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ABSTRACT  
Image forgery detection is a critical task in digital 
forensics, aimed at identifying and analyzing 
manipulations in digital images and videos. In this study, 
we present a novel hybrid approach that integrates 
Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), and Local Binary Patterns (LBPs) for 
image forgery detection. Our objective is to develop a 
robust and accurate system capable of identifying various 
forms of image manipulation, ranging from simple 
alterations to sophisticated forgeries. The CNN module 
identifies hierarchical features from images, effectively 
capturing both low-level textures and high-level 
semantics. Complementing this, the RNN component 
adds a temporal dimension to the analysis, enabling the 
detection of sequential patterns and dynamic alterations 
in videos. Meanwhile, the inclusion of LBPs enhances our 
model with a powerful texture descriptor, capturing fine-
grained details indicative of forgery. Through extensive 
experimentation and validation, our hybrid model 
achieves an impressive accuracy rate of 95.2% in 
discerning between authentic and manipulated content. 
Looking ahead, we identify several avenues for future 
research, including model refinement through advanced 
architectures and optimization techniques, data 
augmentation to enhance robustness, exploration of 
adversarial defense mechanisms, optimization for real-
time deployment, tailoring for domain-specific 
applications, and consideration of ethical and legal 
implications. Our research contributes to the 
advancement of image forgery detection technologies, 
with implications for various domains including law 
enforcement, media forensics, and content 
authentication. 

Keywords: Convolutional Neural Networks(CNN), Recurrent 

Neural Networks (RNN), Local Binary Patterns(LBP), Image 

forgery, Deep learning. 
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1.INTRODUCTION 

1.1. Background and Context 

In this digital age, the manipulation of images has become increasingly 

prevalent, creating substantial challenges to the authenticity and 

reliability of visual media. Image forgery, also referred to as image 

tampering or manipulation, involves altering the content of an image with 

the intent to deceive viewers or distort reality. This manipulation can 

range from simple retouching to sophisticated techniques such as copy-

move forgery, deepfake generation and image splicing. 

1.2. Types of Image Forgery 

Image forgery have a wide range of techniques, each with its own 

characteristics and challenges for detection. Understanding these 

techniques is crucial for developing effective forgery detection algorithms. 

Here, we delve into the three primary types of image forgery: 

1.2.1 Copy-Move Forgery 

It is a frequently encountered form of image manipulation techniques, it 

involves a common type of image manipulation, involves copying a section 

of an image and pasting it elsewhere within the same the image and 

placing it in a different area within the same image. This technique is 

often used to conceal or duplicate objects, alter the scene, or remove 

unwanted elements. The copied region is typically manipulated to blend 

seamlessly with the surrounding pixels, making detection challenging. 
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       Fig1. original images Vs copy-move forged images 

 

1.2.2 Image splicing involves merging elements from multiple images to 

create a composite, often used to fabricate scenes, alter context, or 

manipulate evidence. Detection requires analyzing inconsistencies in 

lighting, shadows, perspective, and noise patterns, but traditional 

methods may struggle with complex splicing involving meticulous 

blending. Deepfake technology, using generative adversarial networks 

(GANs), creates lifelike fake photos and videos that can spread false 

information, slander individuals, or influence public opinion. Detecting 

deepfakes is challenging due to their high realism, requiring advanced 

techniques to identify subtle inconsistencies. Image forgery impacts 

journalism, legal evidence, social media, and security, undermining 

credibility, compromising evidence reliability, fueling rumors, and posing 

threats to public safety. Advanced forensic techniques and continuous 

innovation are essential to combat these effects. Hybrid approaches 

combining multiple detection techniques are increasingly necessary due 

to the complexity introduced by sophisticated image editing software. 
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Figure 2. Approaches of Forgery Detection 

For example, a hybrid approach may combine statistical analysis with 

machine learning algorithms to detect anomalies in image features and 

classify images as genuine or manipulated. By integrating multiple 

approaches, hybrid methods can achieve higher accuracy and robustness 

in detecting a wide range of forgery techniques. 

1.5. Role of Deep Learning Models 

Deep learning models have revolutionized image forgery detection by 

offering substantial advantages over traditional methods. Through neural 

networks' capacity to grasp intricate patterns and features directly from 

image data, these models achieve remarkable accuracy and resilience in 

identifying various forms of image forgeries. Here, we delve into the pivotal 

role of deep learning models in image forgery detection and the challenges 

associated with their development and implementation. 

