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ABSTRACT:  

 
This paper describes how RL agents in the Unity Environment can 

perform parking. The goal of the study is to propose method that 

makes use of reinforcement learning techniques offered by the 

Unity ML- Agents framework within Unity’s realistic 3D 

simulation in order to solve the requirement for autonomous parking 

solutions. The suggested solution’s design, execution, and 

assessment are highlighted in the paper. In complex situations, the 
system offers an adaptive and realistic frame-work for autonomous 

parking. The outcomes of thorough performance testing and 

comparative analysis highlight the use fullness and promise of the 

suggested approach in the area of autonomous car parking. The 

discussion of the results, difficulties faced, and prospects for 

additional study and advancement in autonomous car parking 

technology round up the report. 
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1. Introduction: 

 

The everyday evolution of Artificial Intelligence and Virtual Simulations is leading the way 

to new technological advancements. Within this paradigm, the task of autonomous parking 

requires great precision and adaptability for intricate scenarios. The problem can be 

addressed by the approaches of Machine Learning (ML) and Reinforcement Learning (RL). 

This paper focuses on utilising the capabilities of RL provided by the Unity ML-Agents 

framework, within the Unity3D simulation environment to solve the problem of autonomous 

vehicle parking.The question arises, what is Reinforcement learning? Let’s take the example 

of Volleyball (Fig1). Initially, the age nts do not have any information on how to play the 

game. They’ll start by taking random actions and through trial and error, they’ll learn 

that:[Zha] 

If they hit the ball and it goes over the net to the other side of the court, they score points 

(positive feedback), 

If they let the ball hit the floor on their side of the court, they lose a point (negative 

feedback). 

Doing the things that lead to positive outcomes will teach the agents to hit the ballover the net 

whenever it’s on their side of the court. Technically, Reinforcement learning is a sub domain 

of machine learning which involves training an ‘agent’ (here the volleyball player) to learn 

the correct sequences of actions to take (hitting the ball overhunt)in given state of it 

environment(the volley ball game)to maximize its reward (scoring points) [Zha][SB18].The 

RL training process includes 2 key steps/phases: Exploration and Exploitation. The 

developer’s training algorithm will decide when the agent should explore the environment 

and when to exploit the gainedinformation.Wewilltakeadeeperlookintothisinfurthersections. 

 

 
Figure1:Re enforcement Learning[Source] 

 

The robust physics engine and realistic rendering provided by the Unity are ideal for creating 

simulated environments, they closely mimic the real-world challenges which further 

rstrengthens the training for our RL agent. Asautonomous vehicle technology progresses, the 

development of intelligent parking systems becomes crucial. These types of systems can aid 

in transforming current automobiles into partially autonomous vehicles as they can be 

provided as third-party modules. This proposal leverages Unity’s capabilities to create a 

simulated environment where a virtual car equipped with an RL agent can learn to navigate 

https://www.gocoder.one/static/reinforcement-learning-example-58f3db142a4c95451aaeae3defd58622.jpg
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diverse parking scenarios, hence addressing the pressing need for an automatic parking 

system. 

This paper is structured as follows:[JBT+20] 

We begin with an introduction of the problem at hand, its significance, and the scope of this 

paper. Then, we describe the current and previous works on the problem and propose a series 

of solutions, including our primary RL agent using Unity ML Agent in the Unity3D 

Environment, 

We then describe the Unity engine and Unity ML-Agents Toolkit, a general platform and 

discuss its ability to enable research and how we can achieve the proposed solution using 

them, 

Wenextoutlinethearchitecture,functionalityandtoolsprovidedbytheUnity ML-Agents Toolkit 

which enables the deployment of RL Agent within Unity environments on example Parking 

Scenarios,Then, we assess the outcome and conclude by proposing future avenues of our 

findings. 

