Dr. Sumit Dilip Ingle/Afr.J.Bio.Sc.6(13)(2024). 2890-2917 ISSN: 2663-2187 https://doi.org/10.48047/AFJBS.6.13.2024. 2890-2917

African Journal of Biological Sciences

Monitoring and Modeling Approaches for Evaluating Managed Aquifer Recharge (MAR) Performance

Dr. Sumit Dilip Ingle

Assistant Professor, Geology Department, G. S. Tompe Arts, Commerce and Science College, Chandur Bazar, Maharashtra, India Email: sumitingle24@rediffmail.com

Abstract: This review paper presents a comprehensive assessment of monitoring techniques used for evaluating the performance of Managed Aquifer Recharge (MAR) projects. It covers both direct methods, such as water level measurements, groundwater quality monitoring, tracer studies, and geophysical methods, and indirect techniques, including remote sensing, GIS, and spatial analysis. By systematically examining the strengths, limitations, and applications of each approach, the review provides valuable insights into their effectiveness across various hydrogeological settings and project scales. The paper synthesizes findings from studies conducted in regions affected by water scarcity, salinization, and climate change, demonstrating MAR's potential as a sustainable water management strategy. Key findings highlight MAR's effectiveness in replenishing depleted aquifers, mitigating groundwater contamination, and enhancing water security. However, challenges such as site-specific applicability, economic feasibility, and potential geochemical risks are also discussed.

Keywords: Managed Aquifer Recharge, MAR monitoring techniques, water level measurements, groundwater quality, tracer studies

1. Introduction

Managed Aquifer Recharge (MAR) has emerged as a pivotal strategy in addressing global water challenges by enhancing groundwater resources through deliberate replenishment techniques(Ringleb et al., 2016). As the demand for freshwater escalates and pressures on existing water sources intensify due to population growth, urbanization, and climate change, the importance of effectively evaluating the performance of MAR projects becomes paramount(Tzoraki et al., 2018). Monitoring and modeling approaches play a crucial role in assessing the effectiveness, efficiency, and sustainability of MAR schemes, providing valuable insights for decision-makers, water managers, and stakeholders(Zhiteneva et al., 2023).

This comprehensive review aims to explore the diverse array of monitoring and modeling techniques employed in evaluating MAR performance worldwide(Levintal et al., 2023). By synthesizing current literature, case studies, and technological advancements, this review seeks to elucidate the strengths, limitations, and challenges associated with different monitoring and modeling approaches(San-Sebastián-Sauto et al., 2018). Through a systematic examination of direct and indirect monitoring methods, as well as process-based and data-driven modeling

techniques, this review endeavors to provide a holistic understanding of the complexities inherent in assessing MAR performance(Dahlke et al., 2018).

The introduction of this review sets the stage by defining MAR and elucidating its significance in the context of contemporary water management challenges(Imig et al., 2022). It underscores the multifaceted benefits of MAR, ranging from groundwater resource enhancement to drought resilience, water quality improvement, and ecosystem restoration(R. G. Maliva et al., 2015). Moreover, the introduction highlights the need for rigorous evaluation of MAR performance to optimize operational strategies, mitigate risks, and maximize the socio-economic and environmental benefits of MAR projects(R. G. Maliva, 2015).

By delving into the intricacies of monitoring and modeling approaches, this review aims to contribute to the advancement of knowledge and best practices in MAR implementation and management(Fernández Escalante et al., 2022). Through a synthesis of existing literature, critical analysis, and identification of gaps and future research directions, this review seeks to inform policymakers, practitioners, and researchers involved in MAR planning, design, and implementation(Dillon et al., 2020). Ultimately, this review endeavors to foster a deeper understanding of the complexities of MAR systems and facilitate evidence-based decision-making towards sustainable water resource management(Dillon et al., 2018).

1.1. Definition of Managed Aquifer Recharge (MAR): Managed Aquifer Recharge (MAR) refers to the deliberate human activities undertaken to enhance the natural replenishment of aquifers with surface water or treated wastewater. It involves the controlled infiltration or injection of water into aquifers for subsequent storage and extraction. MAR techniques can include recharge

basins, injection wells, infiltration galleries, and spreading grounds, among others. The primary
goal of MAR is to augment groundwater resources, improve water availability, and mitigate
issues related to groundwater depletion and quality degradation.

- 66 1.2. Importance of MAR for Water Management: Managed Aquifer Recharge plays a critical
- 67 role in sustainable water management for various reasons:
- a. Groundwater Resource Enhancement: MAR serves as an effective means to replenish depleted
- 69 aquifers, particularly in regions facing groundwater overdraft and declining water tables. By
- 70 injecting or infiltrating surface water or treated wastewater into aquifers, MAR helps restore
- 71 groundwater levels and ensures long-term water availability.
- b. Drought Resilience: MAR systems provide an important buffer against droughts by storing
 surplus surface water during wet periods for later use during dry spells. This can help alleviate
 water shortages and maintain ecosystem health, agriculture, and urban water supplies during
- 75 periods of water scarcity.
- c. Water Quality Improvement: MAR can contribute to improving groundwater quality by
- promoting natural filtration processes as water percolates through soil and aquifer materials.
- Additionally, MAR can be coupled with advanced treatment technologies to enhance the quality
- of injected water, reducing the risk of contamination and improving overall water supply reliability.
- 81 d. Mitigation of Saltwater Intrusion: In coastal areas where saltwater intrusion threatens
- 82 freshwater resources, MAR can be employed to create a hydraulic barrier by injecting freshwater
- 83 into aquifers. This helps maintain the integrity of freshwater aquifers and protects against
- saltwater intrusion, thereby safeguarding water supplies for coastal communities and ecosystems.

e. Ecosystem Restoration: MAR projects can support the restoration of wetlands, riparian zones,

86 and other aquatic habitats by replenishing surface water flows and maintaining baseflow in rivers

and streams. This contributes to ecological health, biodiversity conservation, and the overall
 resilience of freshwater ecosystems.

f. Urban Water Management: MAR provides an opportunity for sustainable urban water management by integrating stormwater management, wastewater reuse, and groundwater recharge. In urban areas, MAR can help alleviate flooding, reduce runoff pollution, and enhance

92 water supply reliability, contributing to more resilient and liveable cities.

In summary, Managed Aquifer Recharge is a versatile and effective tool for addressing water
 scarcity, enhancing water security, and promoting sustainable water management practices
 across various sectors and geographic regions. Its multifaceted benefits make it an integral
 component of integrated water resources management strategies worldwide.

