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1 Introduction 

Understanding carbon nanotubes involves paying attention to pivotal factors that significantly 

influence their physical and chemical properties. Among these factors, the shape and arrangement 

of atoms play a vital role. For example, the geometric shape of carbon nanotubes has a direct impact 

on their electrical structure. To delve into these properties, researchers use topological indices, 

which essentially provide a numerical description of how carbon atoms are organized in the 

nanotube structure. This information is particularly useful in predicting electronic features such as 

band structure, electronic density, and conductive behavior in carbon nanotubes. 

Furthermore, topological indices are instrumental in assessing the chemical reactivity of carbon 

nanotubes. By understanding the arrangement of atoms and certain topological characteristics, 

researchers gain insights into the locations of chemical reactivity sites within the nanotube structure. 

Abstract 

Exploring into the area of advanced topological measures, the study significantly 

contributes to the exploration of complex networks, potentially enhancing ability to 

characterize their complexities with greater distinction and depth. In a manner akin to the 

topological indices developed by Gutman and Trinajstic, which rely on the vertex degrees 

within a network, broaden by introducing generalized topological indices by considering 

the degrees of vertices not just at immediate proximity but also at a distance of two 

edges. These indices offer a richer perspective on the network’s structural dynamics, 

uncovering connectivity patterns that extend beyond direct neighbors. Also, a visual 

comparison of some topological indices for the VC5C7(h,c) nanosheet is provided. 
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This knowledge is significant for various applications, including the development of nanotube-

based materials and functionalization processes. Researchers use topological indices as quantitative 

descriptors to compare and categorize different carbon nanotube architectures based on their 

connections. This systematic examination helps in understanding the diversity among nanotube 

families. Moreover, the application of topological indices aids in the efficient screening of potential 

nanotube candidates for specific uses, such as electronics, sensors, and drug delivery. This approach 

provides a quicker alternative to intensive computer simulations, allowing researchers to anticipate 

certain properties of carbon nanotubes. 

Beyond electronic properties, topological indices may also offer insights into other characteristics 

like mechanical strength, thermal conductivity, and optical qualities in carbon nanotubes. This 

comprehensive understanding of the relationships between topological indices and various 

properties is essential for designing nanotube-based materials with specific and desired 

characteristics. 

Carbon has a special atomic structure that allows its electrons to participate in compounding, 

evolving such as 𝑠𝑝, 𝑠𝑝2and 𝑠𝑝3. The diverse types of chemical bonds with distinct properties occur 

because of bonding of carbon within the molecules. The really interesting carbon material that 

comes from the unique structure of carbon atoms is called carbon sheets. These nanosheets are 

collection of carbon atoms complexly arranged in unique way at the tiny scale. These nanosheets 

are very flexible and stable, making them perfect for many uses and important for research 

endeavours. The essential strength, flexibility, and stability of carbon nanosheets contribute to their 

creativity and validity for various practical applications. Their unique nanoscale structures make 

them a favourable material for research in diverse fields. For a more in-depth examination of related 

work, additional information can be found in [17], [19]. Building on this generalization, we extend 

the concept by considering 𝑙 = 2 for other existing topological indices. Specifically, we focus on 

the carbon nanosheet structure, denoted as 𝑉𝐶5𝐶7[ℎ, 𝑐],  and computce various newly defined 

indices for this structure providing a detailed analysis. In 1972, Gutman and Trinajstic introduced 

Zagreb indices for molecular graphs. Later, researchers extended this concept, and in 2020, 

Sooryanarayana B, Chandrakala S.B, and Roshini G.R introduced a generalization of Zagreb 

indices at different distances. We further expand on this idea by applying it to existing topological 

indices, particularly focusing on the carbon nanosheet structure 𝑉𝐶5𝐶7[ℎ, 𝑐],and computing new 

indices for analysis. 

 

2. Indices based on distance 𝒍. 
In this section we extend generalization of [16] to some of the well known indices over the distance 

𝑙 between the two vertices of molecular graph rather than taking over edges of the molecular graph 

and are listed in Table 1. 

 

Table 1: Definitions of topological indices at distance 𝒍 

Sl.No. Name of the indices Notation and Definition 

1 First Zagreb Index at distance 𝑙 𝑙𝑀1(𝐺) =∑
𝑑(𝑢,𝑣)=2

[𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)] 

2 Second Zagreb Index at distance 𝑙 𝑙𝑀2(𝐺) =∑
𝑑(𝑢,𝑣)=2

[𝛿𝐺(𝑢)𝛿𝐺(𝑣)] 

3 Harmonic Index at distance 𝑙 𝑙𝐻𝐼(𝐺) =∑
𝑑(𝑢,𝑣)=2

2

𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)
 

4 Randic Index at distance 𝑙 𝑙𝑅(𝐺) =∑
𝑑(𝑢,𝑣)=2

1

√𝛿𝐺(𝑢)𝛿𝐺(𝑣)
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5 Reciprocal Randic Index at distance 𝑙 𝑙𝑅𝑅(𝐺) =∑
𝑑(𝑢,𝑣)=2

√𝛿𝐺(𝑢)𝛿𝐺(𝑣) 

6 Sum Connectivity Index at distance 𝑙 𝑙𝑆𝐶𝐼(𝐺) =∑
𝑑(𝑢,𝑣)=2

1

√𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)
 

7 Nirmala Index at distance 𝑙 𝑙𝑁(𝐺) =∑
𝑑(𝑢,𝑣)=2

√𝛿𝐺(𝑢) + 𝛿𝐺(𝑣) 

8 Sombor Index at distance 𝑙 𝑙𝑆𝑂(𝐺) =∑
𝑑(𝑢,𝑣)=2

√𝛿𝐺(𝑢)
2 + 𝛿𝐺(𝑣)

2 

9 Modified Sombor index at distance 𝑙 𝑙
𝑚𝑆𝑂(𝐺) =∑

𝑑(𝑢,𝑣)=2

1

√𝛿𝐺(𝑢)
2 + 𝛿𝐺(𝑣)

2
 

10 Geometric-Arithmetic Index at distance 𝑙 𝑙𝐺𝐴(𝐺) =∑
𝑑(𝑢,𝑣)=2

2√𝛿𝐺(𝑢)𝛿𝐺(𝑣)

𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)
 

11 Arithmetic-Geometric Index at distance 𝑙 𝑙𝐴𝐺(𝐺) =∑
𝑑(𝑢,𝑣)=2

𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)

√𝛿𝐺(𝑢)𝛿𝐺(𝑣)
 

12 
Atom Bond Connectivity Index at distance 

𝑙 
𝑙𝐴𝐵𝐶(𝐺) =∑

𝑑(𝑢,𝑣)=2
√
𝛿𝐺(𝑢) + 𝛿𝐺(𝑣) − 2

𝛿𝐺(𝑢)𝛿𝐺(𝑣)
 

13 Augmented Zagreb Index at distance 𝑙 𝑙𝐴𝑍𝐼(𝐺) =∑
𝑑(𝑢,𝑣)=2

(
𝛿𝐺(𝑢)𝛿𝐺(𝑣)

𝛿𝐺(𝑢) + 𝛿𝐺(𝑣) − 2
)2 

14 Inverse Sum Indeg Index at distance 𝑙 𝑙𝐼𝑆𝐼(𝐺) =∑
𝑑(𝑢,𝑣)=2

𝛿𝐺(𝑢)𝛿𝐺(𝑣)

𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)
 

