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1. Introduction 

The practice through which drugs are identified or created in the realm of medicine is known 

as drug discovery. A drug is any substance (other than food or a device) that is used to 

diagnose, cure, relieve, treat, or prevent disease, or that is designed to influence the structure 

or function of the body. Traditionally, most medications were found either by finding the 

active component in traditional remedies or by chance. The drug development process 

includes steps such as candidate discovery, preparation, characterization, screening, and 

therapeutic effectiveness studies. In a stance when molecule has proven its worth in these 

assays, it will enter the development of new drugs prior to clinical trials. With respect to 

treatment of Tuberculosis, different analogues with different mode of action are shown in 
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above Tables 1.1-1.3. With the increase in number of tuberculosis infected population, it has 

taken the shape of most influential disease in the world. Since conventional drug design 

approach is having long design cycle and high cost whereas rational drug design approach has 

taken step forward to former. Rational approach includes structure-based drug design, 

molecular modeling studies, rapid DNA sequencing, automated high throughput screening 

(HTS), docking studies, QSAR and many more. The bioinformatics knowledge and 

computational approaches have speeded up the drug discovery process in very effective 

manner [1]. 

2. Rational Drug Design Approach 

This approach made the way half easy to discover the candidate as drug. This technique is 

classified in two categories: Indirect (Ligand based) e.g. QSAR and Direct (Structure based) 

drug design. The former method relies on binding knowledge of molecules on 

pharmacological proven target whereas latter method based on biological target protein 

information. 

2.1. Quantitative Structure Activity Relationship 

Within Rational based approach, QSAR is an unbelievable method established by scientist 

Hansch and Fujita [2]. The essential premise in this method is that differences in the 

structural, physical, and chemical features of a sequence of congeneric molecules with a 

shared mode of action are connected with their biological activity [3]. The QSAR is a 

mathematical link that exists amongst biological activity and physicochemical qualities of 

molecules such as hydrophobicity, electronic properties, and so on. A QSAR equation is 

represented as: 
Biological activity = (P1*C1) + (P2*C2) +…….+ (Pn*Cn)+ constant 

Where, the parameters P1 to Pn are determined to every molecule in the array, whereas the 

coefficient C1 to Cn are obtained by matching variations in the respective parameters and 

bioactivities. Depending upon type of properties available in making a mathematical 

relationship with biological activity, QSARs are formalized into different dimensions i.e. 2D-, 

3D-, 4D- etc. 0D-2D QSAR is also referred as classical approach which uses physico- 

chemical and structural parameters without referring to their conformations/ geometric 

preferences. 3D QSAR based approaches can be alignment-dependent or alignment- 

independent[4]. 

2.2. Structure Based Drug Design 

Through tremendous evolution in structure or direct designing approaches, developments 

such as obtaining proteins with high purity, emergence of improved protein purification 

methods such as chromatography, increased sensitivity of NMR instruments, crystallized 

protein database, progression of cryo-cooling technique, and so on. The emergence of direct 

drug design as a new technology is nevertheless a attractive development with worldwide 

importance. This approach was used for the virtual (database) screening (VS) of new lead 

compounds. This VS has been accomplished by 2 approaches first is ‘VS by docking’ and 

second is ‘similarity-based VS’. Using information about the target's 3D structure, the first 

approach prioritizes compounds based on their propensity to bind to the protein. The 

‘similarity-based VS’ is based on the idea that one or more chemicals known to bind to the 

protein are utilized as structural queries. The screening technique retrieves chemicals from the 

database using a similarity criterion that is appropriate for the situation. These criteria should 

consider compounds that bind firmly to the same proteins as comparable in order for the 

screening approach to be effective [5]. 