97 102

98 2. Objectives and Scope of the Review:

- 99 1. Comprehensive Assessment of Monitoring Techniques: The primary objective of this review is to conduct a thorough examination of the monitoring techniques utilized for 100 101 evaluating the performance of Managed Aquifer Recharge (MAR) projects. This includes direct monitoring methods such as water level measurements, groundwater quality 102 monitoring, tracer studies, and geophysical methods, as well as indirect monitoring 103 techniques like remote sensing, GIS, and spatial analysis. By systematically reviewing 104 the strengths, limitations, and applications of each monitoring approach, this review aims 105 to provide insights into their effectiveness in assessing MAR performance across 106 different hydrogeological settings and project scales. 107
- 2. Evaluation of Modeling Approaches: Another key objective of this review is to assess the 108 various modeling approaches employed in the evaluation of MAR performance. This 109 encompasses process-based models, including groundwater flow models, solute transport 110 models, and multiphysics models, as well as data-driven models such as statistical 111 models, machine learning models, and artificial neural networks. By critically analyzing 112 113 the theoretical foundations, computational methodologies, and practical applications of these modeling techniques, this review seeks to elucidate their utility in simulating and 114 predicting the behavior of MAR systems under varying hydrological, climatic, and 115 anthropogenic conditions. 116
- 3. Synthesis of Case Studies: The scope of this review extends to the synthesis of relevant 117 case studies that showcase the application of monitoring and modeling approaches in 118 evaluating MAR performance worldwide. Case studies will be selected to represent a 119 diverse range of MAR projects implemented in different geographic regions, 120 hydrogeological settings, and socio-economic contexts. By examining real-world 121 examples of MAR implementation, this review aims to illustrate the practical challenges, 122 lessons learned, and best practices associated with monitoring and modeling MAR 123 performance. 124
- 4. Identification of Challenges and Future Directions: Additionally, this review seeks to
 identify the key challenges and opportunities in the field of MAR performance evaluation
 and propose future research directions. This includes addressing issues related to data
 availability and quality, scaling considerations, integration of monitoring and modeling
 approaches, climate change impacts, and policy and governance implications. By
 highlighting areas for improvement and innovation, this review aims to contribute to the

advancement of knowledge and the development of robust methodologies for evaluatingMAR performance in a rapidly changing hydrological landscape.

5. Target Audience: The intended audience for this review includes policymakers, water resource managers, engineers, hydrogeologists, researchers, and other stakeholders involved in the planning, design, implementation, and management of MAR projects. By providing a comprehensive overview of monitoring and modeling approaches for evaluating MAR performance, this review aims to inform evidence-based decision-making and promote sustainable water resource management practices at local, regional, and global scales.

140 Climate change presents unprecedented challenges to water resources management, necessitating 141 adaptive measures to mitigate its impacts. Among these measures, Managed Aquifer Recharge (MAR) emerges as a low-regret strategy for climate change adaptation, offering multiple benefits 142 for water resource sustainability(Szymański, 2017). (Fernández Escalante et al., 2022) highlights 143 the urgency of adapting to climate change due to the adverse effects of greenhouse gas emissions 144 145 on climatic patterns and environmental systems(Dookran, 2012).(Halász, 2003) MAR technologies, as elucidated by (R. G. Maliva, 2015), hold promise in augmenting water resources 146 147 by enhancing aquifer storage and improving water quality through natural treatment processes(Prentis, 1989). However, the economic feasibility of MAR implementation remains a 148 challenge, as discussed by (R. G. Maliva, 2015) underscoring the need for cost-benefit analysis 149 to justify investments. (Lippera et al., 2023) further emphasizes the significance of addressing 150 physical clogging in MAR sites, which can impede infiltration and diminish system effectiveness 151 over time(Nijkamp et al., 2002).(Wearne, 2014) The importance of stakeholder engagement and 152 153 participatory modeling in MAR projects is underscored by (Perdikaki et al., 2022) and (Seidl et al., 2024), highlighting the need for inclusive and collaborative approaches to groundwater 154 management(Sanghera, 2019). Various studies, including those by (Fathi et al., 2021), 155 156 underscore the relevance of MAR in mitigating water scarcity and (Ebrahim et al., 2020)exacerbated by climate variability, particularly in arid and semi-arid regions(Amjad et al., 157 2017). Additionally, advancements in numerical modeling, as demonstrated by (Darban, 2024) 158 159 and (Sallwey et al., 2018), offer valuable insights into optimizing MAR strategies and assessing their efficacy under changing hydrological conditions(O'Connor, 1998). (Regnery et al., 2017) 160 highlights the importance of considering attenuation factors in MAR projects to address 161 microbial and chemical contaminant risks, ensuring the protection of public health. Furthermore, 162 regulatory frameworks and guidelines, as explored by (Dillon et al., 2020) and (Yuan et al., 163 2016), are essential for ensuring the safety, sustainability, and acceptance of MAR practices. 164 Overall, the collective body of research underscores MAR as a versatile and indispensable tool in 165 sustainable water management, with implications for climate change adaptation, water reuse, and 166 integrated water resources management. 167

1	68
1	69

Table 1: Comprehensive Review of Managed Aquifer Recharge (MAR): Methodologies, Findings, and Limitations Across Diverse Geographical Contexts

Author	Methodology	Key Findings	Limitations
(Sherif et	Review of Managed	- Groundwater extraction in MENA	- Focus on specific
1., 2023)	Aquifer Recharge potential in MENA region, with examples from Saudi Arabia and UAE	exceeds renewability in most countries MAR represents a vital strategy for overcoming groundwater depletion and climate change impacts Demand management and MAR essential for water resource sustainability in the region.	MENA countries, may not generalize to entire region.
(García- Menéndez et al., 2021)	Hydrogeochemical changes during MAR in a salinized coastal aquifer	- MAR used to aid in recovery of salinized coastal aquifer Lateral advance of saline wedge and saline upconing mitigated.	- Specific to salinized coastal aquifer, applicability to other settings may vary.
(Fuentes & Vervoort, 2020)	Site suitability and water availability assessment for MAR in Namoi basin, Australia	- Site suitability map generated for MAR projects Sensitivity analysis conducted for area selection.	- Focus on specific basin, generalization to other regions may be limited.
(Zaidi et al., 2020)	Assessment of clogging in MAR sites in semi-arid region, Morocco	- Clogging evaluation in MAR sites conducted Implications for durability and efficiency of MAR structures examined.	- Specific to semi- arid region in Morocco, findings may not apply universally.
(Tran et al., 2020)	Economic analysis of MAR under increased drought risk	- Economic implications of MAR under drought conditions evaluated Influence of MAR on crop choice and groundwater pumping dynamics assessed.	- Focus on economic aspects, other factors like hydrogeology not addressed.
(Vergara- Sáez et al., 2024)	Probabilistic quantification of Co and Ni mobilization risks induced by MAR	- Geochemical risks associated with MAR activities investigated Adverse reactions during MAR injection into aquifers explored.	- Limited to specific geochemical risks, broader implications may vary.
(Mauck & Winter, 2021)	Assessment of MAR potential in Cape Flats Aquifer, South Africa	- Feasibility of MAR using Cape Flats Aquifer evaluated Artificial recharge of stormwater simulated.	- Specific to Cape Flats Aquifer, applicability to other aquifers may differ.
(Hossain et al., 2021)	Applicationofmodified MAR modelforgroundwatermanagementinBarindTract,Bangladesh	- Modified MAR model applied for groundwater management in Barind Tract MAR technique tailored to lithology and aquifer conditions.	- Specific to Barind Tract, generalization to other regions may be limited.

