 587
11	Glucohiroutin	6.0	GLN-900, ASI - 595,	VAL-391, ASI - 300, 1113 - 307,
11	Giucomisuum	-0.9	0LIN-392	FHE-907
				TYR-916, LEU-433, PHE-907,
				LEU-434, LEU-382, TRP-517.
				ALA-478, TYR-430, VAL-591.
			GLU-515, ASP-909,	ASP-593, GLU-590, SER-589,
12	Glucosinalbin	-7.9	GLN-592, ASN-481	ASP-588, TYR-610
				HIS-587, ASN-862, PHE-907,
				LEU-382, TRP-517, ALA-478,
				ASP-480, LEU-433, TYR-430,
				ASP-593, SER-589, TYR-610,
10				GLN-592, ASP-588, LEU-434,
13	Gluconasturtiin	-7.5	ASN-481, GLU-515	TYR-916, ASP-909
				TYR-430 TRP-517 I FU-433
				GLU-515 PHE-907 ASN-914
				ASP-477 TYR-916 ARG-475
			GLN-592. HIS-587	SER-589, GLU-590, ASP-593
14	Glucobrassicin	-8.4	ASP-909	ALA-478 ASN-481 ASP-480
11	Giueoolussiem	0.1		
				GLU-590, ALA-516, VAL-479,
				ASP-480, TRP-517, ASN-481,
				TYR-430, ASP-588, ASN-862,
				HIS-587, ASN-914, TYR-916,
				AS909, LEU-433, GLN-960,
				ASP-477, SER-589, ALA-478,
15	Neoglucobrassicin	-8.3	ASP-593, GLN-592	TYR-610, GLU-515

16	Butyronitrile	-3.5	GLN-960	HIS-587, ASP-477, ASP-588, ARG-475, TYR-916, ASP-909
10				
	A 11 - 1			HIS-587, PHE-907, TYR-916,
17	Allyl	-3 /	4 SP-909	ARG-4/5, ASP-4//, ASP-588, ASN-862 ASN-914 GLN-592
17	isotniocyanate	-3.4	A51-909	ASIN-802, ASIN-914, OLIN-392
				GLN-592, PHE-907, ASN-862,
10	2-Methyl-2-			ASP-588, HIS-587, TYR-916,
18	nitropropane	-4.1		ASP-909, LEU-434
				PHE-907, ASN-914, ASP-588,
	4-(Methylthio)-			HIS-587, ASP-477, TYR-916,
19	butanenitrile	-4	ASP-909, GLN-592	LEU-433
				TYR-916, HIS-587, ALA-478,
	Butyl			ASP-588, ASN-914, ASN-862,
20	isothiocyanate	-3.7	ASP-477, GLU-515	ASP-909
				GLN-960, HIS-587, GLN-592,
	Isobutyl			ASN-914, ASP-588, ARG-475,
21	isothiocyanate	-3.9	ASP-909	TYR-916, PHE-907, ASP-477
			CLU 515 CLN 502	PHE-907, TYR-916, HIS-587,
22	Iberin	-4.1	ΔSP_{-177}	ALA-478, LEU-433, GLN-900, ASP-909 ASP-588 ASN-862
	Iberm	-7.1	A51-477	ASI -909, ASI -900, ASI -002
				ASP-588, ASN-862, ASN-914,
				GLN-592, PHE-907, HIS-587,
				TYR-916, ASP-909, GLN-960,
	4-Isothiocyanato-1-			ARG-475, GLU-515, LEU-433,
23	butene	-4.2	ASP-477	ASN-481, ALA-478
				GLN-592, ASP-909, ASN-862.
				TYR-916, ASN-914, ASP-588,
	3-Methylbutyl			GLU-515, HIS-587, ALA-478,
24	isothiocyanate	-4.3	GLU-515, ASP-477	ASP-477

				ASN-862, PHE-907, ASP-588,
				GLN-592, LEU-382, LEU-434,
				ALA-478, GLN-960, ASP-477,
				LEU-433, TYR-916, ASP-909,
				ASN-914, ASN-862, PHE-907,
	Isoamyl methyl			ASP-588, GLN-592, LEU-382,
25	sulfoxide	-4.9	HIS-587	LEU-434

CONCLUSION:

In the present work, a computational de novo approach was used to confirm mode of binding for antibacterial activity, elucidating quantum chemical properties and the ADMET-drug-likeness of a isothiocyanntes and glucosinolates compounds isolated from brassica oleracea. L. var. Italica. Compared with other compounds Glucobrassicin in glucosinolates and indole 3 acetic acid in isothiocyanates had higher affinity value and binding score. Toxicological prediction results suggested that Glucobrassicin and indole 3 acetic acid are non-hepatotoxic, non-carcinogenic, non-irritant, immunogenic, and non-cytotoxic. Based on the results of the present investigation, Glucobrassicin and indole 3 acetic acid compound may serve as a lead molecule and further work is recommended for functional group inclusion, modification, and SAR study to develop novel antibacterial agents with therapeutic activity against *S. mutans*.