2.2.1. Docking 

The Docking based structure drug design approach is similar to lock and key hypothesis. This 

hypothesis states that there is only one key for a lock. Similarly, only one orientation of 

molecule fitted to protein can produce a desired effect. It predicts ideal orientation of a 
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molecule (such as ligand or protein) to another (such as a protein or receptor) when they are 

bonded together to create a stable complex [6]. In relation to obtain different conformations of 

ligand, various docking programs are available. The computer enabled docking programs 

generates possess of small molecules in target structure in different positions, variation in 

conformations along with diverse orientations. These 3 collectively makes the different poses 

of ligand. Each pose generated is scored in comparison with different other poses in the 

grounds of energy and RMSD to ligand, to bind with protein. A predicted pose with good 

scores for submitted molecules indicates its potentiality as effective binders. This technique is 

replicated for all compounds, which will then be ranked according to docking or affinity 

scores. The selected top scorer active molecules were either purchased or synthesized then 

biological investigation was done. Taking into assumption that poses and its associated 

predicted affinity scores are in accordance with reasonable accuracy, this procedure reduces 

large proportion of time and cost then compared to random selection method. The technique 

is divided into 2 categories on basis of protein flexibility i.e. rigid and flexible docking. 

Procedure employed for Docking: 

a. Receptor structure – The receptor structure is important part of docking studies. The 

receptor provides the cavity or space for the binding of molecule to protein. The structure of 

the receptor or protein is most generally characterized either by X−ray crystallography or 

NMR. If 3D structure isn't known, protein structure prediction techniques can be used. 

Threading and homology modeling are two extensively used approaches for predicting 

protein structure. The former technique evaluates if a particular array of amino acids is 

consistent with desired structures. Homology, also referred as comparative modelling, is 

based on comprehensive connection or homology between the desired protein's sequence and 

at least one established structure. After determination of structure if a condition appears 

where function of protein is unknown, then putative binding sites should be evaluated. These 

binding sites can then be investigated for particular drug binding or correlated to other known 

binding sites. An examination of putative binding features and/or associations with a specific 

molecule can give critical findings for the development of new ligands or the docking of 

prospective leads. 

b.  Prediction of Pose - By doing a number of trials and keeping the positions with the least 

energy, the proper binding mode of ligand may be discovered.Since most ligand molecules 

are flexible, it entails determining the precise orientation as well as the suitable conformation 

of the docked molecule. It suggests ligands overall degrees of freedom like translational, 

rotational along with rotatable bonds. The study is ended after a certain number of trials have 

been completed or an acceptable collection of poses has been discovered. Algorithms that 

maintain record of earlier identified lowest energy and lead the exploration into new space. 

The judgment to preserve a trial pose is dependent on the pose's affinity score to target. 

Numerous programs create a "dock" score in order to rank them from high to low energy 

scores along with its orientations in an acceptable amount of time [7]. 

 

c.  Scoring of Predicted Pose - The scoring functions are designed to molecules to respective 

receptor binding sites to segregate them as seeming inactive and active ligand molecules. 

There are 3 kinds of existing estimation methods: force field based, empirical, and knowledge 

based. The force field scoring functions estimate the binding free energy as a sum of 

individual molecular mechanics force field potentials. Free energy scoring methodologies in 

terms of Molecular Mechanics – Poisson-Boltzmann Surface Area/ Generalized Born Surface 

Area (MM-PBSA/ GBSA) might be advantageous in boosting binding affinity prediction and 

grading the actives. Applying the scoring function to experimental binding affinity data 

results in an empirical approximation of the binding free energy as a weighted combination of 

protein and ligand interaction components. The knowledge-based scoring method were 
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developed by statistical analysis of atom pair frequencies in protein ligand complexes with 

known 3D structure [8]. 

 

d. Principal Algorithms and Computer-Enabled Docking Platforms- Several docking 

programs and search algorithms are available to carry out desired docking process. There are 

different criterions to classify docking programs, the first criterion for classifying the 

underlying algorithms is the way the ligands are treated during docking. In some of these 

algorithm’s ligand is divided into fragments that are docked separately in the receptor site. 

After the fragments are docked the parts are fused together. This fragmentation allows the 

algorithm to consider ligand flexibility. Rigid fragments that are docked initially work like 

“anchors” that are united secondarily by flexible parts of ligand which have rotatable bonds. 