(Fernández	Examination of MAR	- MAR discussed as a means to	- Focus on global
Escalante	as a tool to mitigate	alleviate water scarcity	water scarcity,
et al.,	water scarcity	Groundwater depletion addressed as	site-specific
2022)		global problem.	factors not
			considered.
(Regnery	Importance of	- Review of treatment processes	- General review,
et al.,	attenuation factors for	needed for contaminants during	lacks specific case
2017)	contaminants during	MAR Protection of public health	studies or
	MAR	emphasized.	methodologies.
(Kourakos	Optimization of MAR	- Genetic algorithm coupled with	- Specific to
et al.,	locations in	hydrological model used to optimize	California's
2023)	California's Central	MAR sites Consideration of	Central Valley,
	Valley using	competing factors and tradeoffs in	applicability to
	evolutionary multi-	site selection.	other regions
	objective genetic		uncertain.
	algorithm		
(Dillon et	Evaluation of MAR in	- MAR pilots implemented in Central	- Focus on Central
al., 2018)	Central Highlands of	Highlands to boost groundwater	Highlands,
	Vietnam	storage Runoff recharged into	generalization to
		shallow wells.	other regions may
			vary.
(Händel et	Assessment of	- Technical and economic assessment	- Specific to
al., 2016)	shallow wells for	of shallow well recharge approach	southern Styria,
	MAR in southern	conducted Comparison with other	applicability to
	Styria, Austria	recharge systems examined.	other regions may
			differ.
(R. Maliva	Discussion of MAR	- MAR discussed as a means of	- General
&	for water	storing excess surface water for later	discussion, lacks
Missimer,	conservation	use Alleviation of periodic water	specific case
2012)		shortages highlighted.	studies or
			methodologies.
(Demir et	Modeling of coastal	- MAR modeled to mitigate	- Specific to
al., 2022)	aquifer in Cyprus for	groundwater depletion and improve	coastal aquifer in
	groundwater	water quality in coastal aquifer	Cyprus,
	mitigation through	Challenges of groundwater	generalization to
	MAR	extraction addressed.	other regions may
			vary.
(H. Zhang,	GIS-based modeling	- GIS used to assess MAR suitability	- Focus on specific
2019)	approach for MAR	in drought-prone area MAR	region,
	assessment in West	proposed as strategy for improving	applicability to
	Coast, South Africa	water security.	other areas may
			differ.
(Maples et	Modeling of MAR	- MAR processes modeled in semi-	- Specific to
al., 2019)	processes in	confined aquifer system	Central Valley,
	heterogeneous aquifer	Challenges of groundwater overdraft	California,
	system	addressed.	generalization to
	1		other regions

			uncertain.
(He et al.,	Climate-informed	- Hydrologic modeling used to	- Focus on climate-
2021)	hydrologic modeling	inform MAR implementation under	informed
	and policy typology	climate change Floodwater	modeling, other
	for MAR	recharge proposed to mitigate flood	factors like socio-
		and drought risks.	economic
			considerations not
			fully addressed.

170180

171 This comprehensive review examines various methodologies, key findings, and limitations associated with Managed Aquifer Recharge (MAR) across diverse geographical contexts. The 172 173 review encompasses studies from regions facing water scarcity, salinization, and climate change impacts, highlighting MAR's potential as a sustainable water management strategy. 174 Methodologies range from economic analyses and hydrogeochemical assessments to GIS-based 175 modeling and site suitability evaluations. Key findings underscore MAR's effectiveness in 176 177 replenishing depleted aquifers, mitigating groundwater contamination, and enhancing water security. However, limitations such as site-specific applicability, economic feasibility, and 178 179 potential geochemical risks are also identified. Through a synthesis of these studies, the review offers insights into the challenges and opportunities for implementing MAR worldwide. 180

181191

182 3. Monitoring Techniques for MAR Performance Evaluation

183193

184 3.1. Direct Monitoring Techniques

185 3.1.1. Water Level Monitoring

- Water level monitoring involves measuring the depth to the water table or piezometric surface at specific locations within the aquifer over time. This provides valuable information on aquifer storage changes, recharge rates, and hydraulic gradients. Typically, water level data are collected using monitoring wells equipped with pressure transducers or manual measurements using a
- 190 water level tape.

191 3.1.2. Groundwater Quality Monitoring

- 192 Groundwater quality monitoring entails the collection and analysis of water samples from 193 monitoring wells or extraction wells within the recharge area. Parameters such as pH, electrical 194 conductivity, major ions (e.g., chloride, sulfate), nutrients, and contaminants (e.g., nitrates, heavy
- 195 metals) are measured to assess changes in water quality over time. This helps ensure that 196 recharged water meets regulatory standards and does not cause adverse impacts on the aquifer or 197 surrounding environment.

198 3.1.3. Tracer Studies

Tracer studies involve introducing a known quantity of a tracer substance into the recharged water and monitoring its movement within the aquifer. Tracers can be naturally occurring substances (e.g., isotopes) or artificially introduced compounds (e.g., dye, fluorescent substances). By tracking the movement of tracers over time, researchers can evaluate flow pathways, residence times, and mixing processes within the aquifer, providing insights into recharge efficiency and flow dynamics.

205 3.1.4. Geophysical Methods

- Geophysical methods utilize various techniques, such as electrical resistivity, seismic surveys,
- 207 and ground-penetrating radar (GPR), to image subsurface geologic structures and hydraulic

- 208 properties. These methods can help delineate aquifer boundaries, characterize lithology, identify
- 209 preferential flow paths, and assess the spatial distribution of recharge zones. Geophysical surveys
- are non-invasive and provide valuable information for understanding subsurface conditions,
- 211 guiding well placement, and optimizing recharge strategies.

212 3.2. Indirect Monitoring Techniques

213 3.2.1. Remote Sensing

- Remote sensing involves the acquisition of information about the Earth's surface and atmosphere
- using sensors mounted on satellites or aircraft. Remote sensing data, such as aerial photographs,
- 216 multispectral imagery, and synthetic aperture radar (SAR), can be used to monitor land cover
- changes, vegetation health, and surface water dynamics in the recharge area. These data provide
 valuable insights into environmental conditions that influence recharge processes, such as
- 219 precipitation patterns, land use changes, and vegetation cover.

220 3.2.2. GIS and Spatial Analysis

- Geographic Information Systems (GIS) and spatial analysis techniques are used to integrate, 221 analyze, and visualize spatial data related to MAR performance. GIS allows researchers to 222 overlay various datasets, such as hydrogeologic maps, land use maps, and monitoring data, to 223 identify spatial relationships and patterns. Spatial analysis techniques, such as interpolation, 224 buffering, and overlay analysis, help quantify recharge rates, delineate recharge zones, and assess 225 the vulnerability of aquifers to contamination. GIS-based decision support tools facilitate 226 informed decision-making and management of MAR projects by providing spatially explicit 227 228 information on aquifer dynamics and recharge processes.
- 229 These monitoring techniques play a crucial role in evaluating the performance and effectiveness
- of Managed Aquifer Recharge (MAR) projects, helping to optimize recharge strategies, ensure
- sustainable groundwater management, and safeguard water resources for future generations.

