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1.INTRODUCTION 

In this paper, graph 𝐺(𝑉, 𝐸) is considered as finite, simple and undirected with p 

vertices and q edges. A graph labeling is a fundamental concept in graph theory, where integers 

are assigned to vertices or edges. Its enormous applications in astronomy, theory of coding and 

other fields has propelled it to the frontend of research. After referring, the seminal work of 

Gallian, as showcased in his comprehensive survey [1], we have embarked on this research 

endeavor. Furthermore, the innovative concept of Antimagic labeling, introduced by 

N.Hartsfield and G.Ringel in the year 1990, has opened up new avenues of exploration. 

Inspired by these groundbreaking contributions, we introduced Lucas Antimagic labeling and 
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further Lucas Antimagic labeling has been investigated on 𝐵(𝑚, 𝑛), 𝑀(𝐵(𝑚, 𝑛)), 𝐾𝑚,𝑛,

𝑀(𝐾𝑚,𝑛).    

2.DEFINITIONS 

Definition 2.1: Lucas number is defined by the linear recurrence relation  

𝐿1 = 2,    𝐿2 = 1 𝑎𝑛𝑑  𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 , 𝑛 > 2 

The first few Lucas numbers are 2,1,3,4,7,11,18,29,47,… 

Definition 2.2:[2] A (𝑝, 𝑞) graph 𝐺 is said to be a Lucas antimagic graph if there exists a 

bijection 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, ⋯ 𝐿𝑞} such that the induced injective function 𝑓∗ ∶  𝑉(𝐺) →

{1,2, … ∑ 𝐿𝑞} given by 𝑓∗(𝑢) = ∑ 𝑓(𝑒)𝑒∈𝐸(𝑢)   are all distinct (where E(u) is the set of edges 

incident to u).  

Definition 2.3:[1] A complete bipartite graph is a special type of bipartite graph where every 

vertex of one set is connected to every vertex of the other set. 

Definition 2.4:[5] The Bistar graph 𝐵(𝑚, 𝑛) is the graph obtained from 𝐾2 by joining m 

pendant edges to one end of 𝐾2 and n pendant edges to the other end of 𝐾2 . 

Definition 2.5:[6] Let G be bipartite graph with partite sets 𝑉1 and 𝑉2 and let 𝐺′ be a copy of 

G and 𝑉1
′ 𝑎𝑛𝑑 𝑉2

′ be the copies of 𝑉1 and 𝑉2.The mirror graph denoted by M(G) is obtained 

from G and 𝐺′ by joining each vertex of 𝑉2 to the corresponding vertex in 𝑉2
′ by an edge. 

3.MAIN RESULTS 

Theorem 3.1: 

The Bistar graph 𝐵(𝑚, 𝑛), 𝑚 ≥ 2, 𝑛 ≥ 2 is Lucas antimagic graph. 

Proof: 

Let G be 𝐵(𝑚, 𝑛) 

Let 𝑉(𝐺) = {𝑢, 𝑣, 𝑢𝑖 , 𝑣𝑗: 1 ≤ 𝑖 ≤ 𝑚 ,1 ≤ 𝑗 ≤ 𝑛} 

      𝐸(𝐺) = {𝑢𝑣, 𝑢𝑢𝑖, 𝑣𝑣𝑗  ∶ 1 ≤ 𝑖 ≤ 𝑚 ,1 ≤ 𝑗 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑢𝑣) = 𝐿1   
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𝑓(𝑢𝑢𝑖) = 𝐿𝑖+1 ,1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑣𝑣𝑗) =  𝐿𝑚+1+𝑗 ,1 ≤ 𝑗 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(u) = 𝐿1 + ∑ 𝐿𝑖+1 

𝑚

𝑖=1

 

𝑓∗(𝑢𝑖 ) = 𝐿𝑖+1, 1 ≤ 𝑖 ≤ 𝑚   

𝑓∗(𝑣) =  𝐿1 + ∑ 𝐿𝑚+1+𝑗
𝑛
𝑗=1   

𝑓∗(𝑣𝑗 ) = 𝐿𝑚+1+𝑗, 1 ≤ 𝑗 ≤ 𝑛 

We observe that the vertices are all distinct. 

Hence G is Lucas antimagic graph. 