The Problem: 

With the increase in the popularity of self-driving cars, the world’s roads are projected to be 

dominated by such cars in the next decade. But it also introduces Various challenges, 

including but not limited to lane detection, lane following, signal detection, and obstacle 

detection and avoidance, make autonomous driving a complex task. For this paper, we will 

focus on the task of parking. Car parking is a complex task that requires the driver to handle: 

Spatial awareness 

Trajectory planning 

Real-time decision-making, and more (Fig. 2) 

These challenges combined are so significant that a traditional algorithm cannot overcome 

them. This paper identifies this problem and aims to train an RL agent to navigate and park a 

car autonomously, recognizing the dynamic and complex nature of the parking situation. The 

main reason to opt for the RL technique over other sorts of algorithms, and the Unity 

environment, is due to the facilities provided. We will take a closer look at the Unity Engine 

and the Unity ML-Agents framework (including RL tools provided) in further sections. 

 

 
Figure 2: Perpendicular Parking Scenarios 

 

The proposal seeks to address fundamental questions such as: 

 How can we construct a system capable of parking a vehicle on its own? 

 What factors contribute to successful navigation in various parking scenarios? 

 How efficient will the system be? By honing in on these challenges, the paper aims to 

contribute to the development of robust and adaptive RL models capable of handling the 
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problems associated with automated car parking. Moreover, it will inform about the 

challenges of the field and whether the ML and RL approach is feasible and effective or not.  

Significance: 

The paper is directly aimed at the advancement of autonomous vehicles and how to execute 

the car parking task autonomously, highlighting its significance in the field. Automated 

parking systems are an integral part of broader self-driving technology and demand 

intelligent agents capable of making swift and accurate decisions in real time. 

By employing RL techniques, this project endeavors to create a model that not only learns 

optimal parking strategies but also adapts to diverse scenarios, show casing the adaptability 

necessary forreal-world applications. Moreover, the RL model will be evaluated in both 

training and testing phases which further outlines its efficiency and relevancy as a proposed 

solution. The paper also includes the prospect of the proposed solution, which provides a 

peek into the future of autonomous parking, it will also lay out the disadvantages of our 

approach which will further aid any research in the field. The paper, as stated earlier, makes 

use of Unity3D Engine and Unity ML-Agents frame work. This shows the effectiveness of 

the software and the framework in the field of machine learning-oriented research. The 

above-mentioned points promoted the need and proved the significance of this paper, also to 

conduct research andproposenewmoreeffectiveandfeasible solutions by other fellow 

researchers. 

Objectives: 

 Before writing the objectives, we should take a look at the scope of the paper. This 

Increasing understanding of objectives and expectations is crucial for better planning and 

decision-making. The scope of this paper encompasses the development of an autonomous 

car parking system using Reinforcement Learning (RL) within the Unity simulation 

environment. The primary focus is on training a virtual agent to autonomously navigate and 

park a car in diverse scenarios, emulating real-world challenges. The system will address 

various aspects of automated parking, including spatial awareness trajectory planning, and 

real-time decision-making. We will also evaluate the resulting model in the training and 

testing phase, and conclude with the results and future uses or alterations. We will also 

briefly discuss the impact of this approach on the field and what areas should future 

researchers pay utmost attention to. Now, various objectives of this paper include: 

Develop an RL model tailored for car parking in Unity, integrating state-of-the-art algorithms 

to enable effective learning and decision-making. 

Design and implement a simulation environment within Unity that encompasses a range of 

parking scenarios, capturing the complexities of real-world parking challenges. 

Train the RL agent to navigate and park a virtual car autonomously,  

 Emphasizing adaptability to different parking space configurations and dynamic 

environments. 

 Evaluate the performance of the trained RL agent based on key metrics,  

 Including success rate, parking accuracy, and computational efficiency. 

 Contribute insights to the broader field of ML applications in simulated  

 Environments, offering solutions and methodologies for training RL agents in 

complex tasks, specifically in the context of automated car parking. 

 

2. The Related Work: 

 

Let’s take a look at previous and current works done on the autonomous parking problem. 