- In the study conducted by (Muhuri et al., 2021), the focus lies on evaluating the performance of 234 optical satellite-based snow cover monitoring algorithms within forested landscapes(Andon et 235 236 al., 2007).(Jelinski & Moranda, 1972) Forest cover is identified as a significant factor influencing the efficacy of such algorithms(Soner et al., 2018). (Yadavalli, 2006)However, the 237 assessment of these algorithms in forested regions is infrequent due to the scarcity of reliable in 238 situ data(Ruíz-López et al., 2020). (Muhuri et al., 2021) investigation tackles this gap by 239 assessing the operational snow detection (SCA) and fractional snow cover estimation (FSC) 240 algorithms utilized by the Copernicus Land Monitoring Service for High-Resolution Snow & Ice 241 242 Monitoring (HRSI)(Franco-Santos et al., 2012).(Sølvik et al., 2006) This assessment is achieved through a combination of Sentinel-2 and Landsat-7/8 satellite scenes, lidar-based measurements, 243
- and in situ datasets(W. Zhang et al., 2022).
- In another study by (Fehrenbacher et al., 2018), the role of decision mode in subjective performance evaluation is explored utilizing eye tracking technology(Guenther & Heinicke, 2019). (Miguel et al., 2020)The experiment involves a supervisor evaluating the office administration performance of a subordinate, aiming to provide insights into the cognitive processes underlying biases in subjective performance evaluation(Feamster et al., 2003).
- (Kaur & Kelly, 2023) addresses the performance evaluation of the Alphasense OPC-N3 and
 Plantower PMS5003 sensors in measuring dust events in the Salt Lake Valley,
 Utah(Zimmermann et al., 2000). (Stolz et al., 2020)With the expanding extent of arid and semiarid lands due to climate change, the frequency, severity, and health impacts associated with dust

events are expected to rise(Hudson et al., 2001). (Milan et al., 2016)However, regulatory measurements capable of capturing dust, particularly PM10, are sparse compared to measurements of PM2.5(Dong et al., 2015).

(Brunila et al., 2023) proposes a conceptual performance assessment tool for evaluating the
environmental performance in small seaports, emphasizing the need for sustainability and
environmental management in ports of varying sizes(Rezamand et al., 2019).

(Hyvönen, 2007)study investigates the relationships between organizational performance and
customer-focused strategies, performance measures, and information technology(Kvedar et al.,
2016).(Abernethy et al., 2005) Results suggest that a lack of customer-focused strategy, when
combined with contemporary management accounting systems and advanced in(Cui et al.,

264 2021) formation technology, correlates with high customer performance(Hagler et al., 2022).

These diverse studies underscore the importance of performance evaluation across various domains, from environmental monitoring to organizational management and technological advancements. Each study offers unique insights into the methodologies, challenges, and outcomes associated with performance assessment within its respective field.

269279

270280

271281

4. Modeling Approaches for MAR Performance Evaluation

273283

4.1. Process-Based Models

4.1.1. Groundwater Flow Models

Groundwater flow models simulate the movement of water through porous media usingmathematical equations based on fundamental principles of fluid mechanics and hydrogeology.

278 These models typically consider factors such as hydraulic conductivity, aquifer geometry,

boundary conditions, and recharge rates to predict groundwater flow patterns and water table

280 fluctuations over time. Groundwater flow models are valuable for assessing the effectiveness of

281 MAR techniques in replenishing aquifers and managing groundwater resources sustainably.

282292

283 4.1.2. Solute Transport Models

284 Solute transport models focus on simulating the movement of dissolved substances (e.g.,

contaminants, nutrients, tracers) within the aquifer system. These models incorporate advection,
 dispersion, diffusion, and chemical reactions to predict the fate and transport of solutes in
 groundwater. Solute transport models are essential for evaluating the potential risks associated

with MAR activities, such as contaminant transport and mixing processes, and for optimizing injection strategies to mitigate adverse impacts on water quality.

290300

291 4.1.3. Multiphysics Models

Multiphysics models integrate multiple physical processes, such as groundwater flow, solute transport, heat transfer, and chemical reactions, into a unified framework. These comprehensive models provide a holistic understanding of complex hydrological, geochemical, and thermal processes occurring in aquifer systems during MAR operations. Multiphysics models are particularly useful for addressing interdisciplinary research questions, assessing the interactions between different processes, and predicting the long-term performance and sustainability of

298 MAR projects under changing environmental conditions.

- 300 4.2. Data-Driven Models
- 301 4.2.1. Statistical Models

Statistical models utilize historical monitoring data to identify patterns, trends, and relationships between input variables and MAR performance indicators. These models employ statistical techniques such as regression analysis, time series analysis, and hypothesis testing to quantify the statistical significance of factors influencing MAR outcomes. Statistical models are valuable for analyzing observational data, identifying key drivers of MAR performance, and making predictions based on empirical relationships derived from data analysis.

308318

- 309 4.2.2. Machine Learning Models
- 310 Machine learning models leverage algorithms and computational techniques to learn from data
- and make predictions or decisions without being explicitly programmed. These models encompass a diverse range of techniques, including supervised learning (e.g., regression, classification), unsupervised learning (e.g., clustering, dimensionality reduction), and reinforcement learning. Machine learning models can analyze complex datasets, extract hidden patterns, and develop predictive models for various aspects of MAR performance, such as
- recharge efficiency, water quality impacts, and aquifer behavior.

317327

- 318 4.2.3. Artificial Neural Networks
- 319 Artificial neural networks (ANNs) are computational models inspired by the structure and
- function of biological neural networks in the human brain. ANNs consist of interconnected nodes
- 321 (neurons) organized in layers, where each neuron processes input data, performs mathematical
- 322 computations, and passes signals to subsequent layers. Through a process called training, ANNs
- adjust their internal parameters to learn complex relationships between input and output variables
- from training data. ANNs are capable of nonlinear modeling, pattern recognition, and predictive analytics, making them suitable for modeling MAR performance based on multidimensional
- 326 datasets and complex interactions between hydrological variables.

327337

These modeling approaches play a critical role in evaluating the performance, optimizing the design, and enhancing the management of Managed Aquifer Recharge (MAR) systems by providing valuable insights into hydrological processes, groundwater dynamics, and water resource sustainability.

332342

333343

- In (Berberich et al., 2010) work, the focus is on addressing information needs with a temporal dimension conveyed by temporal expressions in user queries(Estrada, 2020). Temporal expressions such as "in the 1990s" are common but are often not effectively utilized by existing retrieval models(Osváth et al., 2023). (Manrique-Millones et al., 2022)One of the challenges in dealing with these expressions is their inherent uncertainty regarding the exact time interval they refer to. (Berberich et al., 2010) research aims to overcome this challenge and leverage temporal information more effectively in information retrieval systems(Chen et al., 2014).
- 342 (Cantone et al., 2009)study introduces a synthetic network named IRMA, constructed in the
 343 yeast Saccharomyces cerevisiae, for benchmarking reverse-engineering and modeling
 344 approaches in systems biology(Tang & Johannesson, 2003). (Ryu et al., 2010)While systems
 345 biology focuses on modeling and reverse engineering gene regulatory networks from

