
Manisha Bangar / Afr.J.Bio.Sc. 6(9) (2024)                                              ISSN: 2663-2187 
 

https://doi.org/ 10.33472/AFJBS.6.9.2024.1213-1227 

A CNN-based automated diagnosis system for diabetic macular edema 

Manisha Bangar1,*, Prachi Chaudhary2 
1 Matu Ram Institute of Engineering and Management, Rohtak, Haryana, India 

manishabangar@gmail.com  
2 Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India  

prachi.ece@dcrustm.org  
*Corresponding author: manishabangar@gmail.com 

 

Article History 

Volume 6,Issue 9,  2024 

Received: 26-03-2024 

Accepted : 28-04-2024 

 doi: 10.33472/AFJBS.6.9.2024.1213-1227 

 

 

 

 

 

 

 

 

1. Introduction 

Diabetic macular edema (DME) is a vision-threatening condition in which the retinal layers 

deteriorate over time in diabetic patients with uncontrolled diabetes. According to the studies, the graph 

of diabetes incidence and prevalence is rising at an alarming rate on a global scale. Every country's age-

standardized diabetes prevalence in adults has increased or remained stable since 1980. This increase 

combined with population growth and aging has nearly quadrupled the number of adults worldwide with 
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diabetes [1]. Furthermore, the intended age of pathology is decreasing, which is cause for serious concern. 

The increased glucose level in the blood causes blood vessel impairment, affecting patients' overall 

health. These complications affect the majority of people with type-1 and type-2 diabetes. Kidney disease, 

blindness, and amputations are among the most common micro-vascular complications [2]. These 

impaired blood capillaries in the retinal layers cause fluid leakage outside the capillaries into the retinal 

space. This leaked content becomes trapped and accumulates between the retinal layers, causing visual 

health problems. Ophthalmologists refer to this condition as diabetic retinopathy (DR). The deposition of 

various types of leaked fluid particles causes distinct lesions, such as hemorrhages, exudates, cotton wool 

spots, and the growth of abnormal blood vessels in the retinal region. Table 1 shows the nature of these 

pathological features as well as the elements that cause them. 

Table 1: Different pathological features appearing on the retina due to diabetes 

 

Sr. 

No. 

Name of pathological 

feature 

Appearance Texture properties Inducing factor 

1 Hemorrhages Bright red  Oval/round dot or blot Broken blood vessel 

2 Exudates Yellow Spots with sharp edges Lipid and protein deposit 

3 Microaneurysms Red  Dot type structure Accumulation of blood near the 

vessel wall 

4 Drusen Yellow  Dotted tissue growth Fat deposition reduced the 

capacity of the retina to cleanse 

waste from photoreceptors 

5 Cotton wool spots Yellowish/grayish 

white 

Cloud-type lesions edge 

not clear 

Lack of blood flow to smaller 

blood vessels 

6 Macular edema Retinal layer 

thickening 

Swelling in retinal layers Presence of pathology near the 

macular region 

7 Abnormal blood vessels Red  Web-like structure Growth of abnormal blood 

vessels 

 

 The pathological features mentioned above can appear anywhere on the retina. The location of 

these features is the most important parameter for patients' visual health. The symptoms of DR include 

dark or empty spots floating in the vision area, blurred or fluctuating vision, and partial vision loss. It can 

proceed to complete vision loss if ignored at the initial stage. The severity of vision loss is determined by 

the location of these features on the retinal layers. Though these lesions can occur anywhere and cause 

vision loss, the location at or near the macula is particularly critical for vision. The reason for this 

conclusion is that the macula is the region of the retina with the highest density of rods and cones and 

thus provides the best and sharpest vision. Any abnormal feature in or near this region harms vision. As a 

result, diabetic macular edema, despite being a component of DR, is the most substantial of all 

pathological features. The appearance of any of the pathological features described in Table 1 near the 

macula is defined as DME. DME conditions are classified into two types, as follows: 

• Clinically significant macular edema (CSME) – It is characterized by retinal thickening within 

1/3 disc diameter (DD) of the foveal center or the presence of exudates in this area or areas of 

retinal thickening at least 1 DD in size which is within 1 DD of the center of the macula. 
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• Non- clinically significant macular edema (non-CSME) - NCSME is a condition of macular 

edema when the location of exudates and other abnormalities are at a distance from the fovea and 

the central vision of the subject is not affected. 