Most of the work is done utilising single and multi-agent Reinforcement Learning, and 

Machine Learning techniques. However, few researchers have also implemented Unity3D 

and Unity ML-Agents framework for the task. Some of the previous works are: 
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• Clara Barbu and Stefan Alexandru Mocanu: On the development of Autonomous 

Agents using Deep Reinforcement Learning.[BM21] : The pa- per presents a general study of 

autonomous agents with their development powered by deep reinforcement learning. This is 

combined with autonomous vehicles viaan example of a vehicle agent parking autonomously 

in the virtual parkingenvironmentprovidedbytheUnity3DEngine.TheagentisutilisingDeepQ-

Learning, Double DeepQ-Learning ,and Experience Replay. 

 

 
Figure3: The Agent (bluecar) and its environment created in Unity [Source: [BM21]] 

 

The paper resulted in a model (Fig 3.1) able to park a car using Deep Q- Learning techniques, 

but the model took more than 72 hours to train. The results for a more general application 

(Ball-Cube) were more promising and quick utilising the Double Deep Q-Learning. 

• Mohamed Fethi Dellali and Mohamed El Mahdi Bouzegzeg: Autonomous Parking 

Simulation using Unity Game Engine and Reinforcement Learning.[DB22] : The report 

implemented an autonomous parking  

• Simulation using Unity3D Game Engine, Unity ML-Agents framework, and Reinforcement 

Learning. They started with a discussion of various artificial intelligence (AI) subsets and 

their methods, followed by a detailed discussion of reinforcement learning, Unity game 

engine, and ML-Agents. 

• The report resulted in a model which can seek out the empty parking lot in a parking area 

and execute the parking task correctly. The model trained for over 12 million steps in 12 

hours with a theoretical success rate of 97% during the training phase.Omar Tanner: "Multi-

Agent Car Parking using Reinforcement Learning" [Tan22]: The paper aimed to train a 

model able to perform in a multi-agent system (Fig. 3.2) where other cars can also 

communicate and aid in parking tasks.  
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Figure4:Multi-Agent System for Autonomous Parking [Source:[Tan22]] 

 

The fixed goals and obstacles environment yielded a model using up to 7 agents with a 

success rate of 98.1%. If the model only implemented 2 agents instead of 7, the rate bumped 

up to 99.3%. This proved the effectiveness of the multi-agent system in the autonomous 

parking scenario. 

•Yusef Savid, Reza Mahmoudi,RytisMaskeliu¯nas,and Robertas Damaˇseviˇcius: Simulated 

Autonomous Driving Using Reinforcement Learning: A Comparative Study on Unity’s ML-

Agents Framework" [SMMD23]: The paper compares the performance of several different 

RL algorithms and configurations on the task of training kart agents to successfully traverse a 

racing track (Fig. 3.3) and identifies the most effective approach for training.Tain agents to 

navigate a racing track and avoid obstacles on that track. 

 

 
Figure5: The Race Track environment in Unity [Source:[SMMD23]] 

 

The paper also explored the effectiveness of behavioral cloning; a technique of copying 

human skills or inputs and training the model to closely mimic them, in the area of racing 

simulators. The results when compared to the Proximal Policy Optimization algorithm, notice 

donlya deviation of 23.07%invalue loss and only a 10.64% deviation in cumulative reward, 

hence confirming the usefulness of behavioral cloning for improving the performance of 

intelligent agents for racing tasks. Nowlet’ sproposeour solution for Autonomous Parking: 
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We address the situation through the employment of Reinforcement Learning, specifically 

leveraging the Proximal Policy Optimization (PPO) algorithm. The utilization of Unity ML-

Agents will be integral in executing this RL model using the PPO. Within the Unity Engine, 

the model will undergo training, testing, and evaluation. The agent will rely on the "Ray 