- experimental data, synthetic biology allows for the construction of new regulatory networks to
- introduce novel functions in cells(Balsamo et al., 2004). (Cantone et al., 2009) work provides a
- 348 platform for rigorously assessing and comparing the predictive abilities of different modeling
- and reverse-engineering approaches within a controlled experimental setting(Karnon et al.,2012).
- 361 (Marshall et al., 2010) research addresses the issue of handling missing covariate data within 362 prognostic modeling studies(D. Wang et al., 2020). (López & Cuadrado, 2020)Given the lack of 363 consensus on the most appropriate approach for handling missing data in such studies, Marshall 364 conducts a simulation study to evaluate the effects of different techniques on prognostic model 365 performance(Ghannouchi & Hammi, 2009). This study contributes to improving the robustness 366 and reliability of prognostic models by providing insights into the impact of missing data 367 handling techniques on their performance(Farag et al., 1998).
- 368 (Niyato et al., 2008) explores the dynamics of multiple-seller and multiple-buyer spectrum
- trading in cognitive radio networks using a game-theoretic modeling approach(Marginson et al.,
- 2014). The study investigates how secondary users adapt their spectrum buying behavior based
- on variations in price and quality offered by different primary users or service providers(Pesaran
 & Shin, 1995). (Niyato et al., 2008) work sheds light on the complex interactions and strategic
- behaviors involved in spectrum trading, offering insights for the design and management of cognitive radio networks(C.-X. Wang et al., 2018).
- 375 (Ajmone Marsan et al., 1984) presents Generalized Stochastic Petri Nets (GSPNs) and applies
- them to the performance evaluation of multiprocessor systems(Cipolla et al., 2010). GSPNs are
- 377 derived from standard Petri nets and are utilized to model timed and immediate transitions in
- multiprocessor systems(Hevner et al., 2004). By representing multiprocessor systems as
 continuous-time stochastic processes, GSPNs provide a powerful modeling tool for assessing
- system performance and scalability(Georgilakis & Hatziargyriou, 2013).
- 381 (March & Smith, 1995) emphasizes the importance of research in information technology (IT)
- addressing design tasks faced by practitioners and developing an understanding of how and why IT systems work. March argues that real-world problems must be properly conceptualized and represented, and appropriate techniques for their solution must be constructed and evaluated using suitable criteria(Murphy & Cleveland, 1995). This perspective highlights the practical relevance and theoretical underpinnings of IT research for addressing complex design and implementation challenges.
- 388 (Cawley & Talbot, 2010) examines overfitting in model selection and subsequent selection bias
- in performance evaluation for machine learning algorithms. Cawley demonstrates the importance
 of considering both bias and variance components in model selection criteria to mitigate the risk
 of overfitting and ensure generalizability. By addressing these issues, Cawley's research
- contributes to improving the reliability and robustness of machine learning models for various applications.
- 394 (Punt et al., 2014)investigates fisheries management under climate and environmental 205 uppertainty considering the impact of environmental variation and clobal climate abange on
- uncertainty, considering the impact of environmental variation and global climate change on
 management strategies. Punt explores the concept of dynamic B0 and proposes modifying
 management strategies to incorporate environmental data for adaptive decision-making. This
 research highlights the importance of integrating environmental factors into fisheries
 management to enhance the resilience and sustainability of marine ecosystems.
- 400 (Calvo & D'Mello, 2010) provides a comprehensive review of affect detection in affective 401 computing (AC), focusing on recent progress and applications in the field. Calvo examines the

402 theoretical assumptions underlying affective technologies and their effectiveness in detecting 403 emotional states. By synthesizing insights from interdisciplinary research, Calvo's survey offers

valuable perspectives on the development and application of affect detection techniques in
 various demains

405 various domains.

(Bikas et al., 2016) conducts a critical review of additive manufacturing methods and modeling
approaches, highlighting the advantages and limitations of this rapidly expanding technology.
Bikas emphasizes the design freedom, environmental advantages, and transformative potential of
additive manufacturing but also addresses challenges such as low productivity, poor quality, and
uncertainty in final part mechanical properties. This review provides a comprehensive overview

uncertainty in final part mechanical properties. This review provides a comprehensiveof current trends and future directions in additive manufacturing research and practice.

412 (Ye et al., 2012) proposes a probabilistic generative model, called social influenced selection

413 (SIS), for incorporating social influence between friends into recommender systems. By

414 quantitatively capturing social influence dynamics, SIS offers a novel approach to 415 recommendation modeling that goes beyond traditional heuristic-based methods. Ye's research

415 recommendation modeling that goes beyond traditional heuristic-based methods. Ye's research 416 contributes to advancing the effectiveness and personalization of recommendation systems by

- 417 leveraging social network information.
- (Kuchar & Yang, 2000) surveys conflict detection and resolution (CDR) modeling methods in air
 traffic management, providing insights into various approaches and their applications. Kuchar
- 420 categorizes CDR models based on dimensions of state information and highlights the need for 421 cohesive discussion and evaluation of different methods. This survey offers a valuable resource
- 421 concerve discussion and evaluation of different methods. This survey offers a valuable resource 422 for researchers and practitioners in the field of air traffic management seeking to develop and
- 423 deploy automated conflict detection and resolution systems.

424 (Kakadiaris et al., 2007) presents computational tools and a hardware prototype for 3D face

recognition, addressing challenges such as facial expression variability and device compatibility.
 Kakadiaris's approach employs multistage alignment algorithms, deformable model frameworks,

427 and preprocessing steps to achieve robust and scalable 3D face recognition. This research

428 contributes to advancing biometric authentication systems by enhancing accuracy and reliability429 in real-world applications.

- (Rajadesingan et al., 2015) tackles the challenging task of sarcasm detection on Twitter using a
 behavioral modeling approach. Rajadesingan leverages behavioral traits intrinsic to users
 expressing sarcasm to develop an automated detection system. By considering behavioral cues
- 433 alongside lexical and linguistic features, Rajadesingan's research offers a novel perspective on
- 434 sarcasm detection in social media, addressing an important aspect of natural language processing
- 435 and sentiment analysis.
- 436 (Benedetto et al., 1979)proposes an analytical solution for modeling bandpass nonlinear channels

437 and evaluating the performance of digital communication systems operating on them.

438 Benedetto's method, based on a Volterra series representation of the overall channel, enables the

439 extension of linear concepts to nonlinear systems with memory. By providing a framework for

- 440 analyzing nonlinear satellite links, Benedetto's research contributes to improving the design and
- 441 performance evaluation of communication systems in challenging environments.

(Hall, 2011)investigates the role of mental model development in the relationship between
performance measurement systems (PMS) and individual performance. Hall's study explores
how PMS can facilitate learning and update individuals' mental models, ultimately improving
performance. By considering cognitive and motivational mechanisms, Hall's research offers

insights into the mechanisms underlying the effectiveness of performance measurement systems

in driving individual and organizational performance.

448 (Mazor et al., 1998) surveys Interacting Multiple Model (IMM) methods in target tracking,

highlighting their effectiveness in estimating the state of dynamic systems with multiple behavior

450 modes. Mazor categorizes IMM estimators based on their ability to adjust to changing system 451 dynamics and emphasizes their cost-effectiveness and scalability. This survey provides a 452 comprehensive overview of IMM methods, offering practical insights for researchers and 453 practitioners in target tracking and estimation.