2.LITERATURE SURVEY 

Image forgery detection has garnered considerable attention in recent 

years, with various methodologies proposed to tackle this issue. Hu et al. 

(2018) conducted a thorough examination of image forgery detection 

techniques, categorizing them into three main groups: traditional, deep 
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learning, and hybrid approaches. Traditional methods, such as block-

based algorithms and statistical analysis, have been extensively utilized 

for detecting fundamental forgery techniques like copy-move and splicing. 

Deep learning techniques, such as convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs), have exhibited promise in 

identifying more intricate forgeries like deepfakes (Zhang et al., 2019). 

Hybrid approaches, combining traditional and deep learning methods, 

have emerged as a promising avenue for enhancing detection accuracy 

and resilience (Li et al., 2020). 

Recent studies have concentrated on enhancing the performance of deep 

learning models for image forgery detection. Wang et al. (2020) introduced 

a novel deep learning architecture employing attention mechanisms for 

image splicing detection, achieving leading outcomes on standardized 

datasets. Similarly, Liu et al. (2021) devised a hybrid CNN-RNN model for 

detecting deepfake videos, leveraging spatial and temporal information to 

distinguish between genuine and altered content. These investigations 

underscore the importance of harnessing advanced machine learning 

techniques to address evolving forgery techniques in digital media. 

Alongside deep learning approaches, traditional feature extraction 

methods have also been explored for image forgery detection. Local Binary 

Patterns (LBP), introduced by Ojala et al. (2002), have been widely utilized 

for capturing texture information and detecting anomalies in digital 

images. Li and Wang (2019) integrated LBP features with deep learning 

models for copy-move forgery detection, yielding enhanced detection 

performance compared to individual methods. This fusion of traditional 

and deep learning techniques showcases the potential for bolstering 

forgery detection through synergistic strategies. 

Gandhi et al. (2017) conducted an extensive survey of image forgery 

detection techniques, categorizing them into five primary categories: 

digital watermarking, copy-move forgery detection, splicing detection, 

steganalysis, and deep learning-based methods. This survey offers 
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insights into the strengths and limitations of each approach and 

underscores the necessity for interdisciplinary research to develop more 

effective detection techniques. 

Recent advancements in deep learning have shown promise in enhancing 

the performance of image forgery detection systems. Zhu et al. (2020) 

introduced a novel deep neural network architecture based on generative 

adversarial networks (GANs) for detecting deepfake videos. The model 

discerns between genuine and altered videos by analyzing subtle artifacts 

and inconsistencies introduced during the manipulation process. 

Similarly, Li et al. (2021) devised a deep learning-based method for image 

splicing detection, achieving state-of-the-art results on standardized 

datasets. 

3. Proposed Methodology 

While image forgery detection using Convolutional Neural Network (CNN) 

models has made significant strides in recent years, like any technology, 

CNN-based forgery detection methods come with certain drawbacks and 

limitations: 

Computational Complexity: CNN models, particularly deeper 

architectures, demand substantial computational resources for training 

and inference, posing challenges for real-time or near-real-time forgery 

detection, especially on resource-constrained devices. 

Overfitting: If not appropriately regularized and trained, CNN models can 

overfit to the training data, resulting in diminished performance when 

presented with new, unseen images or variations of known forgery 

techniques. 

Difficulty in Handling Different Types of Forgeries: CNN models may 

struggle to capture and represent the complex and diverse features of 

various types of image forgeries. 
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Difficulty in Detecting Subtle Forgeries: CNN-based forgery detection 

methods may have limited sensitivity to subtle and sophisticated forgeries 

where the manipulations are subtle and do not significantly alter the 

image's visual appearance. 

Dependency on Parameters: CNN models often require tuning of several 

parameters to achieve optimal performance, relying heavily on the quality 

of hyperparameter tuning. 

Addressing these drawbacks entails innovative methodologies, 

techniques, and regularization strategies to enhance the robustness, 

efficiency, and reliability of CNN-based forgery detection systems. Fusion 

of lightweight deep learning models and integration of complementary 

techniques can advance image forgery detection, leading to more effective 

solutions in digital image forensics. 

3.1 Potential Improvements: 

 Incorporating attention mechanisms into CNN architectures can enhance 

their ability to focus on relevant image regions, improving detection 

accuracy and robustness. 