Perception Sensors" component provided by Unity to perceive the environment, mimicking 

the functionality of real-life Lidar sensors. Access to a Car Controller script will be granted to 

the agent, enabling it to execute actions such as driving, steering, and braking. Positioned 

within a dynamic simulation environment, the agent will face ever-changing scenarios in 

each episode to enhance the adaptability of the RL model. The reward system designed for 

the agent will incentivize "reverse parking" as opposed to traditional front parking, aiming to 

instill good parking etiquette. Moreover, penalties will be imposed on the agent in case of 

collisions to reinforce task completion. Evaluation of the agent will be conducted in two 

manners: assessing parking success and inspecting model parameters. The former evaluation 

involves analyzing the "Efficiency Percentage" of successful parking instances within a set 

timeframe encompassing both training and testing phases. The latter evaluation refers to 

utilizing Tensor board to monitor model parameters like extrinsic reward, episode length, 

policy loss, etc., throughout the training process. The ultimate results will amalgamate 

insights from both evaluations, leading to a conclusive statement. This academic discourse is 

influenced by references from prestigious Scopus indexed IEEE & Springer conference 

papers. 

The Tools & Technologies Used  

Let’s look into brief details of specific tools (Unity Engine and Unity ML-Agents)and 

software technologies or methods (Reinforcement Learning, Artificial Neural Networks, and 

Proximal Policy Optimization) we have utilised for our work. Unity Engine 

Unity is a cross-platform game engine developed by Unity Technologies, first an- 

nouncedandreleasedinJune2005atAppleWorldwideDevelopersConferenceas a Mac OS X 

game engine [Wik].Over the years, it has grown into a cross-platform powerhouse, 

supporting development for a multitude of devices and platforms, from desktop and mobile to 

consoles and virtual reality. 

Key Features: 

Key Features of the system encompass a wide range of training scenarios and environmental 

setups, catering to diverse needs and requirements across different domains. Various 

advanced Deep Reinforcement Learning algorithms such as Proximal Policy Optimization 

(PPO), Soft Actor-Critic (SAC), Multi-Agent Proximal Policy Optimization with Centralized 

Critics (MA-POCA), and self-play mechanisms are provided to facilitate the training of 

agents in single-agent, multi-agent cooperative, and multi-agent competitive settings. 

Moreover, users are offered support in leveraging two distinct imitation learning algorithms, 

namely Generative Adversarial Imitation Learning (GAIL) and Behavioral Cloning (BC), to 

effectively learn from expert demonstrations and improve performance. Additionally, the 

platform is equipped to handle concurrent training sessions involving multiple instances of 

the Unity environment, enabling a parallelized training approach that enhances efficiency and 

throughput without compromising the system's ability to adapt to different scenarios and 

configurations. This concurrent training capability significantly accelerates the overall 

training process, allowing users to expedite the learning curve and achieve optimal results in 

a timely manner. 

Reinforcement Learning 

Reinforcement Learning can be defined as a technique for problem-solving where an 

intelligent agent is trained using experiences. The agent will be put in the problem 

environment at a particular state or situation, where it can perform certain 

actionsthatwillgeneraterewardsorpenaltiesandtransferitintoanewstate.Astatecan be defined as 
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a particular scenario in a problem and used by the agent to perform actions and get to a 

solution.The reward is a positive incentive the agent receives when it comes close to the 

desired output whereas the penalty is a negative reward which is given when the agent either 

deviates from the solution or makes a blunder. Penalties are significantly higher than the 

rewards to make sure the agent never repeats the negative actions. 

The reinforcement learning process generally results in a model capable of per-forming the 

task it was trained for with great efficiency.The model is typically represented with an 

artificial neural network, a multilayer feed-forward neural net- work in our case, which has 

node functions and weights calculated according to its learned behaviour from the training 

phase. 

Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are computational models inspired by the structure and 

functioning of biological neural networks in the human brain. ANNs consist of 

interconnected nodes, or neurons, organized in layers, allowing them to learn complex pattern 

sand relationships from data. 

Feed forward Neural Networks: Feed forward Neural Networks (FNNs) are a type of 

artificial neural network where the information moves in only one direction—from the input 

layer, through any hidden layers, to the output layer. There are no cycles or loops in the 

network, meaning the information does not flow backward. Here are some key points about 

FNNs. 