Example 3.1.1: The Bistar graph 𝐵(2,3) and its Lucas antimagic labeling. 

 

Theorem 3.2: 

The Mirror graph  𝑀(𝐵(𝑚, 𝑛)) of a Bistar graph 𝐵(𝑚, 𝑛), 𝑚 ≥ 2, 𝑛 ≥ 2  is Lucas antimagic. 

Proof: 

Let G be  𝑀(𝐵(𝑚, 𝑛)) 

Let 𝑉(𝐺) = {𝑢, 𝑢′, 𝑣, 𝑣′, 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛, 𝑢𝑖
′: 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑗

′: 1 ≤ 𝑗 ≤ 𝑛} 

      𝐸(𝐺) = {𝑢𝑣, 𝑢′𝑣′, 𝑢𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛, 𝑢′𝑢𝑖
′: 1 ≤ 𝑖 ≤ 𝑚, 𝑣′𝑣𝑗

′: 1 ≤ 𝑗 ≤

𝑛, 𝑢𝑖𝑢𝑖
′: 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑗𝑣𝑗

′: 1 ≤ 𝑗 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   
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𝑓(𝑢𝑣) = 𝐿1  

𝑓(𝑢′𝑣′) = 𝐿2   

𝑓(𝑢𝑢𝑖) = 𝐿2+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑢′𝑢𝑖
′) = 𝐿𝑚+2+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑢𝑖𝑢𝑖
′) = 𝐿2𝑚+2+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑣𝑣𝑗) = 𝐿3𝑚+2+𝑗, 1 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑣′𝑣𝑗
′) = 𝐿3𝑚+𝑛+2+𝑗,1 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑣𝑗𝑣𝑗
′) = 𝐿3𝑚+2𝑛+2+𝑗, 1 ≤ 𝑗 ≤ 𝑛 

The induced function 𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(u) = 𝐿1 + ∑ 𝐿2+𝑖 

𝑚

𝑖=1

 

𝑓∗(𝑢𝑖 ) = 𝐿2+𝑖+𝐿2𝑚+2+𝑖, 1 ≤ 𝑖 ≤ 𝑚  

𝑓∗(𝑢𝑖
′) = 𝐿𝑚+2+𝑖+𝐿2𝑚+2+𝑖, 1 ≤ 𝑖 ≤ 𝑚 

𝑓∗(𝑢′) = 𝐿2 + ∑ 𝐿𝑚+2+𝑖 

𝑚

𝑖=1

 

𝑓∗(𝑣) =  𝐿1 + ∑ 𝐿3𝑚+2+𝑗
𝑛
𝑗=1   

𝑓∗(𝑣𝑗 ) = 𝐿3𝑚+2+𝑗+𝐿3𝑚+2𝑛+2+𝑗, 1 ≤ 𝑗 ≤ 𝑛 

𝑓∗(𝑣𝑗
′) = 𝐿3𝑚+2𝑛+2+𝑗+𝐿3𝑚+𝑛+2+𝑗, 1 ≤ 𝑗 ≤ 𝑛 

𝑓∗(𝑣′) = 𝐿2 + ∑ 𝐿3𝑚+𝑛+2+𝑗 

𝑛

𝑗=1

 

We observe that the vertices are all distinct. 

Hence G is Lucas antimagic graph. 

Example 3.2.1: The Mirror graph  𝑀(𝐵(2,2)) and its Lucas antimagic labeling. 
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Theorem 3.3: 

The Complete bipartite graph 𝐾𝑚,𝑛, 𝑚 ≥ 2, 𝑛 ≥ 2 is Lucas antimagic graph. 

Proof: 

Let G be  𝐾𝑚,𝑛. 