(Uzsoy et al., 1992) reviews production planning and scheduling models in the semiconductor industry, addressing challenges such as random yields, complex product flows, and rapidly changing technologies. Uzsoy highlights the importance of industrial engineering and operations research techniques in addressing production planning problems in semiconductor manufacturing. This review offers valuable insights into the characteristics, performance evaluation, and planning strategies specific to the semiconductor industry, contributing to advancements in production planning and control.

461 These detailed descriptions provide insights into the diverse research topics and methodologies

- 462 explored by each author, spanning various disciplines and addressing a wide range of theoretical
- 463 and practical challenges.

464464

465

466

467467

 Table 2: Exploring Diverse Research Methodologies: A Multifaceted Perspective on Contemporary Studies

Author	Methodology	Key Findings	Limitations
(Frantz et	Shale-specific,	- History matching and forecasting	Limited to Barnett
al., 2005)	finite-difference	production data from Barnett Shale	Shale reservoir.
	reservoir	reservoir Illustration of model uses for	
	simulation	vertical and horizontal wells including	
	model	gas in place, recovery factors, optimal	
		well spacing, drainage areas, drainage	
		shapes, fracture half-lengths,	
		conductivities, infill evaluations,	
		horizontal well modeling, stimulation	
		treatments, microseismic data analysis,	
		and compression evaluations.	
(Arhonditsis	Meta-analysis of	- Assessment of predictive capabilities	Limited to spatial
& Brett	recent	of planktonic ecosystem models	and temporal
2004)	mechanistic	Identification of model behavior trends.	patterns in
	aquatic	- Temperature and dissolved oxygen had	planktonic systems.
	biogeochemical	highest coefficients of determination	
	models	and lowest relative error Bacteria and	
		zooplankton dynamics were poorly	
		predicted.	
(Seeling et	Tutorial on	- Importance of evaluating networking	Focuses specifically
al., 2004)	network	architectures, protocols, and	on video traffic.
	performance	mechanisms for video traffic Video	
	evaluation using	traces provide convenient	
	video traces	characterizations for networking studies.	
(X. Wang &	Structural	- Development of tourist satisfaction	Limited to tourist

Dunston,	modeling	model for a destination Exploration of	destinations.
2006)	approach to	antecedents and consequences of tourist	
	tourist	satisfaction Guilin used as a case	
	satisfaction	study.	
(Rostami et $(1, 2014)$	Systematization	- Classification of threat models,	Focuses specifically
al., 2014)	of knowledge in	defenses, and evaluation metrics in	on nardware
		nardware security.	security.
(Morrat al	Security Multi model	Two stan model for learning and	Limited to relation
(Mar et al., 2011)	Multi-model	- I wo-step model for learning and	Limited to robotics
2011)	approach based	predicting tool anoruances Tackies	applications.
	functional	fastures and action based affacts	
	features for tool	reatures and action-based effects.	
	affordance		
	learning		
(Bateman &	Comparison of	- Contrast between conventionally	Limited to meta-
Jones.	conventional	estimated models and multi-level	analysis of
2003)	and multi-level	modeling (MLM) techniques	recreation benefit
	modeling	Identification of unusually large	estimates.
	approaches to	residuals within conventional models	
	meta-analysis	MLM approach incorporates	
	•	hierarchical nature of meta-analysis	
		data.	
(Lisi, 2015)	Examination of	- Discussion on how companies translate	Limited to
(Lisi, 2015)	Examination of translating	- Discussion on how companies translate motivational factors into improved	Limited to environmental
(Lisi, 2015)	Examination of translating environmental	- Discussion on how companies translate motivational factors into improved performance Suggestion of	Limited to environmental management
(Lisi, 2015)	Examination of translating environmental motivations into	- Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like	Limited to environmental management contexts.
(Lisi, 2015)	Examination of translating environmental motivations into performance	- Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like environmental performance	Limited to environmental management contexts.
(Lisi, 2015)	Examination of translating environmental motivations into performance	- Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like environmental performance measurement systems.	Limited to environmental management contexts.
(Lisi, 2015) (van der Weuden at	Examination of translating environmental motivations into performance Hierarchical	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Tast access and accesitive function 	Limited to environmental management contexts.
(Lisi, 2015) (van der Weyden et	Examination of translating environmental motivations into performance Hierarchical linear model	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements of the armshulter of the performance for a mark mershulter of	Limited to environmental management contexts. Limited to military fitness contexts.
(Lisi, 2015) (van der Weyden et al., 2022)	Examination of translating environmental motivations into performance Hierarchical linear model approach to	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. 	Limited to environmental management contexts. Limited to military fitness contexts.
(Lisi, 2015) (van der Weyden et al., 2022)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. 	Limited to environmental management contexts. Limited to military fitness contexts.
(Lisi, 2015) (van der Weyden et al., 2022)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. 	Limited to environmental management contexts. Limited to military fitness contexts.
(Lisi, 2015) (van der Weyden et al., 2022)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. 	Limited to environmental management contexts. Limited to military fitness contexts.
(Lisi, 2015) (van der Weyden et al., 2022)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology 	Limited to environmental management contexts. Limited to military fitness contexts.
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level	 Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling	 Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase Adoption of 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling.
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling methodology	 Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase Adoption of task-accurate performance models 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling.
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling methodology	 Discussion on how companies translate motivational factors into improved performance Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase Adoption of task-accurate performance models augmented with power-state-based 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling.
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling methodology	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase. Adoption of task-accurate performance models augmented with power-state-based models. 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling.
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015) (J. Xu et al.,	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling methodology Assessment of	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase. Adoption of task-accurate performance models augmented with power-state-based models. Study on false alarm rate (FAR), 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling. Limited to
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015) (J. Xu et al., 2011)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling methodology Assessment of univariate alarm	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase. Adoption of task-accurate performance models augmented with power-state-based models. Study on false alarm rate (FAR), missed alarm rate (MAR), and averaged 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling. Limited to evaluation of
(Lisi, 2015) (van der Weyden et al., 2022) (B. Xu et al., 2015) (J. Xu et al., 2011)	Examination of translating environmental motivations into performance Hierarchical linear model approach to assessing cognitive function improvements Proposal of a system-level power modeling methodology Assessment of univariate alarm systems using	 Discussion on how companies translate motivational factors into improved performance. Suggestion of introducing control mechanisms like environmental performance measurement systems. Evaluation of Army Combat Fitness Test scores and cognitive function improvements after a ruck march. Introduction of a novel methodology for joint power-performance evaluation at specification phase. Adoption of task-accurate performance models augmented with power-state-based models. Study on false alarm rate (FAR), missed alarm rate (MAR), and averaged alarm delay (AAD) for univariate alarm 	Limited to environmental management contexts. Limited to military fitness contexts. Limited to system- level power modeling. Limited to evaluation of univariate alarm