15 Redefined First Zagreb Index at distance 𝑙 𝑙𝑅𝑒𝑍𝑔1(𝐺) =∑
𝑑(𝑢,𝑣)=2

𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)

𝛿𝐺(𝑢)𝛿𝐺(𝑣)
 

 

3. The Topological indices of the nanosheet𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄] 

 The molecular graph of nanotube 𝑉𝐶5𝐶7[ℎ, 𝑐] in which cycles 𝐶5 and 𝐶7 are combined in trivalent 

decoration to form a nanotube, which can be either a cylinder or a torus. In 2𝐷 graph of 𝑉𝐶5𝐶7[ℎ, 𝑐] 

nanosheet, we represent the number pentagons in the first row by 𝑐; here the first four rows of 

nodes and edges are alternatively repeated and the number of this recurrence is denoted by ℎ. Let 

𝑁1(ℎ, 𝑐) (or 𝑁1) denote 𝑉𝐶5𝐶7[ℎ, 𝑐]. It can be seen from Figure 1 that the nanosheet 𝑉𝐶5𝐶7[ℎ, 𝑐] has 

16ℎ𝑐 + 2ℎ + 5𝑐 vertices and 24ℎ𝑐 + 4𝑐 edges. 
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Figure 1: Nanosheet 𝑽𝑪𝟓𝑪𝟕[𝟐, 𝟒] 

 

The degree of vertices of molecular graph 𝑁1 are of degree either 2 or 3. Let 𝑃𝑟,𝑠 be the set of all 

𝑢𝑣-paths of length 2 in a graph such that 𝛿(𝑢) = 𝑟 and 𝛿(𝑣) = 𝑠. Thus 𝑁1 contains 𝑃2,2, 𝑃2,3 and 𝑃3,3. 

Number of elements of 𝑃2,2, 𝑃2,3  and 𝑃3,3  of graph 𝑁1  for ℎ, 𝑐 ≥ 2 are listed in Tables 1, 2 and 3 

respectively. Also the same is given for 𝑁1(1, 𝑐) and 𝑁1(ℎ, 1) where ℎ, 𝑐 ≥ 2 are given in Table 5 and 

Table 6. 

In this section we are computing different topological indices listed in Table 1 for the molecular 

graph of 𝑉𝐶5𝐶7[ℎ, 𝑐].  

 

Table 2: |𝑷𝟐,𝟐| of 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄] where 𝒉, 𝒄 ≥ 𝟐 

Row/Column 

Number 
1 2 ... 𝑐𝑛−1 𝑐𝑛 Row Total 

1 6 3  3 5 3c+5 

2 2 -  - 2 4 

...       

ℎ𝑛−1 2 -  - 2 4 

ℎ𝑛 3 1  1 3 c+4 

Column Total 2ℎ + 5 4 ... 4 2ℎ + 4 𝟒𝒉 + 𝟒𝒄 + 𝟏 

 

Table 3: |𝑷𝟐,𝟑| of 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄] where 𝒉, 𝒄 ≥ 𝟐 

Row/Column 

Number 
1 2 ... 𝑐𝑛−1 𝑐𝑛 Row Total 

1 10 6  6 10 6c+8 
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2 6 -  - 6 12 

...       

ℎ𝑛−1 6 -  - 6 12 

ℎ𝑛 12 10  10 12 10c+4 

Column Total 6ℎ + 10 16 ... 16 6ℎ + 10 
𝟏𝟐𝒉 + 𝟏𝟔𝒄

− 𝟏𝟐 

 

Table 4: |𝑷𝟑,𝟑| of 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄] where 𝒉, 𝒄 ≥ 𝟐 

Row/Column 

Number 
1 2 ... 𝑐𝑛−1 𝑐𝑛 Row Total 

1 48 54  54 37 54c-23 

2 42 48  48 32 48c-22 

...       

ℎ𝑛−1 42 48  48 32 48c-22 

ℎ𝑛 21 23  23 13 23c-12 

Column Total 42ℎ − 15 48ℎ − 19 ... 48ℎ − 19 32ℎ − 14 
𝟒𝟖𝒉𝒄 − 𝟐𝟐𝒉

− 𝟏𝟗𝒄 + 𝟏𝟏 

 

Table 5: Number of 𝑷𝟑’s of 𝑽𝑪𝟓𝑪𝟕[𝟏, 𝒄], 𝒄 ≥ 𝟐 

𝑃𝑟,𝑠/ value of c 1 2 ... 𝑐𝑛−1 𝑐𝑛 Total |𝑃𝑟,𝑠| 

|𝑃2,2| 7 4  4 6 4𝑐 + 5 

|𝑃2,3| 18 16  16 16 16𝑐 + 2 

|𝑃3,3| 25 29  29 20 29𝑐 − 13 

 

 

 

Page 360 of 22



 Kunjaru Mitra/Afr.J.Bio.Sc.6(Si4)(2024)                                                                                             

 

Table 6: Number of 𝑷𝟑’s of 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝟏], 𝒉 ≥ 𝟐 

Value of h/ |𝑃𝑟,𝑠| |𝑃2,2| |𝑃2,3| |𝑃3,3| 

1 8 14 22 

2 4 8 26 

...    

ℎ𝑛−1 4 8 26 

ℎ𝑛 5 16 20 

Total in each column 4ℎ + 5 8ℎ + 14 𝟐𝟔𝒉 − 𝟏𝟎 

 

Now we summarise all the above tables to get total number of |𝑃𝑟,𝑠| for every 𝑟, 𝑠 ∈ {2,3} in Table 7.  

 

Table 7: Number of 𝑷𝟑’s of 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄], 𝒉, 𝒄 ≥ 𝟏 

Value of h, c |𝑃𝑟,𝑠| |𝑃2,2| |𝑃2,3| |𝑃3,3| 

ℎ = 1, 𝑐 ≥ 2 4𝑐 + 5 16𝑐 + 2 29𝑐 − 13 

ℎ ≥ 2, 𝑐 = 1 4ℎ + 5 8ℎ + 14 26ℎ − 10 

ℎ, 𝑐 ≥ 2 4ℎ + 4𝑐 + 1 12ℎ + 16𝑐 − 12 48ℎ𝑐 − 22ℎ − 19𝑐 + 11 

 

Theorem 3.1 Let 𝑁1 be a molecular graph of nanosheet 𝑉𝐶5𝐶7[ℎ, 𝑐] where ℎ, 𝑐 ∈ 𝑍+. Then  

 

(𝑖) 2𝑀1(𝑁1) = {
270𝑐 − 48  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
212ℎ + 30  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
288ℎ𝑐 − 56ℎ − 18𝑐 + 10  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

 (ii )2𝑀2(𝑁1) = {
373𝑐 − 85  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
298ℎ + 14  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
432ℎ𝑐 − 110ℎ − 59𝑐 + 31  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

 (iii)2𝐻𝐼(𝑁1) =

{
 
 

 
 
271

15
𝑐 −

31

30
 𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2

208

15
ℎ +

143

30
 𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2

16ℎ𝑐 +
22

15
ℎ +

61

15
−
2

15
 𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

 

Proof.(𝑖) From Table 1, we have 2𝑀1(𝑁1) = ∑𝑑(𝑢,𝑣)=2 [𝛿𝐺(𝑢) + 𝛿𝐺(𝑣)] = |𝑃2,2|(4) + |𝑃2,3|(5) + |𝑃3,3|(6) . 