Let 𝑉(𝐺) = {𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚 , 𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛} 

      𝐸(𝐺) = {𝑢𝑖𝑣𝑗  ∶ 1 ≤ 𝑖 ≤ 𝑚 ,1 ≤ 𝑗 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑢1𝑣1) = 𝐿2   

𝑓(𝑢1𝑣2) = 𝐿1 

𝑓(𝑢1𝑣𝑗) = 𝐿𝑗  ,3 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑢𝑖𝑣𝑗) =  𝐿(𝑖−1)𝑛+𝑗  ,2 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

The induced function    𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑢1) = 𝐿1 + 𝐿2 + ∑ 𝐿𝑗 

𝑛

𝑗=3

 

𝑓∗(𝑢𝑖 ) = ∑ 𝐿(𝑖−1)𝑛+𝑗
𝑛
𝑗=1 , 2 ≤ 𝑖 ≤ 𝑚   

𝑓∗(𝑣1) =  𝐿2 + ∑ 𝐿(𝑖−1)𝑛+1
𝑚
𝑖=2   

𝑓∗(𝑣2) =  𝐿1 + ∑ 𝐿(𝑖−1)𝑛+2
𝑚
𝑖=2   

𝑓∗(𝑣𝑗 ) = ∑ 𝐿(𝑖−1)𝑛+𝑗

𝑚

𝑖=1

, 3 ≤ 𝑗 ≤ 𝑛 
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We observe that the vertices are all distinct. 

Hence G is Lucas antimagic graph. 

Example 3.3.1: The Complete bipartite graph 𝐾3,3  and its Lucas antimagic labeling. 

 

Theorem 3.4: 

The Mirror graph  𝑀(𝐾𝑚,𝑛)𝑚 ≥ 2, 𝑛 ≥ 2 of a Complete bipartite graph 𝐾𝑚,𝑛 is Lucas 

antimagic. 

Proof: 

Let G be  𝑀(𝐾𝑚,𝑛) 

Let 𝑉(𝐺) = {𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑗: 1 ≤ 𝑗 ≤ 𝑛, 𝑢𝑖
′: 1 ≤ 𝑖 ≤ 𝑚, 𝑣𝑗

′: 1 ≤ 𝑗 ≤ 𝑛} 

      𝐸(𝐺) = {𝑢𝑖𝑣𝑗: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑢𝑖
′𝑣𝑗

′: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑣𝑗𝑣𝑗
′: 1 ≤ 𝑗 ≤ 𝑛} 

 Define a function 𝑓: 𝐸(𝐺) → {𝐿1, 𝐿2, … 𝐿𝑞} by   

𝑓(𝑢𝑖𝑣𝑗) = 𝐿(𝑖−1)𝑛+𝑗  ,1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑢𝑖
′𝑣𝑗

′) = 𝐿𝑚𝑛+(𝑖−1)𝑛+𝑗, 1 ≤ 𝑖 ≤ 𝑚 , 1≤ 𝑗 ≤ 𝑛 

𝑓(𝑣𝑗𝑣𝑗
′) = 𝐿2𝑚𝑛+𝑗, 1 ≤ 𝑗 ≤ 𝑛 

The induced function 𝑓∗ ∶  𝑉(𝐺) → {1,2, … ∑𝐿𝑞} is given by 

𝑓∗(𝑢𝑖) = ∑ 𝐿(𝑖−1)𝑛+𝑗, 1 ≤ 𝑖 ≤ 𝑚

𝑛

𝑗=1

 

𝑓∗(𝑢𝑖
′
 
) = ∑ 𝐿𝑚𝑛+(𝑖−1)𝑛+𝑗 , 1 ≤ 𝑖 ≤ 𝑚𝑛

𝑗=1   
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𝑓∗(𝑣𝑗) = 𝐿𝑗 + ∑ 𝐿(𝑖−1)𝑛+𝑗 + 𝐿2𝑚𝑛+𝑗, 1 ≤ 𝑗 ≤ 𝑛

𝑚

𝑖=2

 

𝑓∗(𝑣𝑗
′) = 𝐿𝑚𝑛+𝑗 + ∑ 𝐿𝑚𝑛+(𝑖−1)𝑛+𝑗

𝑚
𝑖=2 + 𝐿2𝑚𝑛+𝑗, 1 ≤ 𝑗 ≤ 𝑛  

We observe that the vertices are all distinct. 

Hence  G  is Lucas antimagic graph. 

Example 3.4.1: The Mirror graph  𝑀(𝐾2,3)   and its Lucas antimagic labeling. 

 

4.CONCLUSION 

In this paper, We have successfully demonstrated that various Mirror graphs are Lucas 

antimagic and through this mathematical analysis, we have established the profound relation 

between mirror graphs and Lucas antimagic labeling. Our future research endeavour is to 

determine various other mirror graphs are also Lucas antimagic and hence similar 

investigations are in process. 
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