The treatment and follow-up for DME begin with diabetic patients becoming aware of their visual 

health. DME can be successfully treated if detected early. According to surveys and studies, in some 

countries, patients are unaware of the diabetes-related complications in their bodies. On the other side, in 

other countries, despite high levels of awareness about diabetic eye diseases, a significant proportion of 

diabetic patients failed to report an annual eye examination [3]. As a result, it is consistently reported to 

ophthalmologists when the condition has progressed to an irreversible state. As a result, keeping a record 

and following up on the visual health of diabetic patients has become difficult for ophthalmologists. 

Furthermore, with the rising prevalence of diabetes, it is already a burden on doctors to treat and restore 

patients' visual health. With the rising worldwide prevalence of diabetes and DR, public healthcare 

systems across both developed and developing nations will face rising costs for implementing and 

maintaining diabetes and DR monitoring program. To lessen the impact of DR-related vision loss, all 

stakeholders must keep seeking innovative ways to manage and prevent diabetes, as well as optimize 

cost-effective examinations in the community [4]. 

The key to better treating and restoring diabetic patients' visual health is automated DME diagnosis. 

This study explains and proposes a convolutional neural network-based (CNN-based) automated 

diagnostic system for DME. An automated diagnosis system for DME detection can not only reduce the 

burden on ophthalmologists, but it can also provide a precise analysis of pathology using efficient image 

processing tools. Figure 1 depicts the basic task flow for an automated DME diagnostic system. 

 

 Figure 1: Steps for automated diagnosis system for DME  

Contributions: 

• This study proposes a CNN-based automated diagnosis and classification system capable of 

classifying any given optical coherence tomography (OCT) image as normal or abnormal. 

• The study is carried out with secondary data for classifier design and implementation. The 

acquired images are pre-processed to ensure that the dataset is uniform in terms of size, 

resolution, and noise reduction. 

• The pre-processed images are subjected to k-means clustering with structural similarity (SSIM), 

which separates the OCT images into retinal layers and background pixels. 

• The segmented images are then divided into training and testing data, allowing CNN to be trained 

to classify images into two categories: normal and abnormal. 

Data 
collection

Pre-
processing

Image 
segmentation

Feature 
extraction

Image 
classification



Page 1216 of 15 
Manisha Bangar / Afr.J.Bio.Sc. 6(9) (2024) 

• The performance of the trained CNN is then tested and validated. The novelty of this study is that 

it consists of a performance comparison of the proposed CNN with two pre-trained CNN 

concluding the best of three. 

 The following is how this paper is organized: The first section is the introduction, which contains 

background information about the concept. Section 2 is a review of related literature. The proposed 

methodology is presented in Section 3. Section 4 contains the result and experimental details. Section 5 is 

devoted to discussion and conclusions. 

1. Related literature 

Automated diagnosis systems for early detection of DME have been an area of interest for people 

working on artificial intelligence for the last decade. Research has been carried out, and prototypes have 

been designed for a universal DME screening system. Manisha et al. concluded in a comparative analysis 

of automated detection systems for DME that the classifier accuracy depends on many factors like the 

size of the dataset, image quality, grading levels, noise factor, etc. [5]. Machine learning and other soft 

computing techniques have demonstrated the ability to classify medical images on par with human 

experts. It has been found in several studies so far, though the systems are prototypes only and could not 

be used commercially due to some inherent inconsistencies. 

The evolution of CNN has marked an endless development in data analysis and processing. 