In this way the ligand is gradually “constructed” inside the binding site of receptor. This 

approach is known as Incremental Construction. Programs that follow this approach include 

Hammerhead [9], DOCK [10], and FlexX [11]. The second algorithm is Monte Carlo 

simulations were firstly introduced as a minimization procedure in molecular dynamics 

applications. This search algorithm tries to dock the ligand inside the receptor site through 

many random positions and rotations, which decreases the chances of being trapped in the 

local minima. Programs used are MCDOCK [12] and ICM[13]. In Simulated Annealing (SA) 

a biomolecular system is simulated by a specific kind of dynamic simulation. Every docking 

conformation is carried into a simulation where temperature is decreased gradually during 

regular intervals of time in each cycle of simulation. In Genetic Algorithm (GA) 

programming, crossover, which is a genetic operator that combines (mates) two chromosomes 

(parents) to produce a new chromosome (offspring), is applied in order to generate new 

chromosome that may be better than both of the parents if it takes the best characteristics 

from each of the parents. This process that swaps large regions of the “parents,” is permitted 

in genetic algorithms. In this process many complex scoring functions are used, taking into 

account a set of parameters, such as mutation rates, crossover rates and number of 

evolutionary rounds. The GA adopted in GOLD docking program. In addition to ligand 

flexibility, it may be desirable to keep at least part of the receptor flexible in order to allow for 

conformational changes that are necessary to accommodate the ligand, a phenomenon 

referred to as ‘induced fit.’ Because it is computationally expensive, few docking programs 

allow protein flexibility. The way flexibility is handled differs from program to program. For 

example, FlexE [14] uses multiple receptor conformations. A list of popular docking 

programs is given in Table 1 and 2 along with their description and algorithm is presented. 
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Ta 

ble 

1. 

DE 

NO 

VO 

Ge 

ner 

Program 
Flexible 
Protein 

Flexible 
Ligands 

Description Ref. 

LUDI No Yes Incremental Construction 20 

GRID No Yes Energy Calculation 21 

Multi copy simultaneous search 
methodology 

No Yes Monte Carlo Growth Algorithm 22 

Smog (Small Molecule Growth) No Yes Monte Carlo Growth Algorithm 23, 24 

CONCERTS No Yes Stochastic search 25 

Legend No Yes Raises structure Atom by Atom 26 

DLD No Yes Monte Carlo Growth Algorithm 27 

 
Program 

Flexibl 

e 

Protei 

n 

Flexib 

le 

Ligan 

ds 

 
Algorithm 

 
Description 

 

Ref 

. 

 

Hammerhead 

 

No 

 

Yes 
Genetic 

Algorithm 

Tail and Anchor 

Fragments Linked from 
Genetic Algorithms 

 

9 

 
DOCK 

 
No 

 
Yes 

Shape 

Matching 

(Sphere 

Images) 

 

Docks Small Molecules 

or Fragments 

 
10 

Flexx No Yes 
Incremental 
Construction 

Incremental Construction 11 

MCDOCK(Mon 

ti Carlo Dock) 

 

No 

 

Yes 

Monti Carlo 

(Stochastic 

Algorithm) 

 

Stochastic Algorithm 
12 

ICM 
Yes 

Yes 
Stochastic 
Algorithm 

Stochastic Algorithm 13 

AUTODOCK 
Yes Yes 

Genetic 
Algorithm 

simulated annealing 14 

Flexe Yes Yes 
Incremental 
Construction 

Incremental Construction 15 

FRED (Fast 

rigid exhaustive 
docking) 

 

No 

 

Yes 
Exhaustive 

Search 
Algorithm 

Shape Matching 

(Gaussian Functions) 

 

16 

Glide 
 

No 

 

Yes 
Exhaustive 

Search 
Algorithm 

Search for orientation 

Ligand. 

 

17 

Prodock 
 

Yes 

 

Yes 
Monti Carlo 

(Stochastic 
Algorithm) 

Stochastic Algorithm for 

Flexible Ligand and 
receptor 

 

18 

ADAM 
No Yes 

Incremental 
Construction 

Aligned Based Fragments 
based on Hydrogen Bond 

19 
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Growmol No Yes Incremental Construction 27 

Genstar No Yes Forms molecules by Sp3 Carbons 27 

GROW No Yes amino acid Residue Addition 27 

Groupbuild No Yes 
Forms molecules by defined Collection of 
Fragments 

27 

HOOK No Yes Exploration of chemical Database 27 

Table 2. Virtual screening methods 

3. Computational Drug Designing's Role in Tuberculosis Drug Research 

The well recognized fact that most of current available anti-tuberculosis treatments were 

discovered either by coincidence or by chemical changes of previously available medicines. 