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   
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a)when ℎ = 1 and 𝑐 ≥ 2 

we get, 2𝑀1(𝑁1) = (4𝑐 + 5)(4) + (16𝑐 + 2)(5) + (29𝑐 − 13)(6) = 270𝑐 − 48.  

 

b) when 𝑐 = 1 and ℎ ≥ 2 

we get, 2𝑀1(𝑁1) = (4ℎ + 5)(4) + (8ℎ + 14)(5) + (26ℎ − 10)(6) = 212ℎ + 30.  

 

c) when both ℎ, 𝑐 ≥ 2 

we get, 2𝑀1(𝑁1) = 4(4ℎ + 4𝑐 + 1) + 5(12ℎ + 16𝑐 − 12) + 6(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

2𝑀1(𝑁) = 288ℎ𝑐 − 56ℎ − 18𝑐 + 10.  

 

(𝑖𝑖) From Table 1, we have 2𝑀2(𝑁1) = ∑𝑑(𝑢,𝑣)=2 [𝛿𝐺(𝑢)𝛿𝐺(𝑣)] = |𝑃2,2|(4) + |𝑃2,3|(6) + |𝑃3,3|(9). Further 

proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

we get 2𝑀2(𝑁1) = (4𝑐 + 5)(4) + (16𝑐 + 2)(6) + (29𝑐 − 13)(9) = 373𝑐 − 85. 

 

b) when 𝑐 = 1 and ℎ ≥ 2 

we get, 2𝑀2(𝑁1) = (4ℎ + 5)(4) + (8ℎ + 14)(6) + (26ℎ − 10)(9) = 298ℎ + 14.  

 

c) when ℎ ≥ 2, 𝑐 ≥ 2 

we get, 2𝑀2(𝑁1) = (4ℎ + 4𝑐 + 1)(4) + (12ℎ + 16𝑐 − 12)(6) + (48ℎ𝑐 − 22ℎ − 19𝑐 + 11)(9) 
 2𝑀2(𝑁) = 432ℎ𝑐 − 110ℎ − 59𝑐 + 31. 

 

(𝑖𝑖𝑖) From Table 1, we have 2𝐻𝐼(𝑁1) = ∑𝑑(𝑢,𝑣)=2
2

𝛿𝐺(𝑢)+𝛿𝐺(𝑣)
=

2

4
|𝑃2,2| +

2

5
|𝑃2,3| +

2

6
|𝑃3,3|. Further proof is 

discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

we get, 2𝐻𝐼(𝑁1) = 2(
1

4
(4𝑐 + 5) +

1

5
(16𝑐 + 2) +

1

6
(29𝑐 − 13)) =

271

15
𝑐 −

31

30
.  

 

b) when 𝑐 = 1 and ℎ ≥ 2 

we get, 2𝐻𝐼(𝑁1) = 2(
1

4
(4ℎ + 5) +

1

5
(8ℎ + 14) +

1

6
(26ℎ − 10)) =

208

15
ℎ +

143

30
.  

 

c) when ℎ ≥ 2, 𝑐 ≥ 2 

we get, 2𝐻𝐼(𝑁1) = 2(
2

4
(4ℎ + 4𝑐 + 1) +

1

5
(12ℎ + 16𝑐 − 12) +

1

6
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11)) 

2𝐻𝐼(𝑁1) = 16ℎ𝑐 +
22

15
ℎ +

61

15
−

2

15
.  

 

 

Theorem 3.2 Let 𝑁1 be a molecular graph of Nanotube 𝑉𝐶5𝐶7[ℎ, 𝑐] where ℎ, 𝑐 ∈ 𝑍+. Then 

 

(𝑖) 2𝑅(𝑁1) = {
18.1986𝑐 − 1.0168  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
3.4968ℎ + 4.8821  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
16ℎ𝑐 − 0.4344ℎ − 2.1986𝑐 − 0.7323  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

(𝑖𝑖) 2𝑅𝑅(𝑁1) = {
134.1918𝑐 − 24.1010  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
105.5959ℎ + 14.2929  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
144ℎ𝑐 − 28.6061ℎ − 9.8081𝑐 + 5.6061  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2
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Proof.(𝑖) From Table 1, we have 2𝑅(𝑁1) = ∑𝑑(𝑢,𝑣)=2
1

√𝛿𝐺(𝑢)𝛿𝐺(𝑣)
 =

1

√4
|𝑃2,2| +

1

√6
|𝑃2,3| +

1

√9
|𝑃3,3|. Further 

proof is discussed based on the values of ℎ and 𝑐 using Table 7. 

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝑅(𝑁1) =
1

2
(4𝑐 + 5) +

1

√6
(16𝑐 + 2) +

1

3
(29𝑐 − 13) 

 2𝑅(𝑁1) = (
35+8√6

3
)𝑐 + (

−11+2√6

6
) = 18.1986𝑐 − 1.0168.  

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝑅(𝑁1) =
1

2
(4ℎ + 5) +

1

√6
(8ℎ + 14) +

1

3
(26ℎ − 10) 

 2𝑅(𝑁1) = (
32+4√6

3
) + (

−5+14√6

6
) = 13.9327ℎ + 4.8821 

c) when ℎ, 𝑐 ≥ 2 

2𝑅(𝑁1) =
1

2
(4ℎ + 4𝑐 + 1) +

1

√6
(12ℎ + 16𝑐 − 12) +

1

3
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 16ℎ𝑐 + (
−16+6√6

3
)ℎ + (

−13+8√6

3
)𝑐 + (

25−12√6

6
) = 16ℎ𝑐 − 0.4344ℎ − 2.1986𝑐 − 0.7323.  

 

(𝑖𝑖)  From Table 1, we have 2𝑅𝑅(𝑁) = ∑𝑑(𝑢,𝑣)=2 √𝛿𝐺(𝑢)𝛿𝐺(𝑣)  =√4|𝑃2,2| + √6|𝑃2,3| + √9|𝑃3,3| . Further 

proof is discussed based on the values of ℎ and 𝑐using Table 7. 

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝑅𝑅(𝑁1) = 2(4𝑐 + 5) + √6(16𝑐 + 2) + 3(29𝑐 − 13) = (95 + 16√6)𝑐 + (−29 + 2√6) 

2𝑅𝑅(𝑁1) = 134.1918𝑐 − 24.1010.  

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝑅𝑅(𝑁1) = 2(4ℎ + 5) + √6(8ℎ + 14) + 3(26ℎ − 10) = (86 + 8√6)ℎ + (−20 + 14√6) 

2𝑅𝑅(𝑁1) = 105.5959ℎ + 14.2929.  

c) when ℎ, 𝑐 ≥ 2 

2𝑅𝑅(𝑁1) = 2(4ℎ + 4𝑐 + 1) + √6(12ℎ + 16𝑐 − 12) + 3(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 144ℎ𝑐 + (−58 + 12√6)ℎ + (−49 + 16√6)𝑐 + 35 − 12√6 = 144ℎ𝑐 − 28.6061ℎ − 9.8081𝑐 + 5.6061.  