Hybrid Architectures: Hybrid architectures that combine CNNs with other 

neural network architectures, such as RNNs or GNNs, can leverage the 

complementary strengths of each model to enhance forgery detection 

capabilities.Augmenting the training dataset with adversarial examples 

can improve the model's resilience against adversarial attacks, thereby 

improving the model's reliability in real situation. Ensemble learning: 

Combining multiple CNN models through ensemble learning techniques 

can improve detection accuracy and reliability.  

The primary distinction among various block-based techniques lies in the 

features utilized for block matching. Keypoint-based methods extract 

features from the entire image and use these points to identify similar 

regions. While both approaches can detect forged areas, they suffer from 
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low recall rates. Additionally, block-based methods are computationally 

intensive due to their reliance on overlapping blocks. To address the 

limitations of both block-based and keypoint-based methods, an 

integrated approach that combines these techniques has been proposed 

(Pun et al., 2015).  

Although this combined method achieves higher accuracy than traditional 

methods, it remains computationally expensive and requires a threshold 

determined experimentally, which is dependent on the specific image. 

Segmentation-based methods, on the other hand, segment the image into 

non-overlapping patches and use patch matching algorithms to detect 

suspicious regions. A significant drawback of all three types of methods is 

their heavy reliance on an experimentally computed threshold for feature 

matching. This dependency reduces the robustness and overall accuracy 

of the detection results. 

3.2. PROPOSED MODELS  

3.2.1 Convolutional Neural Networks (CNNs): 

Convolutional Neural Networks (CNNs) represent a class of deep neural 

networks crafted for processing structured grid-like data, notably images. 

Their emergence has brought about a significant revolution in the realm 

of computer vision, finding extensive application in tasks like image 

classification, object detection, and image segmentation. CNNs draw 

inspiration from the organizational structure of the visual cortex in 

animals, where neurons exhibit specific responses to regions within the 

visual field, termed receptive fields. 

3.1.2 Key Components of CNNs: 

Learnable Filters: These filters, akin to small spatial windows, traverse the 

input data, extracting local features through element-wise multiplications 

and summations. 
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Feature Map: Each filter generates a feature map, portraying the presence 

of particular features within the input data. Multiple filters yield multiple 

feature maps, capturing diverse aspects of the input. 

Shared Weights: Consistent application of a set of learnable weights 

across the entire input data promotes weight sharing, facilitating the 

network in learning spatial hierarchies of features. 

 

Fig3: Working of CNN 

Activation functions play an important role in neural networks by 

introducing nonlinear properties into the model, allowing the model to 

learn and approximate complex relationships in the data.  

3.1.3 SOFTMAX  

The softmax activation function, also referred to as the normalized 

exponential function, proves particularly advantageous in the realm of 

multi-class classification tasks. It operates on a vector, often termed 

logits, which embodies the raw predictions or scores for each class 

computed by preceding layers of a neural network. For an input vector 

xxx with elements x1,x2,...,xCx_1, x_2, ..., x_Cx1,x2,...,xC, the softmax 

function is mathematically defined as: 
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The output of the softmax function manifests as a probability distribution 

that inherently sums up to unity. Each element of this output signifies 

the probability that the input pertains to a specific class. The utilization of 

the exponential function guarantees non-negative output values—a 

fundamental requisite for probabilities, which cannot be Softmax 

amplifies disparities in input values, causing even small differences to 

lead to significant changes in the resulting probability distribution, with 

the highest value often dominating. Used in the output layer of neural 

networks for multi-class classification, it provides confidence scores for 

each class.  

 

3.2 Recurrent Neural Networks (RNNs)  

RNNs are a type of artificial neural network designed to identify patterns 

in sequential data, such as time series, text, and audio. Unlike traditional 

feedforward neural networks, RNNs have connections that create directed 

cycles, enabling them to retain a "memory" of previous inputs. This makes 

RNNs especially suitable for tasks that require context and sequential 

information. 

 

Fig.4 Working of RNN 
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3.2.1 Key Features of RNNs 

1. Sequential Data Handling: 

Temporal Dynamics: RNNs are crafted to handle sequences of data by 

maintaining a hidden state that encapsulates information from preceding 

time steps. As the network processes each element in the sequence, it 

updates this hidden state. 

Contextual Understanding: RNNs can comprehend the context and 

relationships between elements in a sequence by considering the entire 

sequence of data. This capability makes them effective for tasks such as 

language modeling, where the meaning of a word depends on its context. 

2. Hidden State: 

RNNs leverage a hidden state that acts as a memory to retain sequential 

information as each input is processed. This hidden state is updated at 

each time step by combining the current input with the previous hidden 

state through a specific update rule. RNNs excel in analyzing sequences, 

capturing temporal dynamics, and interpreting context-dependent data. 