Classification and pattern recognition are the most desirable application areas for CNNs. Deep CNN is 

more accurate in its learning and classification of given data. Exploiting the same approach, Pratt et al. 

suggested the use of a deep neural network for DR classification with a large dataset [6]. For a 5-grade 

classification, the suggested deep learning algorithm achieved a classifier accuracy of 75%. Deep CNN 

Inception-3 is proposed by Gulshan et al. as a classifier for two different datasets, and different classifier 

accuracy was found with both datasets [7]. Grassmann et al. proposed the incorporation of a random 

forest classifier with a deep CNN for 13-grade classification [8]. Deep CNN is also favored by Perdomo 

et al. for the diagnosis of DME; the algorithm was based on five features and achieved an accuracy of 

93.75%. [9]. 

The use of CNN comes with training and testing phase. It is apparent that to achieve high classifier 

accuracy, the dataset used should be large and provide sufficient diversity in features. The appropriate 

datasets also necessitate a significant amount of time in both the training and testing phases. To rectify the 

situation, transfer learning is employed, where a pre-trained CNN is fine-tuned for the desired dataset; in 

this way, CNN can perform well even with a smaller dataset. Transfer learning is proposed by Kermany 

et al. to make a CNN-based classifier fast and comparably accurate. When tested on a small and larger 

dataset, the pre-trained CNN achieved an accuracy of up to 96.6% [10]. Karri et al. proposed a similar 

approach of transfer learning with some modifications and achieved classifier accuracy of up to 99% [11]. 

It suggested back propagation for the rectification of the filters. The proposed system performed better in 

terms of accuracy, but the sensitivity and specificity were significantly degraded. Kamble et al. concluded 

that they achieved 100% accuracy on a small dataset by fine-tuning a pre-trained CNN to classify normal 

and abnormal eyes [12]. 
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Giancardo et al. proposed using probabilistic, geometric, and tree-based classification as well as 

wavelet-based feature extraction to achieve an area under the curve of 0.88–0.94 [13]. A supervised 

learning-based neural network was suggested by Acharya et al. [14] and Deepak et al. [15]. Srinivasan et 

al. implemented an support vector machine (SVM) classifier to classify normal, DME, and age-related 

macular degeneration (AMD) with histogram-based feature extraction and obtained 86.7% accuracy to 

detect a normal eye and 100% accuracy to detect DME and AMD [16]. The SVM classifier with CNN-

based feature extraction proposed by Genevieve et al. attained a classification accuracy of 96% [17]. 

A novel DME classifier was proposed by Manisha et al. that combined a support vector machine 

classifier with a discrete wavelet transform as a feature extraction technique to achieve an overall 

accuracy of 96.46% [18]. Wang et al. proposed a deep learning-based classifier for age-related macular 

edema and DME, concluding that CliqueNet outperformed others with an accuracy of 98% and an area 

under the curve of 0.99 [19]. 

Alsaih et al. proposed a machine-learning DME classifier for spectral domain OCT with combined 

feature extraction (principle component analysis features and linear binary pattern features) and a support 

vector machine classifier, achieving 87.5% sensitivity and specificity [20]. Barua et al. created a 

multilevel deep feature extraction framework for OCT images with an optimized classifier that achieved 

classifier accuracy of 97.40% and 100% for two different databases [21]. Sunija et al. proposed a deep 

CNN for grading choroidal neovascularization, DME, and drusen in OCT images. The proposed CNN 

achieved 99.69% accuracy [22]. 

 

2. Proposed methodology 

 Figure 1 depicts the basic flow of work in the automated detection of DME, which uses various 

techniques for image processing for image classification. The following are the procedures: 

3.1 Data collection 

This study relied on publicly available OCT data. The data was obtained from the Kaggle 

depository, an online open-source directory. A total of 3000 images were accessed from kaggle.com, with 

124 images being discarded due to poor contrast and unacceptable levels of noise. For the study, 2876 

OCT images were saved. There are 958 images in this dataset that belong to the DME case and 1918 

images that belong to the normal case. The dataset was divided into two parts after pre-processing and 

segmentation: training and testing data. The CNN was trained using 2455 images, and 421 images were 

used for testing and validation. The dataset configuration is depicted in Figure 2. 