 

 

Theorem 3.3 Let 𝑁1 be a molecular graph of Nanotube 𝑉𝐶5𝐶7[ℎ, 𝑐] where ℎ, 𝑐 ∈ 𝑍+. Then 

 

 

(𝑖) 2𝑆𝐶𝐼(𝑁1) = {

20.9946𝑐 − 1.9128  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
16.1921ℎ + 4.6785  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2

8√6ℎ𝑐 − 1.6149ℎ + 1.3987𝑐 − 0.3758  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

(𝑖𝑖) 2𝑁(𝑁1) {

128.4023𝑐 − 5.8992  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
89.5752ℎ + 16.81  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2

48√6ℎ𝑐 − 19.0559ℎ − 2.7632𝑐 + 2.1116  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

Proof.(𝑖) From Table 1, we have 

2𝑆𝐶𝐼(𝑁1)=∑𝑑(𝑢,𝑣)=2
1

√𝛿𝐺(𝑢)+𝛿𝐺(𝑣)
=

1

√4
|𝑃2,2| +

1

√5
|𝑃2,3| +

1

√6
|𝑃3,3|. 

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a) when ℎ = 1 and 𝑐 ≥ 2 

2𝑆𝐶𝐼(𝑁1) =
1

2
(4𝑐 + 5) +

1

√5
(16𝑐 + 2) +

1

√6
(29𝑐 − 13) 
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2𝑆𝐶𝐼(𝑁1) = (2 +
16

√5
+

29

√6
)𝑐 + (

5

2
+

2

√5
−

13

√6
) = 20.9946𝑐 − 1.9128. 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝑆𝐶𝐼(𝑁1) =
1

2
(4ℎ + 5) +

1

√5
(8ℎ + 14) +

1

√6
(26ℎ − 10) 

2𝑆𝐶𝐼(𝑁1) = (2 +
8

√5
+

26

√6
)ℎ + (

5

2
+

14

√5
−

10

√6
) = 16.1921ℎ + 4.6785. 

c) when ℎ, 𝑐 ≥ 2 

2𝑆𝐶𝐼(𝑁1) =
1

2
(4ℎ + 4𝑐 + 1) +

1

√5
(12ℎ + 16𝑐 − 12) +

1

√6
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

2𝑆𝐶𝐼(𝑁1) = 8√6ℎ𝑐 + (2 +
12

√5
−
22

√6
) ℎ + (2 +

16

√5
−
19

√6
) 𝑐 + (0.5 − 12√5 +

11

√6
) 

= 8√6ℎ𝑐 − 1.6149ℎ + 1.3987𝑐 − 0.3758.  

 

(𝑖𝑖) From Table 1, we have 2𝑁(𝑁1) = ∑𝑑(𝑢,𝑣)=2 √𝛿𝐺(𝑢) + 𝛿𝐺(𝑣) = √4|𝑃2,2| + √5|𝑃2,3| + √6|𝑃3,3|.  

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7. 

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝑁(𝑁1) = 2(4𝑐 + 5) + √5(16𝑐 + 2) + √6(29𝑐 − 13) 

2𝑁(𝑁1) = (8 + 16√5 + 29√6)𝑐 + (10 + 2√5 − 13√6) = 114.8122𝑐 − 17.3712.  

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝑁(𝑁1) = 2(4ℎ + 5) + √5(8ℎ + 14) + √6(26ℎ − 10) 

2𝑁(𝑁1) = (8 + 8√5 + 26√6)ℎ + (10 + 14√5 − 10√6) = 89.5752ℎ + 16.81.  

c) when ℎ, 𝑐 ≥ 2 

2𝑁(𝑁1) = 2(4ℎ + 4𝑐 + 1) + √5(12ℎ + 16𝑐 − 12) + √6(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

2𝑁(𝑁1) = 48√6ℎ𝑐 + (8 + 12√5 − 22√6)ℎ + (8 + 16√5 − 19√6)𝑐 + (2 − 12√5 + 11√6) 

2𝑁(𝑁1) = 48√6ℎ𝑐 − 19.0559ℎ − 2.7632𝑐 + 2.1116. 

 

Theorem 3.4 Let 𝑁1 be a molecular graph of Nanotube 𝑉𝐶5𝐶7[ℎ, 𝑐] where ℎ, 𝑐 ∈ 𝑍+. Then 

 

(𝑖) 2𝑆𝑂(𝑁1) {
192.0391𝑐 − 33.8011  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
150.4667ℎ + 22.1934  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
203.6467ℎ𝑐 − 38.7578ℎ − 11.6076𝑐 + 6.2309  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

(𝑖𝑖) 2
𝑚𝑆𝑂(𝑁1) = {

12.6872𝑐 − 0.7417  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
9.7612ℎ + 3.2936  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2

8√2ℎ𝑐 − 0.4430ℎ + 1.3735𝑐 − 0.3319  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

 

Proof. (𝑖)  From Table 1, we have 2𝑆𝑂(𝑁1) = ∑𝑑(𝑢,𝑣)=2 √𝛿𝐺(𝑢)
2 + 𝛿𝐺(𝑣)

2 = √8|𝑃2,2| + √13|𝑃2,3| +

√18|𝑃3,3|. Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝑆𝑂(𝑁1) = 2√2(4𝑐 + 5) + √13(16𝑐 + 2) + 3√2(29𝑐 − 13) 

2𝑆𝑂(𝑁1) = (95√2 + 16√13)𝑐 + (−29√2 + 2√13) = 192.0391𝑐 − 33.8011. 

 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝑆𝑂(𝑁1) = 2√2(4ℎ + 5) + √13(8ℎ + 14) + 3√2(26ℎ − 10) 

2𝑆𝑂(𝑁1) = (86√2 + 8√13)𝑐 + (−20√2 + 14√13) = 150.4667ℎ + 22.1934. 

 

c) when ℎ, 𝑐 ≥ 2 
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2𝑆𝑂(𝑁1) = 2√2(4ℎ + 4𝑐 + 1) + √13(12ℎ + 16𝑐 − 12) + 3√2(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

2𝑆𝑂(𝑁1) = 144√2ℎ𝑐 + (−58√2 + 12√13)ℎ + (−49√2 + 16√13)𝑐 + 35√2 − 12√13 

2𝑆𝑂(𝑁1) = 203.6467ℎ𝑐 − 38.7578ℎ − 11.6076𝑐 + 6.2309 

 

(𝑖𝑖) From Table 1, we have 

2
𝑚𝑆𝑂(𝑁1) = ∑𝑑(𝑢,𝑣)=2

1

√𝛿𝐺(𝑢)
2+𝛿𝐺(𝑣)

2
=

1

√8
|𝑃2,2| +

1

√13
|𝑃2,3| +

1

√18
|𝑃3,3|. 

 Further proof is discussed based on the values of ℎ and 𝑐using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2
𝑚𝑆𝑂(𝑁1) =

1

2√2
(4𝑐 + 5) +

1

√13
(16𝑐 + 2) +

1

3√2
(29𝑐 − 13) 

2
𝑚𝑆𝑂(𝑁1) = (

35

3√2
+

16

√13
)𝑐 + (

−11

6√2
+

2

√13
) = 12.6872𝑐 − 0.7417. 

 

b) when 𝑐 = 1 and ℎ ≥ 2 

2
𝑚𝑆𝑂(𝑁1) =

1

2√2
(4ℎ + 5) +

1

√13
(8ℎ + 14) +

1

3√2
(26ℎ − 10) 

2
𝑚𝑆𝑂(𝑁1) = (

32

3√2
+

8

√13
)ℎ + (

−5

6√2
+

14

√13
) = 9.7612ℎ + 3.2936. 

 

c) when ℎ, 𝑐 ≥ 2 

2
𝑚𝑆𝑂(𝑁1) =

1

2√2
(4ℎ + 4𝑐 + 1) +

1

√13
(12ℎ + 16𝑐 − 12) +

1

3√2
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

2
𝑚𝑆𝑂(𝑁1) = 8√2 + (

−16

3√2
+
12

√13
)ℎ − (

−13

3√2
+
16

√13
)𝑐 + (

25

6√2
+
−12

√13
) 

2
𝑚𝑆𝑂(𝑁1) = 8√2ℎ𝑐 − 0.4430ℎ + 1.3735𝑐 − 0.3319. 