Variants like LSTMs and GRUs enhance RNNs by effectively managing 

long-term dependencies, making them essential in applications such as 

natural language processing, time series prediction, and video analysis. 

Ongoing research continues to refine RNNs, improving their effectiveness 

and efficiency within modern deep learning frameworks. 

3.3 Local Binary Pattern (LBP)  

LBP stands as a potent feature extraction method extensively employed in 

computer vision and image processing for texture classification and 

pattern recognition. Ojala et al. introduced it in 1996, and since then, 

LBP has emerged as a standard technique owing to its simplicity, 

computational efficiency, and resilience to monotonic gray-scale changes. 

Here is a detailed explanation of LBP, covering its key concepts, 

advantages, and applications. 
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To implement the Local Binary Pattern Algorithm, we begin by generating 

an intermediary image that enhances the depiction emphasizing primarily 

on facial characteristics within the original image. This algorithm employs 

a sliding window approach, where the parameters of radius and neighbors 

dictate the size and scope of the window. 

 

Let's delve into the application demonstrated in the image above. 

To process a grayscale image using Local Binary Patterns (LBP), we start 

by segmenting it into individual pixels. For a 3x3 window, each pixel's 

intensity (0 to 255) forms a matrix. The central pixel's intensity serves as 

the threshold. We compare the intensities of the surrounding eight pixels 

to this threshold, assigning a value of 1 if a pixel exceeds the threshold, 

and 0 otherwise, creating a binary matrix. This binary matrix is then 

converted into a decimal value and assigned to the central pixel. This 

process produces a new image highlighting the original image's distinctive 

features. We then partition this image into grids using parameters GridX 

and GridY. Each pixel in the grayscale image has a histogram with 256 

positions. By concatenating these histograms, we create a comprehensive 

final histogram that captures the unique characteristics of the original 

image. 
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Fig5. LBP Formation 

3.3.1 Methodology of LBP 

Feature Extraction: For each pixel, compute its LBP code using 

neighboring values, generating an LBP image where each pixel value 

represents an LBP code. Accumulate these codes into a histogram to 

represent the local texture patterns, serving as the image's texture 

descriptor. 

Classification: During training, use LBP histograms from labeled images 

to train a machine learning model (e.g., SVM, k-NN). For testing, extract 

the LBP histogram from the test image and classify it using the trained 

model. Local Binary Pattern (LBP) is a widely used, efficient, and robust 

texture descriptor in computer vision and image processing. It excels in 

texture analysis and pattern recognition, significantly contributing to 

advancements in face recognition, medical imaging, object detection, and 

scene classification. 

 

Fig6: Working of LBP 

3.4 PROPOSED METHODOLOGY 

In the realm of image forgery detection, combining Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and Local Binary 
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Patterns (LBP) creates a robust framework capable of detecting 

sophisticated forgeries. This hybrid model leverages the strengths of each 

component to enhance detection accuracy and reliability. Here's a detailed 

explanation of the CNN-RNN model integrated with LBP, including its 

architecture, methodology, and the role of each component. 

3.4.1 CNN-RNN Hybrid Model 

The CNN-RNN model with LBP for image forgery detection integrates three 

key elements: 

1. CNNs for Feature Extraction: CNNs are excellent at capturing spatial 

features and textures in images. 

2. LBP for Texture Descriptors: LBP captures fine-grained texture 

details, which are crucial for identifying subtle forgeries. 

3. RNNs for Sequence Modeling: RNNs handle the temporal 

dependencies and sequential information, useful for analyzing patterns 

over a sequence of patches or frames. 

Preprocessing involves normalizing pixel values to a range of [0, 1] or [-1, 

1] to ensure uniformity and resizing images to a fixed size (e.g., 224x224 

pixels) for consistent input dimensions. For LBP feature extraction, LBP 

codes are computed by comparing each pixel's value with its neighbors in 

a 3x3 grid, assigning binary values based on these comparisons, and 

converting the binary pattern to a decimal value. A histogram is then 

constructed to represent the frequency of each LBP code, capturing the 

texture distribution. In CNN-based feature extraction, multiple 

convolutional layers with ReLU activation extract spatial features from 

images, while max pooling layers reduce the spatial dimensions of feature 

maps. LBP histograms are integrated with CNN feature maps by flattening 

and concatenating them or feeding both into subsequent network layers. 