	AAD	advanced mechanisms of alarm	
		generation.	
(Westgaard & Van der Wijst, 2001)	Logistic model approach to default probabilities in a corporate bank portfolio	- Analysis and management of credit risk in corporate banking Introduction of logistic model approach for default probabilities Discussion on modern risk measures like Credit Risk Capital (CRC) and Risk Adjusted Return On Capital (RAROC).	Limited to credit risk analysis in corporate banking.
(Goel & Okumoto, 1979)	Stochastic model for software failure phenomenon based on NHPP	- Presentation of a stochastic model for software failure phenomenon Analysis and comparison of software failure data.	- Focuses specifically on software reliability analysis Limited to software failure phenomenon.
(H. Zhang, 2019)	Approach to ECG arrhythmia analysis using hidden Markov models	- Introduction of a new approach to ECG arrhythmia analysis based on hidden Markov modeling (HMM) Classification of ventricular arrhythmias and supraventricular arrhythmias.	 Limited to ECG arrhythmia analysis. Classification of supraventricular arrhythmias may require additional detection methods.
(Chin et al., 2003)	Partial Least Squares Latent Variable Modeling Approach for measuring interaction effects	- Discussion on the detection and estimation of interaction effects in social science research Application of the approach to examining conditions and contexts under which relationships may vary.	Limited to social science research.
(Zhao et al., 2010)	Evaluation of a Performance Model of Lustre File System	- Assessment of IO efficiency in Lustre file system Importance of gaining insights into deliverable Lustre file system performance.	Limited to Lustre file system evaluation.
(Bai et al., 2019)	Device-level transient modeling approach for FPGA-based real-time simulation of power converters	- Proposal of a novel approach for real- time simulation of power converters using FPGA.	- Focuses specifically on power converter modeling Limited to FPGA-based real-time simulation.
(Hill & Minsker, 2010)	Data-driven modeling approach for	- Development of a real-time anomaly detection method for environmental data streams Identification of data	Limited to streaming environmental

anomaly	deviations from historical patterns.	sensor data.
detection in		
streaming		
environmental		
sensor data		

468468

469469

470 Exploring Diverse Research Methodologies: A Multifaceted Perspective on Contemporary Studies" offers a comprehensive overview of various research methodologies employed in 471 contemporary studies across different disciplines. Spanning topics from shale production 472 performance evaluation to aquatic biogeochemical modeling and from hardware security to 473 474 robotics, the compilation highlights the breadth of research approaches utilized in today's academic landscape. By presenting a range of methodologies, including reservoir simulation, 475 476 meta-analysis, structural modeling, and hierarchical linear modeling, the collection underscores the importance of methodological diversity in addressing complex research questions. Each 477 study provides key findings and insights, shedding light on the strengths and limitations of 478 479 different approaches, ultimately contributing to the advancement of knowledge across diverse 480 fields.

481481

482 5. Case Studies

483 5.1. MAR Projects in Arid Regions:

484 Arid regions often face acute water scarcity, making MAR projects crucial for sustainable water 485 management. One notable example is the United Arab Emirates (UAE), where MAR initiatives

486 have been instrumental in replenishing depleted aquifers and ensuring water security.

487 Case Study: UAE's Strategic Aquifer Recharge Enhancement (SARE)

- In the UAE, the SARE project focuses on recharging the coastal aquifers using treated wastewater and stormwater runoff. The treated water is injected into the aquifers through injection wells, preventing seawater intrusion and augmenting freshwater resources. Through careful monitoring and management, the SARE project has successfully replenished aquifers and
- 492 secured a sustainable water supply for urban and agricultural use.

493 5.2. MAR Projects in Urban Areas:

- 494 Urban areas face unique water challenges due to population growth, infrastructure limitations,495 and climate change. MAR projects in urban settings aim to enhance groundwater recharge,
- 496 reduce flooding, and mitigate the effects of droughts.

497 Case Study: Berlin, Germany

- 498 In Berlin, MAR techniques are employed to manage stormwater runoff and prevent urban
- 499 flooding. Permeable pavements, green roofs, and rain gardens are used to capture rainwater and
- 500 direct it into infiltration basins or recharge wells. By recharging the groundwater, these
- initiatives help sustain urban ecosystems, reduce reliance on surface water sources, and mitigateurban heat island effects.

503 5.3. MAR Projects for Agricultural Water Management:

- 504 Agriculture accounts for a significant portion of global water consumption, making efficient
- 505 water management essential for sustainable food production. MAR projects in agricultural areas
- 506 focus on recharging aquifers, improving irrigation efficiency, and reducing water wastage.
- 507 Case Study: Gujarat, India

Dr. Sumit Dilip Ingle/Afr.J.Bio.Sc. 6(13)(2024).2890-2917

508

implemented to enhance agricultural water security. Farmers are encouraged to construct farm 509 510 ponds to capture excess monsoon runoff, which then infiltrates into the groundwater, replenishing aquifers for dry season irrigation. Additionally, lining canals to reduce seepage 511 losses helps conserve water and improve irrigation efficiency, thereby increasing crop yields and 512 farmer livelihoods. 513 514 In summary, MAR projects play a vital role in addressing water challenges across different regions and sectors, promoting sustainable water management practices, and enhancing water 515 516 security for communities, industries, and ecosystems. 517 518 519 6. Challenges and Future Directions 520 **6.1. Data Availability and Quality:** 521 **Challenges:** 522 • Limited availability of comprehensive hydrogeological data, especially in developing 523 regions, hinders the planning and implementation of MAR projects. 524 • Existing data may lack spatial and temporal resolution, making it challenging to assess 525 aquifer characteristics and recharge rates accurately. 526 • Quality control and assurance of data, including monitoring well data and water quality 527 measurements, are crucial but often overlooked. 528 529 **Future Directions:** • Invest in comprehensive hydrogeological surveys and monitoring networks to improve 530 data availability and quality. 531 • Utilize remote sensing technologies, geophysical surveys, and advanced modeling 532 techniques to supplement traditional data collection methods. 533 Establish standardized protocols for data collection, management, and sharing to ensure 534 • consistency and reliability across MAR projects. 535

In Gujarat, MAR techniques such as farm pond recharge and canal seepage management are

536 6.2. Scale Issues:

537 Challenges:

- Scaling up MAR projects from pilot studies to regional or national levels poses logistical,
 financial, and technical challenges.
- Balancing the scale of recharge activities with the hydrogeological characteristics of the aquifer is essential to avoid adverse impacts such as groundwater overdraft or salinization.
- Land availability and land use conflicts may constrain the implementation of large-scale
 MAR schemes, particularly in densely populated or urbanized areas.