Proximal Policy Optimization 

Based on policy gradient approaches, proximal policy optimization (PPO) seeks to 

maximizepredictedcumulativerewardsbyrepeatedlyimprovinganagent’spolicy. 

Fundamentally, PPO makes use of a surrogate objective function to direct policy updates 

while guaranteeing effective and consistent learning dynamics. 

The Architecture & Working 

Within the Unity Editor, the solution has the capability to function in two distinct modes: 

Training and Testing. In the Training mode, the agent is devoid of any neural network 

guidance, starting the training process independently. To initiate the training, a specific 

command is executed in the Anaconda command prompt, setting the run-id as 

"modelNameOrId." This run-id serves the purpose of defining the model name and is utilized 

by tensorboard to display model statistics. The behavior exhibited during this training phase 

is governed by the trainer config.yaml file, which outlines actions like periodic exports of the 

Neural Network and the creation of checkpoints. These actions play a critical role in 

preserving the progress made during the training process. 

On the other hand, in the Testing mode within the Unity Editor, the presence of a neural 

network is indispensable. This neural network, also known as the model, is then subjected to 

various parking scenarios to evaluate its performance. The evaluation of performance takes 

place on an individual agent basis, with the assistance of Efficiency Cal.cs, and collectively 

for all agents, managed by Efficiency Comb.cs. This evaluation process continues 

indefinitely and can only be interrupted by choosing the "Stop" option within the Unity. 
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Figure6: Flow chart showing the working in Unity Editor 

 

In the exported application, the functionality of the solution is exclusively limited to testing 

mode, wherein the initiation of the testing process is triggered by the user's selection of the 

"Start" option and subsequent selection of a model from the list of available options. The 

application is equipped with a diverse range of 7 models for the user's consideration, 

encompassing 4 development models and 3 export models, thereby providing a 

comprehensive array of choices for testing and evaluation. The inclusion of these various 

models serves to enhance the user experience by offering a wide selection of options to 

explore and engage with, thereby maximizing the utility and effectiveness of the testing 

phase. 

Models, all saved on the drive, are available for selection. Following this selection, the "Final 

Scene" is loaded, functioning akin to "Unity Editor: Testing Mode." Moreover, users can opt 

to "Reset" the scene, "Go Back" to the main menu to try another model, or "Quit" the 

application 
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Figure7: Flow chart showing the working in exported Application 

 

3. The Results: 

 

We created a total of 7 models for this purpose and compared training and testing 

resultsofeach.Thetrainingresultsmainlyconsistedofmodelorpolicyparameters such as the 

“Cumulative Reward”, “Episode Length”, “Policy Entropy” etc. Additionally, we calculated 

the parking efficiency during training. The testing results is the parking efficiency of the 

model over an evaluation period of 4hrs.Let’s define the training specific terms first then take 

a look at the training and testing results for our most effective model (i-Park Export [02]).At 

the end, we will discuss the distribution and how the reader can use the application himself.  

Training Results Related Terminology 

1. Cumulative Reward: Cumulative Reward in Tensor Board graph stracks the total reward 

obtained by the agent during training or evaluation. It offers aquick overview of the agent’s 

overall performance and its ability to achieve goals within the environment. 

2. Episode Length: Episode Length in Tensor Board graphs represents the du-ration of each 

episode during training. It indicates how long the agent interacts with the environment before 

reaching a terminal state or completing a task. Tracking episode length helps monitor the 

efficiency and effectiveness of the agent’s decision-making process over time. 

3. Policy Loss: Policy Loss in Tensor Board graphs reflects the discrepancy between the 

predicted actions of the agent and the optimal actions determined by the policy during 

training. It measures how well the agent’s policy approximates the desired behavior and 

provides insights into the training progress and stability of the reinforcement learning 

algorithm. 

4. Value Loss: In Tensor Board, the Value Loss metric tracks the error between predicted and 

observed returns during training. Good performance shows a decreasing trend over time, 
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indicating improved accuracy in predicting future rewards. Fluctuations may occur, but 

overall, the curve should converge to a low and stable level, signaling successful learning by 

the agent. 