 

Dataset details

Normal case

DME case
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Figure 2: Dataset configuration 

2.1 Pre-processing 

The secondary data obtained from public sources are raw and poorly organized. As a result, the 

dataset must be prepared consistently in terms of image size and contrast level. Images are pre-processed 

before segmentation to achieve dataset uniformity. To create a uniform dataset, image resizing, and 

cropping are used. Image size is very important in CNN training and testing. Larger image sizes 

necessitate more memory and take more time to train, whereas smaller image sizes result in poor feature 

extraction. As a result, it is crucial to choose an optimum image size that retains the necessary features 

without demanding too much time during CNN training and testing. The images have been resized to an 

optimum size of 128x128 for further processing. Figure 3 shows a pre-processed OCT scan with a normal 

case. 

 

Figure 3: Normal eye OCT scan after image cropping and resizing 

2.2 Image segmentation 

The most important step in automated detection is image segmentation. During this stage of 

image processing, the image pixels are partitioned into featured pixels and background pixels. As a result, 

the image indicates the forefront information with regard to the background data. It aids in more accurate 

and precise feature extraction in the following processing step. In this study, the K-means clustering with 

structural similarity (SSIM) feature is used for image segmentation because it efficiently segments OCT 

images. Clustering algorithms divide unorganized data into k categories based on similar contrast or 

energy levels, with the user defining the value of k. Initially, the segmentation is performed with the value 

k=4. As a result, the images are divided into four clusters. Figure 4 shows a segmented image where k = 

4. The algorithm arranges the pixels into four clusters, as shown in the image. 

 

Figure 4: Segmented image using k-means clustering with k=4 
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 Following image segmentation, the SSIM feature is used to select the most relevant cluster type 

suitable for feature extraction. To determine the best cluster composition for feature extraction, the SSIM 

feature compares the clusters to a previously provided reference image. Figure 5 depicts the distinct 

cluster structure with respect to the background that is going to be compared by the SSIM feature. 

 

Figure 5: Individual cluster and a background view of the segmented image 

2.3 Feature extraction and classification 

This study proposes CNN-based feature extraction and classification. Transfer learning is used to 

fine-tune two pre-trained CNNs, VGG-16 and DenseNet, on an OCT dataset, and a new CNN is proposed 

for the automated detection of DME using OCT images. The followings are the architectural details and 

CNN tuning parameters:  

Proposed CNN 

 The proposed CNN is a 20-layer architecture consisting of 5 convolutional layers, pooling layers, 

and dropout layers. After the fifth dropout layer, there is one flatten layer followed by three dense layers, 

also known as fully connected layers. Figure 6 depicts the systematic arrangement of layers as well as 

their respective feature maps. The activation function for convolution layers is ReLU (the Recti-Linear 

function), and the last layer is SoftMax. ADAMAX is the optimizer used, and the learning rate is set to 

0.001. The comparison of CNNs in terms of parameters is summarized in Table 2. 
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Figure 6: Architecture of proposed CNN 

VGG-16 

VGG-16 is a publicly available pre-trained CNN trained on general (non-medical) datasets. 

Transfer learning is used to fine-tune over the intended data for this study. It has a total of 21 layers, 

which include 13 convolutional layers, 5 pooling layers, 1 dense layer, 1 input layer, and 1 flattening 

layer. Figure 7 depicts the layer arrangement and feature map for VGG-16. Table 2 lists the tuning 

parameters for all three CNNs. 

 

Figure 7: Architecture of VGG-16 

DenseNet 

 DenseNet is a 121-layer deep CNN that has been pre-trained on general data. It is also fine-tuned 

for OCT target data using transfer learning. It is made up of four dense blocks, three transition layers, one 

input layer, and one classification layer. The dense blocks are a repetitive layered structure of a sequenced 

batch normalization layer, ReLU, convolution layer, and dropout layer. Table 2 lists the other 

architectural details and fine-tuning parameters. 