 

Theorem 3.5 Let 𝑁1 be a molecular graph of Nanotube 𝑉𝐶5𝐶7[ℎ, 𝑐] where ℎ, 𝑐 ∈ 𝑍+. Then 

 

(𝑖) 2𝐺𝐴(𝑁1) {
48.6767𝑐 − 6.0404  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
37.8384ℎ + 8.7171  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
48ℎ𝑐 − 6.2424ℎ + 0.6767𝑐 + 0.2425  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

(𝑖𝑖) 2𝐴𝐵𝐶(𝑁1) {
33.4754𝑐 − 3.7169  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
25.8186ℎ + 6.7683  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
32ℎ𝑐 − 3.3529ℎ + 1.4754𝑐 − 0.4448  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

(iii)2𝐴𝐺(𝑁1) {
98.6598𝑐 − 11.9175  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
76.3299ℎ + 18.5773  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
96ℎ𝑐 − 11.5051ℎ + 2.6598𝑐 − 0.4949  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

Proof.(𝑖) From Table 1, we have 

2𝐺𝐴(𝑁1) = ∑𝑑(𝑢,𝑣)=2
2√𝛿𝐺(𝑢)𝛿𝐺(𝑣)

𝛿𝐺(𝑢)+𝛿𝐺(𝑣)
=

2√4

4
|𝑃2,2| +

2√6

5
|𝑃2,3| +

2√9

6
|𝑃3,3|. 

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝐺𝐴(𝑁1) = (4𝑐 + 5) +
2√6

5
(16𝑐 + 2) + (29𝑐 − 13) = (33 +

32√6

5
)𝑐 + (−8 +

4√6

5
) = 48.6767𝑐 − 6.0404 

 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝐺𝐴(𝑁1) = (4ℎ + 5) +
2√6

5
(8ℎ + 14) + (26ℎ − 10) = (30 +

16√6

5
)ℎ + (−5 +

28√6

5
) = 37.8384ℎ +

8.7171.  
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c) when ℎ, 𝑐 ≥ 2 

2𝐺𝐴(𝑁1) = (4ℎ + 4𝑐 + 1) +
2√6

5
(12ℎ + 16𝑐 − 12) + (48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 48ℎ𝑐 + (−18 +
24√6

5
) ℎ + (−15 +

32√6

5
) 𝑐 + (12 −

24√6

5
) = 48ℎ𝑐 − 6.2424ℎ + 0.6767𝑐 + 0.2425. 

 

(𝑖𝑖) 2𝐴𝐵𝐶(𝑁1)  = ∑𝑑(𝑢,𝑣)=2 √
𝛿𝐺(𝑢)+𝛿𝐺(𝑣)−2

𝛿𝐺(𝑢)𝛿𝐺(𝑣)
 = √

2+2−2

4
|𝑃2,2| + √

2+3−2

6
|𝑃2,3| + √

3+3−2

9
|𝑃3,3| . Further proof is 

discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝐴𝐵𝐶(𝑁1)= 
1

√2
(4𝑐 + 5) +

1

√2
(16𝑐 + 2) +

2

3
(29𝑐 − 13) 

= (
20

√2
+
58

3
) 𝑐 + (

7

√2
−
26

3
) 

= 33.4754𝑐 − 3.7169 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝐴𝐵𝐶(𝑁1)=
1

√2
(4ℎ + 5) +

1

√2
(8ℎ + 14) +

2

3
(26ℎ − 10) 

= (
12

√2
+
52

3
)ℎ + (

19

√2
−
20

3
) = 25.8186ℎ + 6.7683 

 

c) when ℎ ≥ 2, 𝑐 ≥ 2 

2𝐴𝐵𝐶(𝑁1)=
1

√2
(4ℎ + 4𝑐 + 1) +

1

√2
(12ℎ + 16𝑐 − 12) +

2

3
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 32ℎ𝑐 + (
16

√2
−
44

3
) ℎ + (

20

√2
−
38

3
) 𝑐 + (

−11

√2
+
22

3
) 

= 32ℎ𝑐 − 3.3529ℎ + 1.4754𝑐 − 0.4448 

 

(𝑖𝑖𝑖)  From Table 1, we have 2𝐴𝐺(𝑁1) = ∑𝑑(𝑢,𝑣)=2 ∑𝑑(𝑢,𝑣)=2
𝛿𝐺(𝑢)+𝛿𝐺(𝑣)

√𝛿𝐺(𝑢)𝛿𝐺(𝑣)
=

4

√4
|𝑃2,2| +

5

√6
|𝑃2,3| +

6

√9
|𝑃3,3| . 

Further proof is discussed based on the values of ℎ and 𝑐using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝐴𝐺(𝑁1) = 2(4𝑐 + 5) +
5

√6
(16𝑐 + 2) + 2(29𝑐 − 13) 

= (66 +
80

√6
) 𝑐 − (16 −

10

√6
) 

= 98.6598𝑐 − 11.9175. 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝐴𝐺(𝑁1) = 2(4ℎ + 5) +
5

√6
(8ℎ + 14) + 2(26ℎ − 10) 

= (60 +
40

√6
) ℎ + (−10 +

70

√6
) 

= 76.3299ℎ + 18.5773 

c) when ℎ, 𝑐 ≥ 2 

2𝐴𝐺(𝑁1) = 2(4ℎ + 4𝑐 + 1) +
5

√6
(12ℎ + 16𝑐 − 12) + 2(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 96ℎ𝑐 + (−36 +
60

√6
) ℎ + (−30 +

80

√6
) 𝑐 + (24 −

60

√6
) 

= 96ℎ𝑐 − 11.5051ℎ + 2.6598𝑐 − 0.4949. 

 

Theorem 3.6 Let 𝑁1 be a molecular graph of Nanotube 𝑉𝐶5𝐶7[ℎ, 𝑐] where ℎ, 𝑐 ∈ 𝑍+. Then 
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(𝑖) 2𝐴𝑍𝐼(𝑁1) {
490.3281𝑐 − 92.0781  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
392.15625ℎ + 38.0937  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
546.75ℎ𝑐 − 122.5938ℎ − 56.4219𝑐 + 37.2969  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

(𝑖𝑖) 2𝐼𝑆𝐼(𝑁1) = {
66.7𝑐 − 12.1  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
52.6ℎ + 6.8  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
72ℎ𝑐 − 14.6ℎ − 5.3𝑐 + 3.1  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

(iii)2𝑅𝑒𝑍𝑔(𝑁1) {
36.6667𝑐 − 2  𝑤ℎ𝑒𝑛  ℎ = 1  𝑎𝑛𝑑  𝑐 ≥ 2
28ℎ + 10  𝑤ℎ𝑒𝑛  𝑐 = 1  𝑎𝑛𝑑  ℎ ≥ 2
32ℎ𝑐 − 0.6667ℎ + 4.6667𝑐 − 1.6667  𝑤ℎ𝑒𝑛  ℎ  ≥   2, 𝑐 ≥   2

 

 

 

Proof. (i) From Table 1, we have 

2𝐴𝑍𝐼(𝑁1)= ∑𝑑(𝑢,𝑣)=2 (
𝛿𝐺(𝑢)𝛿𝐺(𝑣)

𝛿𝐺(𝑢)+𝛿𝐺(𝑣)−2
)
3

 =(
4

2+2−2
)
3

|𝑃2,2| + (
6

2+3−2
)3|𝑃2,3| + (

9

3+3−2
)
3

|𝑃3,3|.  