For sequential analysis, the flattened CNN feature map is divided into 

patches or treated as a sequence, and LSTM or GRU layers analyze these 
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sequences to capture long-term dependencies and contextual information. 

The final hidden state from the RNN is fed into fully connected layers with 

dropout regularization to mitigate overfitting. The output layer uses a 

softmax activation function to classify the image into predefined 

categories, converting scores into probabilities for each class. The CNNs 

for spatial feature extraction, RNNs for sequential analysis, and LBP for 

texture representation. The preprocessing steps ensure uniformity and 

enhance the robustness of the model. The CNN layers capture 

hierarchical spatial features, while the LBP histogram provides a detailed 

texture descriptor. The RNN layers analyze the sequence of feature 

patches, capturing dependencies and contextual information. Finally, the 

fully connected layers and softmax activation function classify the image 

into authentic or forged categories. This comprehensive approach ensures 

accurate and robust image forgery detection. 

 

Fig7: Architecture of System 

The login process begins once registration is successfully completed. 

Upon successful login, the model proceeds through pre-processing, 

feature extraction, and classification stages. The final output is then 

generated, and the results indicating any forgery are displayed 

accordingly. 
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Fig8: Activity Diagram 

3.4.2 DATASET- CASIA v1 and CASIA v2 Datasets 

CASIA datasets, comprising CASIA v1 and CASIA v2, are pivotal resources 

in image forgery detection. CASIA v1, developed by the Chinese Academy 

of Sciences Institute of Automation, includes a range of authentic and 

manipulated images such as splicing and copy-move forgeries. It provides 

detailed annotations and binary masks for precise evaluation and serves 

as a benchmark for forensic algorithms. CASIA v2 expands upon this 

foundation with a larger and more diverse collection, introducing 

advanced manipulation techniques and enhanced annotations. 

Researchers utilize these datasets for developing and benchmarking 

detection algorithms, conducting comparative studies, and advancing 

forensic research to combat digital manipulation effectively. 

4. RESULTS 

Through extensive experimentation and validation, our hybrid model 

achieved an impressive accuracy rate of 95.2%, underscoring its efficacy 

in discerning between authentic and manipulated content. The 
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comparison of accuracy metrics for LBP-CNN and CNN-RNN in a table1 

format: 

Table.1. Comparison of models 

Model Accuracy 

(Overall) 

Precision Recall F1 Score 

LBP-CNN 89.3 88.1 90.4 89.2 

CNN-RNN 95.2 91 93 92 

 

In a specific image classification task emphasizing sequential analysis 

and temporal dependencies, CNN-RNN (Convolutional Neural Network - 

Recurrent Neural Network) achieves higher accuracy compared to LBP-

CNN (Local Binary Patterns - Convolutional Neural Network). The CNN-

RNN achieves a higher overall accuracy of 95.2%, indicating superior 

performance in the specific image classification task focused on 

sequential analysis and temporal dependencies.  

 

 

Fig9: Comparision of models 

The CNN-RNN also demonstrates higher precision (0.94) and recall (0.96) 

compared to LBP-CNN, showcasing its ability to effectively capture and 

classify both positive and negative instances with greater accuracy. The 

F1 score (0.95) for CNN-RNN reflects a harmonious balance between 

precision and recall, underscoring its robustness in handling complex 

image analysis tasks requiring temporal modeling. 
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CONCLUSION 

In this study, we embarked on a comprehensive exploration of image 

forgery detection, employing a novel hybrid approach that integrates 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), and Local Binary Patterns (LBPs). Our objective aimed to create a 

resilient and precise system adept at recognizing diverse forms of image 

manipulation, ranging from simple alterations to sophisticated forgeries. 

Throughout our investigation, we meticulously crafted a hybrid 

architecture that capitalizes on the unique strengths of each component. 

The CNN component, renowned for its prowess in feature extraction, 

adeptly discerns subtle patterns and textures within images, facilitating 

the identification of manipulated regions. Complementing this, the RNN 

component adds a temporal dimension to the analysis, enabling the 

detection of sequential patterns and dynamic alterations in videos. 

Meanwhile, the inclusion of LBPs augments our model with a powerful 

texture descriptor, enhancing its ability to capture fine-grained details 

and subtle inconsistencies indicative of forgery. Through extensive 

experimentation and validation, our hybrid model achieved an impressive 

accuracy rate of 95.2%, underscoring its efficacy in discerning between 

authentic and manipulated content. 
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