5. Policy Entropy: Policy Entropy in Tensor Board measures the uncertainty or randomness 

of the agent’s action selection. A good agent should maintain a moderate level of entropy to 

encourage exploration and prevent premature convergence to suboptimal policies. An ideal 

scenario shows a decreasing trend in entropy as the agent learns to make more confident and 

informed decisions over time, but without diminishing too quickly, ensuring a balance 

between exploration and exploitation. 

Figure8: Cumulative Reward for I Park Export [02] 

 

The cumulative reward graph starts at 50k steps with a reward value of 0.1434, and 

endsat10Mstepswithavalueof0.5269in3hours28mins.Thisshowsclearly that the model is 

learning to park. The graph is increasing steadily throughout the period. This shows that the 

model was learning new behaviours and did not mature early. 

Figure9: Episode Length for i-Park Export[02] 

The episode length graph starts at 50k steps with an episode length of 242 and ends at 10M 

steps with a length value of 32 (32.37). This shows that the model was learning new optimal 

behaviors and was able to park with fewer steps in each episode. Moreover, the graph was 

almost flat from 4M steps (36.35), indicating that the model was able to find optimal settings 

very early. 

 

Figure10: Policy Loss for I Park  Export[02] 
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The policy loss graph starts at 50k steps with a value of 0.03426 and ends at 10M steps with a 

value of 0.03257. This decrease in value shows that the model was able to find an optimal 

policy function. Moreover, the graph is constantly declining, indicating that the model was 

improving throughout the training period. The fluctuations show that the agent is learning 

from the environment 

Figure11:Value Loss for i-Park Export[02] 

 

The value loss graph starts at 50k steps with a value of 5.768e-3 (0.005768) and ends at 10M 

steps with a value of 9.9214e-3 (0.0099214). Value loss shows the difference between the 

predicted value of state-action pairs by the agent’s value function and the actual observed 

returns received during training. An ideal behavior will be a decreasing or constant graph. 

The graph initially increased till 4.75M steps,but then it declined and stayed continuous from 

7M steps. Morover, the overall increase was very low (0.0041534) which shows the model 

really performed well in value loss and find an optimal solution. 

 

Figure12: Policy Entropy for i-Park Export[02] 

 

The policy entropy graph starts at 50k steps with a value of 1.417 and ends at 10M steps with 

a value of 1.146. The decreasing trend is favorable here. It shows that the agent was able to 

balance between exploration and exploitation without converging to a sub-optimal solution. 

Training Parking Efficiency 
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# The training efficiency is indeed reported in the "Efficiency.txt" file by the performance 

metric component 

08-05-202415:30:55(Training Model) 

Efficiency 79.27053% 

Total Park170392 

Total Collision 44558 

Total Cases 214950 

The statement is correct. The Efficiency Cal and Efficiency Combined scripts report the 

efficiency of the model for the entire training period, and it may differ from real testing 

scenarios. 

Graph Analysis 

The cumulative graph demonstrates significant progress, with the final value exceeding the 

average (0.5269). Notably, the training period was the shortest among all, showcasing 

efficient learning. However, relying solely on this metric may not accurately predict the 

model's performance in test scenarios. Similarly, the episode length graph displays an ideal 

trend, with the final value being among the lowest, indicating the successful optimization of 

episode length by the model..The policy loss graph also exhibits a consistent decline, 

reflecting effective policy improvement throughout training. However, the value loss presents 

a challenge, with a continuous rise for most of the training period, though the model managed 

to stabilize it towards the end. There are challenges, but the policy entropy is ideal, which 

indicates the Proximal Policy Optimization (PPO) algorithm is working well. 

Training efficiency data looks promising, but it might not directly correlate with how the 

model performs in testing. 

Testing will provide more insights into the model's true performance. 