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝐴𝑍𝐼(𝑁1) = 8(4𝑐 + 5) + 8(16𝑐 + 2) + (
9

4
)
3

(29𝑐 − 13) 

=
1

64
(31381𝑐 − 5893) = 490.3281𝑐 − 92. 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝐴𝑍𝐼(𝑁1) = 8(4ℎ + 5) + 8(8ℎ + 14) + (
9

4
)
3

(26ℎ − 10) 

=
1

32
(12549ℎ − 1219) = 392.15625ℎ + 38.0937. 

c) when ℎ ≥ 2, 𝑐 ≥ 2 

2𝐴𝑍𝐼(𝑁1) = 8(4ℎ + 4𝑐 + 1) + 8(12ℎ + 16𝑐 − 12) + (
9

4
)
3

(48ℎ𝑐 − 22ℎ − 19𝑐 + 11)

=
2187

4
ℎ𝑐 −

3923

32
ℎ −

3611

64
𝑐 +

2387

64
= 546.75ℎ𝑐 − 122.5938ℎ − 56.4219𝑐 + 37.2969. 

 

(ii) From Table 1, we have 2𝐼𝑆𝐼(𝑁1)=∑𝑑(𝑢,𝑣)=2
𝛿𝐺(𝑢)𝛿𝐺(𝑣)

𝛿𝐺(𝑢)+𝛿𝐺(𝑣)
 =

4

4
|𝑃2,2| +

6

5
|𝑃2,3| +

9

6
|𝑃3,3| 

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝐼𝑆𝐼(𝑁1) = (4𝑐 + 5) +
6

5
(16𝑐 + 2) +

3

2
(29𝑐 − 13) =

667

10
𝑐 −

121

10
= 66.7𝑐 − 12.1 

b) when 𝑐 = 1 and ℎ ≥ 2 

2𝐼𝑆𝐼(𝑁1) = (4ℎ + 5) +
6

5
(8ℎ + 14) +

3

2
(26ℎ − 10) =

263

5
ℎ +

34

5
= 52.6ℎ + 6.8.  

c) when ℎ ≥ 2, 𝑐 ≥ 2 

2𝐼𝑆𝐼(𝑁1)= (4ℎ + 4𝑐 + 1) +
6

5
(12ℎ + 16𝑐 − 12) +

3

2
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 72ℎ𝑐 −
73

5
ℎ −

53

10
𝑐 +

31

10
= 72ℎ𝑐 − 14.6ℎ − 5.3𝑐 + 3.1. 

 

(iii) From Table 1, we have 2𝑅𝑒𝑍𝑔1(𝑁1) =∑𝑑(𝑢,𝑣)=2
𝛿𝐺(𝑢)+𝛿𝐺(𝑣)

𝛿𝐺(𝑢)𝛿𝐺(𝑣)
 =

4

4
|𝑃2,2| +

5

6
|𝑃2,3| +

2

3
|𝑃3,3|.  

Further proof is discussed based on the values of ℎ and 𝑐 using Table 7.   

 

a)when ℎ = 1 and 𝑐 ≥ 2 

2𝑅𝑒𝑍𝑔1(𝑁1) = (4𝑐 + 5) +
5

6
(16𝑐 + 2) +

2

3
(29𝑐 − 13) =

110

3
𝑐 − 2 = 36.6667𝑐 − 2. 
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b) when 𝑐 = 1 and ℎ ≥ 2 

2𝑅𝑒𝑍𝑔1(𝑁1) = (4ℎ + 5) +
5

6
(8ℎ + 14) +

2

3
(26ℎ − 10) = 28ℎ + 10 

c) when ℎ ≥ 2, 𝑐 ≥ 2 

2𝑅𝑒𝑍𝑔1(𝑁1) = (4ℎ + 4𝑐 + 1) +
5

6
(12ℎ + 16𝑐 − 12) +

2

3
(48ℎ𝑐 − 22ℎ − 19𝑐 + 11) 

= 32ℎ𝑐 − 0.6667ℎ +
14

3
𝑐 −

5

3
= 32ℎ𝑐 − 0.6667ℎ + 4.6667𝑐 − 1.6667. 

 

From the data given in the [4], we have computed the TI’s of for distance one and are listed in 

Table 8. For more details we refer [4], [3],[7], [10], [12]. We compare it to the results of two 

distance topological indices established in this study.  

 

Table 8: Topological indices of 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄], 𝒉, 𝒄 ≥ 𝟐 at distance 𝟏 

Sl.No. Name of the indices TI’s for 𝑵𝟏 

 1   First Zagreb Index  𝑀1(𝑁1) = 10𝑐 − 12ℎ + 144ℎ𝑐. 

 2   Second Zagreb Index  𝑀2(𝑁1) = 216ℎ𝑐 − 4𝑐 − 34ℎ + 4. 

 3   Harmonic Index  𝐻𝐼(𝑁1) = 8ℎ𝑐 + 0.8666ℎ + 2.3333𝑐 + 0.1333 

 4   Randic Index  𝑅(𝑁1) = 8ℎ𝑐 − 0.2340ℎ + 2.4158𝑐 + 0.0673 

 5   Reciprocal Randic Index  𝑅𝑅(𝑁1) = 72ℎ𝑐 − 6.404ℎ − 5.8579𝑐 + 0.4041 

 6   Sum Connectivity Index  𝑆𝐶𝐼(𝑁1) = 4√6ℎ𝑐 + 0.4952ℎ + 0.2061𝑐 + 0.0553 

 7   Nirmala Index  𝑁(𝑁1) = 24√6ℎ𝑐 − 2.6063ℎ + 6.7648𝑐 − 0.0906 

 8   Sombor Index  𝑆𝑂(𝑁1) = 72√2ℎ𝑐 − 7.9251ℎ + 7.7712𝑐 − 0.5601 

 9   Modified Sombor index  𝑚𝑆𝑂(𝑁1) = 4√2ℎ𝑐 + 0.5689ℎ + 1.5949𝑐 + 0.1382 

 10   Geometric-Arithmetic Index  𝐺𝐴(𝑁1) = 24ℎ𝑐 − 2.9677ℎ + 6.3129𝑐 + 0.2708 

 11   Arithmetic-Geometric Index  𝐴𝐺(𝑁1) = 48ℎ𝑐 + 0.3299ℎ + 8.4124𝑐 − 4.3299 

 12   Atom Bond Connectivity Index  𝐴𝐵𝐶(𝑁1) = 16ℎ𝑐 + 0.4044ℎ + 3.1519𝑐 − 0.1676 

 13   Augmented Zagreb Index  𝐴𝑍𝐼(𝑁1) = 273.375ℎ𝑐 − 33.90623ℎ + 4.875𝑐 + 13.5625 

 14   Inverse Sum Indeg Index  𝐼𝑆𝐼(𝑁1) = 36ℎ𝑐 − 3.4ℎ + 2.5𝑐 − 0.6 

 15   Redefined First Zagreb Index  𝑅𝑒𝑍𝑔1(𝑁1) = 16ℎ𝑐 + 2ℎ + 5𝑐 
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4 Graphs and Analysis of TI’s of 𝑵𝟏 = 𝑽𝑪𝟓𝑪𝟕[𝒉, 𝒄] 