Table 2: Architectural details of used CNN 

Parameters Proposed CNN VGG-16 DenseNet 

Total no. of layers 20 21 121 
Convolutional 
layers 

5 13 1 

Pooling layers 5 5 1 
Other layers 1 input, 5 dropout 

layers (dropout- 
20%), 1 flatten 
layer, 3 dense 
layers 

1 input, 1 flatten 
layer, 1 dense layer 

1 input, 4 Dense 
blocks, 3 transition 
layers, 1 
classification layer 

No. of trainable 
parameters 

29,202/29,202 50,178/14,714,688 2,050/7,039,524 
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Activation function Relu, softmax on 
last dense layer 

softmax softmax 

Learning rate 0.001 0.001 0.001 
Optimizer Adamax Adamax Adamax 
Input 128x128x32 224x224x3 224x224x3 
loss Categorical cross-

entropy 
Categorical cross-
entropy 

Categorical cross-
entropy 

Training testing 
batch size 

16 16 16 

epochs 50/50 9/20 8/20 
time 6 sec 3 sec 2 sec 

 

2.4 Performance evaluation parameters 

Several parameters, including classifier accuracy, precision, recall, and area under the ROC 

(receiver operating characteristic) curve, are used to assess the performance of the proposed method. The 

following are the parameters: 

Accuracy 

The accuracy of a classification model is a metric of its performance. It is commonly expressed as 

a percentage. It is the number of predictions in which the predicted value is equal to the true value. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Precision 

It is calculated as the ratio of the number of correctly classified positive samples to the total 

number of positive samples (either correctly or incorrectly classified). The precision of the model 

measures its accuracy in classifying a sample as positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall 

 It is calculated as the ratio of positive samples that were correctly classified as positive to the 

total number of positive samples. The recall of the model measures its ability to detect positive samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Loss function 

It is also referred to as the cost function. It considers the probability or uncertainty of a prediction 

based on how far the prediction deviates from its true value. Log loss, cross-entropy loss, mean square 

error, and likelihood loss are the most common loss functions. 
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Here, Mean squared error is used as a loss function. Mathematically,  

   𝐿 = (𝑇 − 𝑃)2    

       Where, L = Loss function 

        T = True value 

        P = Predicted value 

Receiver Operating Characteristics (ROC) 

ROC is a graph that depicts a classification model's performance across all classification thresholds. 

The true positive rate and the false positive rate are plotted on this curve. The area under the ROC curve 

(AUC) is a critical parameter. It has a value between 0 and 1. A model with 100% incorrect predictions 

has an AUC of 0.0; one with 100% correct predictions has an AUC of 1.0. 

 

3. Results 

Following the implementation of the proposed algorithms, the performances of the proposed CNN, VGG-

16, and DenseNet are compared in terms of ROC, classifier accuracy, precision, recall, loss function, and 

f1-score. Figures 8, 9, and 10 show the ROC curves for the proposed CNN, VGG-16, and DenseNet. The 

proposed CNN and VGG-16 both achieved 96% area under the curve for classes 0 (normal eye) and 1 

(DME) and outperformed DenseNet, which obtained 92% for the same. The analysis of ROC curves 

shows that the proposed CNN fared better in terms of area under the ROC. 

                

     Figure 8: ROC for proposed CNN   Figure 9: ROC for VGG-16 

 

        Figure 10: ROC for DenseNet 
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 The confusion matrix obtained to evaluate classifier performance for predicted class correctness 

is shown in the figures below. Figure 11 depicts the proposed CNN's confusion matrix, while figures 

12 and 13 depict the same for VGG-16 and DenseNet, respectively. Tables 3, 4, and 5 show the other 

evaluation parameters derived from the confusion matrix, such as precision, recall, and f1-score. 

Table 6 compares the performance of three CNNs and concludes that the proposed CNN performed 

the best of the three in terms of the majority of parameters. Table 7 compares the performance of the 

proposed work to that of other studies. 