I-Park Export[02]Testing Results 

#training efficiency report edinthe 

"Efficiency.txt"by the performance metric component 

16-05-202414:34:04(Testing Model "i-Park Export[02] 

-10000076(Unity. Barracuda.NNModel)") 

Efficiency89.37852% 

TotalPark31539 

TotalCollision3748 

TotalCases35287 

The 4-hour evaluation test resulted in the agent attempting a total of 35,287 parking 

scenarios. It successfully parked 31,539 times and collided 3,748 times. This results in an 

89.38% success rate, which is 10.11% higher than the training data's success rate. 

Data Analysis 

The 4-hour evaluation test resulted in the agent attempting a total of 35,287 parking 

scenarios. It successfully parked 31,539 times and collided 3,748 times, resulting in a success 

rate of 89.38%. This is 10.11% higher than the training data's success rate, representing the 

highest improvement recorded so far. The model's exceptional performance across all training 

parameters suggests it is the best-suited model for the task. 

All model comparison 

 

Table1: Comparing models on the irrespective training and testing data 

Training Efficiency Testing Efficiency 

Model Name 
Efficiency 

% Model Name 
Efficiency 

% 

iPark[01]21-11-2023 – iPark[01]21-11-2023 78.56705% 
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iPark[02]28-03-2024 74.95232% iPark[02]28-03-2024 84.407% 

iPark[03]29-03-2024 84.70142% iPark[03]29-03-2024 86.45386% 

iPark[04]30-03-2024 79.63393% iPark[04]30-03-2024 88.92231% 

iPark Export[01]04- 

05-2024 75.3954% 
iPark Export[01]04- 

05-2024 85.36852% 

iPark Export[02]06- 

05-2024 79.27053% 
iPark Export[02]06- 

05-2024 89.37852% 

iPark Export[03]08- 

05-2024 79.2570% 
iPark Export[03]08- 

05-2024 88.61481% 

 

Deployment 

The deployed application setup can be found here: 

iParkSetup.exe [https://github.com/KushagraYashu/iPark/releases/download/setup 

/iParkSetup.exe] 

After downloading, the program can be installed by running and following the in striations in 

the setup. 

 

4. The Conclusion 

 

In conclusion, this research successfully demonstrates the viability and effectiveness of 

employing Reinforcement Learning (RL) agents within the Unity3D environment to tackle 

the complex problem of autonomous parking. By integrating the Unity ML-Agents 

framework, we have shown that virtual agents can be trained to navigate and park vehicles 

autonomously in a variety of scenarios that closely mimic real-world parking situations real-

world conditions. The RL approach, particularly within the robust and versa- tile Unity 

simulation, proved to be a powerful method for developing adaptive and intelligent parking 

systems. 

Throughout this study, the RL agents displayed significant capabilities in spatial awareness, 

trajectory planning, and real-time decision-making. The performance metrics, including 

success rate and parking accuracy, indicated that the RL agents could consistently and 

efficiently execute parking maneuvers across different configurations and dynamic 

environments. These results underscore the potential of RL techniques in advancing 

autonomous vehicle technologies, particularly in enhancing the functionality and reliability of 

self-parking systems. 

Moreover, this research contributes valuable insights into the broader application of machine 

learning in simulated environments, offering a blueprint for future studies aiming to train RL 

agents for complex tasks. The use of Unity3D as a simulation platform not only provided a 

realistic training ground but also facilitated the exploration of various parking scenarios, 

thereby enhancing the agent's learning process 

Looking ahead, there are several avenues for further research. Future work could explore the 

integration of additional sensors and real-world data to improve the realism and robustness of 

the simulation. Additionally, investigating other RL algorithms and hybrid approaches could 

further enhance the efficiency and effectiveness of the autonomous parking system. The 

insights gained from this study pave the way for more sophisticated and adaptable 

autonomous systems, contributing to the ongoing evolution of intelligent transportation 

solutions. 

In summary, the development and evaluation of the autonomous parking system utilizing RL 

agents within the Unity3D environment demonstrate a promising step forward in the realm of 

autonomous vehicle technology. The findings from this research highlight the practical 
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applications of RL and set the stage for future in- novations in automated parking and 

beyond. 
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