 

 

 

  Figure 2: Graph of 2𝑀1(𝑁1)               Figure 3: Graph of 2𝑀2(𝑁1) 

 

 

Figure 4: Graph of 2𝐻𝐼(𝑁1) 

 

 

  Figure 5: Graph of 2𝑀1,2𝑀2 and 2𝐻𝐼 of (𝑁1(ℎ, 𝑐))Figure 6: Graph of 𝑀1, 𝑀2 and 𝐻𝐼 of (𝑁1(ℎ, 𝑐)) 
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The analysis of the First Zagreb index, Second Zagreb index, and Harmonic index of 𝑉𝐶5𝐶7 are 

analysed based on the given values of ℎ(𝑐 = 1) or 𝑐(ℎ = 1). Figures 2,  3 and 4 depict these 

indices, where the 𝑥-axis represents the values of ℎ(𝑐 = 1) 𝑜𝑟𝑐(ℎ = 1), while 𝑦 − 𝑎𝑥𝑖𝑠 represents 

2𝑀1, 2𝑀2 and 2𝐻𝐼 of 𝑉𝐶5𝐶7. Notably, 2𝑀1 ranges from 0 to 8000, 2𝑀2 from 0 to 10000 

and 2𝐻𝐼 from 0 to 500, illustrating an increasing trend for all three indices as ℎ(𝑐 = 1) or 𝑐(ℎ =
1) increases. Furthermore, 2𝑀1(𝑁1(1, 𝑐)) exhibits a higher value compared to 2𝑀1(𝑁1(ℎ, 1)). 
Among these indices, 2𝑀2  yields the highest value, surpassing the other First Zagreb and 

Harmonic indices. 

The 3-dimensional graphs depicted in Figures 5 and 6 offer a visual representation wherein the 

index values for 𝑙 = 2 precisely double when compared to the indices’ values for 𝑙 = 1. Despite this 

doubling effect, the fundamental nature of the graphs remains consistent for both 𝑙 = 1 and 𝑙 = 2. 

Notably, across both 𝑙 = 1  and 𝑙 = 2 , the harmonic index consistently exhibits notably smaller 

values in comparison to the First and Second Zagreb indices. 

 

 
Figure 7: Graph of 2𝑅(𝑁1)                        Figure 8: Graph of 2𝑅𝑅(𝑁1) 

 

 
Figure 9: Graph of 2𝑅 and 2𝑅𝑅 of (𝑁1(ℎ, 𝑐))       Figure 10: Graph of 𝑅 and 𝑅𝑅 of (𝑁1(ℎ, 𝑐)) 

 

Figures 7 and 8 illustrate the graphs of 2𝑅 and 2𝑅𝑅 of 𝑉𝐶5𝐶7 respectively, with the values of 

ℎ(𝑐 = 1) or 𝑐(ℎ = 1) plotted along the 𝑥-axis. It is evident from the graphs that both indices exhibit 

an increasing trend, although 2𝑅  increases at a slower rate compared to 2𝑅𝑅 , which 

demonstrates a rapid increase in its values as ℎ or 𝑐 increases. Additionally, at all points where ℎ =
𝑐, the value of 2𝑅𝑅 surpasses that of 2𝑅 for 𝑉𝐶5𝐶7. 

For a more comprehensive understanding, a 3-dimensional graph representing the Randić and 

Reciprocal Randić index of 𝑉𝐶5𝐶7(ℎ, 𝑐) is depicted in Figures 9 and 10. Here, the values of ℎ (≥ 2) 

are plotted along the 𝑥-axis, while the values of 𝑐 (≥ 2) are plotted along the 𝑦-axis for both 𝑙 = 1 
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and 𝑙 = 2. It is noteworthy that in both cases of 𝑙, the Reciprocal Randić index consistently exhibits 

the highest values, accompanied by a rapid increase, while the Randić index consistently yields the 

lowest values. 

Figure 11: Graph of 2𝑆𝐶𝐼(𝑁1)          Figure 12: Graph of 2𝑁(𝑁1) 
 

 
 

Figure 13: Graph of 2𝑆𝐶𝐼 and 2𝑁 of (𝑁1(ℎ, 𝑐))    Figure 14: Graph of 𝑆𝐶𝐼 and 𝑁 of (𝑁1(ℎ, 𝑐)) 
 

The analysis of the Sum Connectivity Index (SCI) and Nirmala Index of the molecular graph 𝑉𝐶5𝐶7 

is conducted based on the provided values of ℎ(𝑐 = 1) or 𝑐(ℎ = 1). In Figures 11 and 12, these 

indices are illustrated, with the 𝑥-axis denoting the values of ℎ(𝑐 = 1) or 𝑐(ℎ = 1), and the 𝑦-axis 

representing 2𝑆𝐶𝐼(𝑁1) and 2𝑁 of 𝑉𝐶5𝐶7. The 2𝑆𝐶𝐼(𝑁1) values range from 0 to 1000, while 

2𝑁 ranges from 0 to 4000, showcasing an increasing trend for both indices as ℎ(𝑐 = 1) or 𝑐(ℎ =
1) increases. Remarkably, 2𝑁(𝑁1(1, 𝑐)) exhibits a higher value compared to 2𝑁(𝑁1(ℎ, 1)) and 

2𝑆𝐶𝐼(𝑁1(1, 𝑐)) exhibits a higher value compared to 2𝑆𝐶𝐼(𝑁1(ℎ, 1)), highlighting the varying 

magnitudes of these indices. Notably, among these indices, 2𝑁  achieves the highest values, 

surpassing the Sum Connectivity indices. 

In contrast, the 3-dimensional graphs depicted in Figures 13 and 14 illustrate a visual representation 

wherein the index values for 𝑙 = 2 do not exhibit a significantly higher value when compared to the 

indices’ values for 𝑙 = 1. The fundamental characteristics of the graphs remain consistent for both 

𝑙 = 1  and 𝑙 = 2 . It’s worth noting that, across both 𝑙 = 1  and 𝑙 = 2 , the Nirmala Indices 

consistently exhibit higher values compared to the Sum Connectivity indices. 
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Figure 15: Graph of 2𝑆𝑂(𝑁1)Figure 16: Graph of 2
𝑚𝑆𝑂(𝑁1) 

 

 
 

Figure 17: Graph of 2𝑆𝑂 and 2
𝑚𝑆𝑂 of (𝑁1(ℎ, 𝑐))      Figure 18: Graph of 𝑆𝑂 and 𝑚𝑆𝑂 of 

(𝑁1(ℎ, 𝑐)) 
 

The Sombor Index and Modified Sombor Index of the molecular graph 𝑉𝐶5𝐶7 are analyzed based 

on the provided values of ℎ(𝑐 = 1) or 𝑐(ℎ = 1). Figures 15 and 16 showcase these indices, where 

the 𝑥-axis corresponds to the values of ℎ(𝑐 = 1) or 𝑐(ℎ = 1), and the 𝑦-axis represents 2𝑆𝑂(𝑁1) 
and 2

𝑚𝑆𝑂(𝑁1) of 𝑉𝐶5𝐶7. Across both indices, a distinct increasing trend is observed as ℎ(𝑐 = 1) 
or 𝑐(ℎ = 1) increases. Specifically, 2𝑆𝑂(𝑁1)  values range from 0 to 6000, while 2

𝑚𝑆𝑂(𝑁1) 
ranges from 0 to 400. Notably, when comparing values derived from different compositions of ℎ 

and 𝑐 , 2𝑆𝑂  tends to exhibit higher magnitudes compared to 2
𝑚𝑆𝑂 . Moreover, the relative 

comparison between the indices’ values remains consistent, with 2𝑆𝑂 consistently yielding higher 

values compared to 2
𝑚𝑆𝑂.  