REFERENCES:

- Anza, Mathewos, Milkyas Endale, Luz Cardona, Diego Cortes, Rajalakshmanan Eswaramoorthy, Jesus Zueco, Hortensia Rico, Maria Trelis, and Belen Abarca. 2021. "Antimicrobial Activity, in Silico Molecular Docking, ADMET and DFT Analysis of Secondary Metabolites from Roots of Three Ethiopian Medicinal Plants." Advances and Applications in Bioinformatics and Chemistry: AABC 14 (August): 117–32.
- Ares, Ana M., María J. Nozal, and José Bernal. 2013. "Extraction, Chemical Characterization and Biological Activity Determination of Broccoli Health Promoting Compounds." *Journal of Chromatography. A* 1313 (October): 78–95.
- Baenas, Nieves, Diego A. Moreno, and Cristina García-Viguera. 2012. "Selecting Sprouts of Brassicaceae for Optimum Phytochemical Composition." *Journal of Agricultural and Food Chemistry* 60 (45): 11409–20.
- Banerjee, Priyanka, Andreas O. Eckert, Anna K. Schrey, and Robert Preissner. 2018. "ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals." *Nucleic Acids Research* 46 (W1): W257– 63.
- Bernabè, Giulia, Anthony Pauletto, Annj Zamuner, Leonardo Cassari, Ignazio Castagliuolo, Paola Brun, and Monica Dettin. 2022. "Exploiting Conserved Quorum Sensing Signals in Streptococcus Mutans and Streptococcus Pneumoniae." *Microorganisms* 10 (12). https://doi.org/10.3390/microorganisms10122386.
- Bitew, Mamaru, Tegene Desalegn, Taye B. Demissie, Anteneh Belayneh, Milkyas Endale, and Rajalakshmanan Eswaramoorthy. 2021. "Pharmacokinetics and Drug-Likeness of Antidiabetic Flavonoids: Molecular Docking and DFT Study." *PloS One* 16 (12): e0260853.
- Daina, Antoine, Olivier Michielin, and Vincent Zoete. 2017. "SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules." *Scientific Reports* 7 (March): 42717.

- Dufour, Virginie, Martin Stahl, and Christine Baysse. 2015. "The Antibacterial Properties of Isothiocyanates." *Microbiology* 161 (Pt 2): 229–43.
- Eswaramoorthy, Rajalakshmanan, Hadgu Hailekiros, Fedlu Kedir, and Milkyas Endale. 2021. "In Silico Molecular Docking, DFT Analysis and ADMET Studies of Carbazole Alkaloid and Coumarins from Roots of Clausena Anisata: A Potent Inhibitor for Quorum Sensing." *Advances and Applications in Bioinformatics and Chemistry: AABC* 14 (February): 13–24.
- Krzyściak, W., A. Jurczak, D. Kościelniak, B. Bystrowska, and A. Skalniak. 2014. "The Virulence of Streptococcus Mutans and the Ability to Form Biofilms." *European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology* 33 (4): 499–515.
- Lemos, J. A., S. R. Palmer, L. Zeng, Z. T. Wen, J. K. Kajfasz, I. A. Freires, J. Abranches, and L. J. Brady. 2019. "The Biology of Streptococcus Mutans." *Microbiology Spectrum* 7 (1). https://doi.org/10.1128/microbiolspec.GPP3-0051-2018.
- Le, Thanh Ninh, Chiu-Hsia Chiu, and Pao-Chuan Hsieh. 2020. "Bioactive Compounds and Bioactivities of Brassica Oleracea L. Var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective." *Plants* 9 (8). https://doi.org/10.3390/plants9080946.
- Montaner, Celia, Cristina Mallor, Sonia Laguna, and Raquel Zufiaurre. 2022. "Bioactive Compounds, Antioxidant Activity, and Mineral Content of Bróquil: A Traditional Crop of Brassica Oleracea Var. Italica." *Frontiers in Nutrition* 9: 1006012.
- Orlando, Patrick, Ancuta Nartea, Sonia Silvestri, Fabio Marcheggiani, Ilenia Cirilli, Phiwayinkosi V. Dludla, Rosamaria Fiorini, et al. 2022. "Bioavailability Study of Isothiocyanates and Other Bioactive Compounds of Brassica Oleracea L. Var. Italica Boiled or Steamed: Functional Food or Dietary Supplement?" Antioxidants & Redox Signaling 11 (2): 209.
- Plewczynski, Dariusz, Michał Łaźniewski, Marcin von Grotthuss, Leszek Rychlewski, and Krzysztof Ginalski. 2011. "VoteDock: Consensus Docking Method for Prediction of Protein-Ligand Interactions." *Journal of Computational Chemistry* 32 (4): 568–81.
- Prieto, M. A., Cecilia Jiménez López, and Jesus Simal-Gandara. 2019. "Glucosinolates: Molecular Structure, Breakdown, Genetic, Bioavailability, Properties and Healthy and Adverse Effects." Advances in Food and Nutrition Research 90 (March): 305–50.
- Shanker, Erin, and Michael J. Federle. 2017. "Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus Pneumoniae and Mutans." *Genes* 8 (1). https://doi.org/10.3390/genes8010015.