Despite the fact that existing frontline medicines have improved the prognosis of Tb patients, 

there is an urgent need to apply creative tactics for the identification of viable therapeutic 

options. Furthermore, the loss of efficacy of currently available active drugs, as well as a 

scarcity of distinct chemical substances in healthcare situations, has caused serious damage to 

current Tb eradication efforts. As a result, unique reasoning tactics are critical for the 

discovery of new medications and therapeutic targets to treat tuberculosis. For more than 

three decades, computer-aided techniques have dominated this quest. This image may be 

shown by the fact that several researches have been conducted in order to find M. tuberculosis 

druggable targets. Cui et al. conducted an investigation of protein-protein interaction 

networks using homogeneous protein mapping in this approach. The study discovered that 

molecular chaperones, ribosomal proteins, and ABC transporters are all intricately linked 

proteins [28]. Computational approaches have enabled the discovery of fresh molecules with 

desirable characteristics intended for the effective management of various types of 

tuberculosis, including resistant to drug and persistent forms of Tuberculosis, as well as HIV 

co-infected patients. Several QSAR, pharmacophore modeling, docking investigations, and 

molecular dynamics simulations (MDS) studies demonstrate its significance. The MDS in 

conjunction with docking investigations revealed the resistance to the first-line TB 

medication, isoniazid [29]. QSAR, docking studies, and QM/MM studies on M. tuberculosis 

inhibitors were good examples of M. tuberculosis molecular modeling investigations [30]. 

Several studies on the therapeutic target of M. tuberculosis, thymidine monophosphate kinase 

(TMPkinase), have recently been done [31]. TMPkinase inhibition was investigated using a 

combination of receptor independent 4D-QSAR formalism and 3D pharmacophore. 

Additionally, virtual screening (VS) based on molecular fingerprints was used to highlight the 

powerful anti-tubercular compounds against TMPkinase [32]. Similarly, VS has effectively 

recovered new IspF inhibitors using hierarchical filtering and docking experiments [33]. 

Pantothenate synthetase inhibitors were designed in-silico and tested for inhibitory 

effectiveness against the non-replicating persistent type of M. tuberculosis [34]. Bonora et al. 

investigated inhibitors targeting both HIV and tuberculosis proteases computationally [35]. 

Furthermore, the proteins essential for existence of TB are being considered potential 

druggable targets [36]. Aside from the above stated metabolic pathways, research has focused 

on the targets engaged in the manufacture of several constituents of the mycobacterium cell 

wall [37]. Furthermore, a considerable amount of study has been conducted to investigate the 

pathogenicity of various forms of M. tuberculosis, chiefly those helped in maintaining the 

latent anaerobic condition under host induced hypoxia [38-39]. As a result, it is evident that 

identification and validation are critical processes in in-silico drug design [40]. Despite 

improvements in anti-TB drug development, further therapeutic interventions with 

characteristics such as a unique mechanism of action, fast bactericidal efficacy, enhanced 

pharmacokinetic and pharmacodynamic qualities, minimal potential for drug-drug 

interactions, and an outstanding safety profile are still needed. Aside from these actions, there 

are also pragmatic considerations linked with them, such as compound stability, cost-effective 
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manufacture, a restricted action range, excellent tolerability, and a low incidence of resistance 

development [41]. Several previous attempts to find newer anti-TB medications have been 

done in this endeavour. Non rational approaches, like traditional and virtual screening 

methods, are included, and so are rational strategies, such as bioinformatics analysis. Table 3. 

lists some of the most recent successful narratives obtained using these methods. Among 

rational techniques, pharmacophore tactics have emerged as one of most imperative 

instruments in discovery of drugs. These methods have been used effectively and widely for 

the high throughput screening, scaffold hopping, lead identification and optimization. 