3-Dimensional visualizations presented in Figures 17 and 18 highlight how doubling the value of 𝑙 
from 1 to 2 results in a clear doubling effect on the indices’ values. The fundamental features of the 

graphs remain consistent for both 𝑙 = 1 and 𝑙 = 2, with the Sombor Index consistently exhibiting 

significantly higher values compared to the Modified Sombor Index in both the conditions. 
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Figure 19: Graph of 2𝐺𝐴(𝑁1) Figure 20: Graph of 2𝐴𝐵𝐶(𝑁1) 

 
 

Figure  21:  Graph of 2𝐴𝐺(𝑁1) 
 

Figure 22: Graph of 2𝐺𝐴, 2𝐴𝐵𝐶 and 2𝐴𝐺 of (𝑁1(ℎ, 𝑐)Figure 23: Graph of 𝐺𝐴, 𝐴𝐵𝐶 and 𝐴𝐺 

of(𝑁1(ℎ, 𝑐)) 
 

In Figures 19, 20, and 21, the 𝑥-axis represents the values of ℎ(𝑐 = 1) or 𝑐(ℎ = 1), while the 𝑦-axis 

displays the values of 2𝐺𝐴, 2𝐴𝐵𝐶, and 2𝐴𝐺 of 𝑉𝐶5𝐶7. Key observations from these graphs 

are as follows: 
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 All three indices demonstrate a linearly increasing trend as ℎ(𝑐 = 1) or 𝑐(ℎ = 1) increases. 2𝐴𝐺 

exhibits a notably rapid increase compared to 2𝐺𝐴 and 2𝐴𝐵𝐶. Moving on to Figures 22 and 23, 

which illustrate 3D graphs of the Geometric-Arithmetic Index, Arithmetic-geometric Index, and 

Atom Bond Connectivity Index of 𝑉𝐶5𝐶7(ℎ, 𝑐)  for ℎ, 𝑐 ≥ 2 , considering 𝑙 = 2  and 𝑙 = 1 

respectively, the observations are as follows:   

 • In both cases of 𝑙, the Arithmetic-geometric Index displays the highest value and experiences the 

most rapid increase. 

 • the Atom Bond Connectivity Index consistently maintains the lowest value and demonstrates the 

slowest increase.  

Moreover, the graphs reveal the following inequality: 𝐴𝐵𝐶 < 2𝐴𝐵𝐶 ≤ 𝐺𝐴 < 2𝐺𝐴 < 𝐴𝐺 ≤

2𝐴𝐺 . This inequality explains the varying magnitudes and trends across the different indices, 

offering valuable insights into their comparative behaviors. 

 

 
Figure 24: Graph of 2𝐴𝑍𝐼(𝑁1)   Figure 25: Graph of 2𝐼𝑆𝐼(𝑁1) 

 

 
Figure 26: Graph of 2𝑅𝑒𝑍𝑔(𝑁1) 
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Figure 27: Graph of 2𝐴𝑍𝐼,2 𝐼𝑆𝐼 and 2𝑅𝑒𝑍𝑔of(𝑁1(ℎ, 𝑐))Figure 28: Graph of 𝐴𝑍𝐼, 𝐼𝑆𝐼and 𝑅𝑒𝑍𝑔of 

(𝑁1(ℎ, 𝑐)) 
 

First Zagreb Index (ReZg) of 𝑉𝐶5𝐶7  are analyzed based on the provided values of ℎ(𝑐 = 1) or 

𝑐(ℎ = 1). Figures 24, 25, and 26 shows these indices, where the 𝑥-axis represents the values of 

ℎ(𝑐 = 1) or 𝑐(ℎ = 1), and the 𝑦-axis represents 2𝐴𝑍𝐼, 2𝐼𝑆𝐼, and 2𝑅𝑒𝑍𝑔 of 𝑉𝐶5𝐶7. 

Key observations from the analysis are as follows:   

 • 2𝐴𝑍𝐼 ranges from 0 to 15000, 2𝐼𝑆𝐼 from 0 to 2000, and 2𝑅𝑒𝑍𝑔 from 0 to 1000, illustrates 

that 2𝐴𝑍𝐼 yields the highest values, exceeding a consistent increasing trend for all three indices as 

ℎ(𝑐 = 1) or 𝑐(ℎ = 1) increases. 

 

 • 2𝐴𝑍𝐼, 2𝐼𝑆𝐼, and 2𝑅𝑒𝑍𝑔 of 𝑁1(1, 𝑐) exhibit higher values compared to 𝑁1(ℎ, 1), indicating 

variations in index magnitudes based on different compositions of ℎ and 𝑐.  

 

The 3-dimensional graphs presented in Figures 27 and 28 demonstrate that when 𝑙 is increased from 

1 to 2, the index values precisely double. Despite this doubling effect, the fundamental 

characteristics of the graphs remain consistent for both 𝑙 = 1 and 𝑙 = 2. Notably, across both cases, 

the Redefined First Zagreb Index consistently exhibits in particular smaller values compared to the 

Augmented Zagreb Index and Inverse Sum Indeg Index. 

 

5. Conclusion 

In the analysis of carbon nanosheets, topological descriptors play a crucial role in characterizing 

their structural properties. These descriptors quantify various aspects of the molecular connectivity 

within the nanosheet, offering insights into its complexity and arrangement. When discussing 

topological descriptors, it’s common to consider parameters such as the number of pentagons (ℎ) 

and the number of repetitions (𝑐) in the nanosheet structure. 

In studies related to Quantitative Structure Activity Relationship (QSAR) modeling, these 

topological indices are frequently utilized to predict the biological activities of chemical 

compounds. By understanding how the structural features of carbon nanosheets influence these 

descriptors, researchers can gain valuable information about the nanosheet’s potential biological 

effects or applications. 

Upon examining graphs or data visualizations representing the behavior of these topological indices 

with changes in ℎ and 𝑐, a consistent trend emerges: as both ℎ and 𝑐 increase, the values of these 

descriptors tend to rise. This suggests that larger ℎ and 𝑐 values correspond to more intricate and 

potentially complex molecular structures within the nanosheet. 

However, a more nuanced observation arises when comparing the impact of varying 𝑐  while 

keeping ℎ constant versus altering ℎ while 𝑐 remains consistent. It becomes evident that changes in 
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the number of repetitions (𝑐) have a more significant effect on these topological indices compared to 

alterations in the number of pentagons (ℎ). This implies that increasing the number of repetitions in 

the carbon nanosheet structure has a disproportionate impact on the overall connectivity, symmetry, 

or structural arrangement of the nanosheet, leading to more pronounced changes in the topological 

descriptors. 

This insight suggests that the repetition pattern within the nanosheet structure plays a crucial role in 

determining its topological properties. The observed pattern underscores the importance of 

considering not only the individual structural features but also their collective arrangement and 

repetition in understanding the behavior of carbon nanosheets in various applications and contexts. 

This suggests that the structural attributes captured by the topological indices exhibit comparability 

or consistency when comparing distances 1 and 2 in the examined graph. Such an observation offers 

valuable insights into the interrelations and patterns within the network across various spatial scales 

or levels of connectivity. 
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