                             

Figure 11: Confusion matrix for proposed CNN        Figure 12: Confusion matrix for VGG-16 

 

 

Figure 13: Confusion matrix for DenseNet 

Table 3: Performance of proposed CNN 

Performance: Proposed CNN 

 Precision Recall F1-score support 
Normal eye class 0 0.86 0.96 0.90 201 
DME eye class 1 0.89 0.87 0.91 220 
Accuracy   0.90 421 
Macro avg 0.87 0.94 0.90 421 
Weighted avg 0.88 0.93 0.90 421 
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Table 4: Performance of VGG-16 

Performance: VGG-16 

 Precision Recall F1-score support 
Normal eye class 0 0.78 0.97 0.86 173 
DME eye class 1 0.98 0.81 0.88 248 
Accuracy   0.87 421 
Macro avg 0.88 0.89 0.87 421 
Weighted avg 0.89 0.87 0.88 421 

 

 

Table 5: Performance of DenseNet 

Performance: DenseNet 

 Precision Recall F1-score support 
Normal eye class 0 0.75 0.90 0.82 181 
DME eye class 1 0.91 0.78 0.84 240 
Accuracy   0.83 421 
Macro avg 0.83 0.84 0.83 421 
Weighted avg 0.84 0.83 0.83 421 

 

 

Table 6: Performance comparison of CNNs 

 Performance Analysis of all CNNs 
 

CNN Precision Recall f-score Accuracy (%) ROC LOSS 

Proposed 
CNN 

0.87 0.94 0.90 90.26 0.96 0.2964 

VGG-16 0.89 0.87 0.88 87.41 0.96 0.3621 

DenseNet 0.84 0.83 0.83 82.66 0.92 0.3844 

 

Table 7: Performance comparison of proposed work 

Sr. 

No. 
Related work Technique Classifier accuracy 

(%) 

1 Pratt et al. [6] Deep CNN 75 

2 Perdomo et al. [9] CNN without dropout 81.25 

3 Srinivasan et al. [16] HOG + SVM 86.7 
4 Proposed work Proposed CNN 90.26 

 

4. Conclusion 

We present an efficient transfer learning-based approach for automated detection and classification of 

DME using OCT images in this study. The classification is divided into two categories: normal and DME. 

The purpose of this research is to reduce the burden on ophthalmologists and to propose a screening 

system for detecting DME symptoms using OCT scans. This work is unique in that it uses two steps of 

image segmentation to prepare training data for CNNs, resulting in better feature extraction and higher 

classifier accuracy. The clustering algorithm is a widely used segmentation method, and this study 
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employs it along with the SSIM feature. The use of a similarity index in image segmentation resulted in 

more precise and accurate image segmentation. CNN is used for classification. A novel 20-layer CNN is 

proposed for OCT scan classification, along with two pre-trained CNNs (VGG-16 and DenseNet) that are 

fine-tuned using transfer learning for our target dataset. 

For the best classifier, the performance of three CNNs is compared. The proposed CNN 

outperformed VGG-16 and DenseNet despite having a simpler architecture, providing a classifier 

accuracy of 90.26% while VGG-16 achieved an accuracy of 87.41% and DenseNet achieved an accuracy 

of 82.66%. Precision, recall, f1-score, and area under ROC are also analyzed for all three CNNs, the 

proposed CNN, VGG-16 and DenseNet. The values of precision for the proposed CNN, VGG-16, and 

DenseNet are 0.87, 0.89, and 0.84, respectively. The recall factor was recorded as 0.94 for the proposed 

CNN, 0.87 for VGG-16 and 0.83 for DenseNet. Though the precision value obtained by VGG-16 exceeds 

the other two CNNs, the overall performance analysis of the three CNNs shows the best performance by 

the proposed CNN. The proposed CNN possesses a 0.022 lower loss function than VGG-16 and a 0.088 

lower loss function as compared to DenseNet. The proposed CNN outperformed in terms of the majority 

of parameters, with a classifier accuracy of 90.26%, a precision of 0.87, a recall of 0.94, an f1-score of 

0.90, an area under the ROC of 0.96, and a loss function of 0.2964. As a result, it is concluded that the 

proposed CNN achieved the best performance. Though the goal of this research is to provide an efficient 

automated diagnostic system for DME at the screening level, it can be further improved for a larger 

dataset and more than two classes of classification. 
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