Concurrent developments in protein purification techniques, the availability of three- 

Dimensional structures in the protein data banks, have resulted in an improved knowledge of 

many proteins structural properties and its co-crystallized ligand. Virtual screening is another 

major progress in drug development that is a more direct and logical drug discovery technique 

than traditional experimental high-throughput screening, with the added benefit of being less 

expensive and more effective [42]. MDS have advanced to level that they can be used to 

successfully investigate the macromolecular structure and its function relationships. The 

effective blend of molecular docking and simulation research can result in the identification 

of new drugs. 

Furthermore, these computational tools are extremely important for reducing the total budget 

and time period associated with drug development phase [43,44,45]. Despite the fact that 

various programs are widely accessible [46], the techniques necessary for the creation of 

pharmacophore models are still in the research stage. These approaches are divided as: direct 

methods and indirect approaches [47,48,49]. The direct technique uses either a protein or 

receptor ligand complex or only protein for model creation, while the indirect method uses a 

group of compounds active against a specific therapeutic target to derive the pharmacophoric 

properties required for biological activity. In the literature, the limitations of indirect 

approaches are well-recognized [50-55]. In general, these approaches create models using 

either ligand alone or protein-ligand multicomplexes. However, if database of 

multicomplexes is known pharmacophore modeling would be the natural approach analyze all 

of the protein-ligand complexes' relevant interactions at the same time. As a result, in this 

thesis, protein-ligand multi-complex-based generation of models being primarily used for M. 

tuberculosis structural proteins. The purpose was to see if pharmacophore models were 

similar across protein classes and if inhibitors had similar effects. Furthermore, on the basis of 

validation and knowledge, an attempt was made to uncover distinctive patterns that may be 

actively used for the creation of small molecules against the main therapeutic targets, ATP 

synthase and QcrB. The compounds that were ranked using computational approaches were 

validated experimentally. 

Table 3. List of compounds showing anti-TB activity 

Computational Approach Target Area Ligand names Ref. 

Homology modeling/Docking ATP synthase 12i, 12l [56] 

Homology modeling/ Docking/VS Mycobacterium multidrug- 
resistant protein 

L1–L8 [57] 

Homology modeling/Docking/ 
Pharmacophore modeling 

Serine/Threonine protein 
kinases 

T95, B31 [58] 

Homology modeling/ 
Pharmacophore/VS/MD 

DNA gyrase B C1–C10 [59] 

Pharmacophore modeling/ 3D 

QSAR/Docking 

Enoyl-ACP-reductase Cinnamic 

acid and 

cyclopropyl 
derivatives 

[60] 
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Pharmacophore modeling/VS L-alanine dehydrogenase Compounds 
L1–L4 

[61] 

Docking Enoyl-ACP- reductase I1, I3, I4 y I5 [62] 

VS/Pharmacophore modeling/ Docking/ 
Fingerprints 

Thymidine Monophosphate 
Kinase 

Compounds 
C1–C3 

[63] 

HTS/Docking Protein kinase B Compounds 
11, 12, 15 

[64] 

QSAR Cell wall synthesis Compounds A, 
B 

[65] 

QSAR/HTS SQ609 Cell wall 
synthesis 

[66] 

HTS/Whole-cell activity CD39, CD117 Enoyl-ACP- 
reductase 

[67] 

HTS/Whole-cell activity Compounds 1, 2 Pantothenate 
synthetase 

[68] 

 

HTS/Whole-cell activity 
Oxadiazole-amide and  2- 

aminobenzothiazole  core 
scaffold derivatives 

 

Shikimate 

kinase 

 

[69] 

 

4. Conclusion 

The application of advanced drug discovery approaches has revolutionized the fight against 

tuberculosis (TB), offering promising avenues for the development of new therapeutics. High- 

throughput screening, structure-based drug design, and computational modeling have 

significantly accelerated the identification of potential drug candidates. The integration of 

omics technologies—genomics, proteomics, and metabolomics—provides a comprehensive 

understanding of Mycobacterium tuberculosis, paving the way for targeted interventions. 

Drug repurposing and combination therapy strategies enhance treatment efficacy and offer 

solutions to overcome multidrug-resistant TB strains. Despite the progress, ongoing research 

and collaboration are essential to translate these innovative approaches into effective clinical 

therapies. This multifaceted and integrative strategy is crucial for addressing the global TB 

burden and achieving long-term control and eradication of the disease. 
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