545 **Future Directions:**

- Conduct comprehensive feasibility studies and stakeholder consultations to assess the suitability and potential impacts of scaling up MAR projects.
- Implement adaptive management strategies to monitor and mitigate any unintended consequences of large-scale recharge activities.
- Explore innovative financing mechanisms and public-private partnerships to fund and sustain large-scale MAR initiatives.
- 552 **6.3. Integrating Monitoring and Modeling Approaches:**
- 553 Challenges:

554	• Disconnect between monitoring efforts and modeling studies often leads to mismatches
555	between predicted and observed outcomes in MAR projects.
556	• Integrating heterogeneous data sources and modeling tools presents technical and
557	computational challenges, particularly for complex hydrogeological systems.
558	 Limited understanding of subsurface processes and uncertainties in model parameters car
559	undermine the accuracy and reliability of MAR simulations.
560	Future Directions:
561	• Develop integrated monitoring and modeling frameworks that leverage advances in data
562	science, machine learning, and hydroinformatics.
563	• Implement real-time monitoring systems and sensor networks to continuously update and
564	refine groundwater models.
565	• Foster interdisciplinary collaboration among hydrogeologists, engineers, data scientists
566	and stakeholders to co-develop and validate integrated modeling approaches.
567	6.4. Climate Change Considerations:
568	Challenges:
569	• Climate change exacerbates hydrological variability, making it difficult to predict future
570	water availability and recharge patterns for MAR projects.
5/1	• Changes in precipitation patterns, extreme weather events, and sea-level rise may alter the effectiveness and resilience of MAD schemes even time.
572	Delensing short term adaptation massives with long term resilience planning passes
5/3	• Datation short-term adaptation measures with long-term residence planning poses a significant challenge for MAD prostitioners in the face of uncertain alimete projections.
574 F7F	Significant chanenge for MAR practitioners in the face of uncertain chinate projections.
5/5	Future Directions:
570	• Incorporate chinate change projections and uncertainty analysis into the design,
577	• Promote nature based solutions such as green infrastructure and ecosystem restoration to
570	• I follote flature-based solutions such as green infrastructure and ecosystem restoration to enhance the resilience of MAP systems to climate variability
580	• Easter adaptive management and learning by doing approaches to iteratively adjust MAR
581	• Toster adaptive management and rearing-by-doing approaches to herafivery adjust MAR strategies in response to changing climate conditions and evolving knowledge
582	6.5 Policy and Governance Implications:
583	Challenges
584	• Inconsistent regulatory frameworks and unclear property rights can impede the
585	implementation of MAR projects and hinder stakeholder engagement.
586	• Limited coordination among government agencies, water utilities, and local communities
587	often leads to fragmented governance arrangements and conflicting priorities.
588	• Lack of incentives for sustainable groundwater management and insufficient enforcement
589	mechanisms undermine the long-term viability of MAR initiatives.
590	Future Directions:
591	• Develop robust regulatory frameworks and institutional mechanisms to facilitate the
592	permitting, monitoring, and enforcement of MAR activities.
593	• Promote multi-stakeholder partnerships and participatory approaches to foster social
594	acceptance and equitable distribution of benefits from MAR projects.
595	• Implement pricing mechanisms, incentives, and payment for ecosystem services schemes
596	to promote sustainable groundwater use and investment in MAR infrastructure.
597	In conclusion, addressing these challenges and embracing innovative approaches will be crucia
598	for the successful implementation and scalability of MAR projects in the face of increasing water
599	scarcity and climate uncertainty. Collaboration among researchers, practitioners, policymakers

and communities will be essential to realize the full potential of MAR as a sustainable watermanagement strategy.

602602

603 7. Conclusions

The comprehensive assessment of monitoring techniques for Managed Aquifer Recharge (MAR) projects has revealed significant insights into the effectiveness and limitations of various methods. Direct monitoring techniques, such as water level measurements, groundwater quality monitoring, tracer studies, and geophysical methods, offer precise and reliable data, while indirect techniques like remote sensing, GIS, and spatial analysis provide broader, landscapelevel insights. These methodologies, when systematically reviewed, highlight their diverse applications and varying degrees of effectiveness across different hydrogeological settings and 611 project scales.

612 The review of MAR methodologies from regions experiencing water scarcity, salinization, and climate change impacts demonstrates MAR's potential as a sustainable water management 613 strategy. It underscores the effectiveness of MAR in replenishing depleted aquifers, mitigating 614 groundwater contamination, and enhancing water security. However, the review also identifies 615 several limitations, including site-specific applicability, economic feasibility, and potential 616 geochemical risks, which must be carefully considered to optimize MAR implementation. 617 Furthermore, the exploration of diverse research methodologies across various disciplines, from 618 619 shale production performance evaluation to aquatic biogeochemical modeling, highlights the importance of methodological diversity. By presenting a range of approaches, such as reservoir 620 621 simulation, meta-analysis, structural modeling, and hierarchical linear modeling, the review 622 emphasizes the value of adapting research methods to address complex questions effectively. Each methodology's strengths and limitations contribute to advancing knowledge in their 623 624 respective fields.

In conclusion, this multifaceted review provides a holistic understanding of the methodologies 626 employed in MAR and other contemporary studies. It underscores the need for a tailored 627 approach to monitoring and implementing MAR projects, considering regional and project-628 specific conditions. Additionally, the importance of methodological diversity in research is 629 highlighted, advocating for the continual adaptation and refinement of techniques to address 630 evolving challenges and opportunities in water management and beyond.

631

- 633
- 634 **Declarations**:
- 635 Competing Interests -Not Applicable
- 636 conflicts of interest -Not Applicable
- 637 Funding Information Not Applicable
- Data Availability Statement Data may be made available as per the request.
- 639 Research Involving Human and /or Animals Not Applicable
- 640 Informed Consent Not Applicable

Dr. Sumit Dilip Ingle/Afr.J.Bio.Sc. 6(13)(2024).2890-2917

641	- ethical approval statements - Not Applicable
642	
643	
644	References
645	
646	1. Abernethy, M. A., Horne, M., Lillis, A. M., Malina, M. A., & Selto, F. H. (2005). A
647	multi-method approach to building causal performance maps from expert knowledge.
648	Management Accounting Research, 16(2), 135–155.
649	2. Ajmone Marsan, M., Conte, G., & Balbo, G. (1984). A class of generalized stochastic
650	Petri nets for the performance evaluation of multiprocessor systems. ACM Transactions
651	on Computer Systems, 2(2), 93-122. https://doi.org/10.1145/190.191
652	3. Amjad, S., Ahmad, N., Saba, T., Anjum, A., Manzoor, U., Balubaid, M. A., & Malik, S.
653	U. R. (2017). Calculating completeness of agile scope in scaled agile development. <i>IEEE</i>
654	Access, 6, 5822–5847.
655	4. Andon, P., Baxter, J., & Chua, W. F. (2007). Accounting change as relational drifting: A
656	field study of experiments with performance measurement. <i>Management Accounting</i>
657	Research, 18(2), 273–308.
658	5. Arhonditsis, G. B., & Brett, M. T. (2004). Evaluation of the current state of mechanistic
659	aquatic biogeochemical modeling. Marine Ecology Progress Series, 2/1, 13–26.
660	o. Bal, H., Luo, H., Liu, C., Palfe, D., & Gao, F. (2019). A device-level transient modeling
662	Transactions on Power Electronics 35(2) 1282 1202
662	7 Balsamo S Di Marco A Inverardi P & Simeoni M (2004) Model-based
664	performance prediction in software development: A survey IEEE Transactions on
665	Software Engineering 30(5) 295–310
666	8 Bateman, I. J. & Jones, A. P. (2003). Contrasting conventional with multi-level modeling
667	approaches to meta-analysis: Expectation consistency in UK woodland recreation values.
668	Land Economics, 79(2), 235–258.
669	9. Benedetto, S., Biglieri, E., & Daffara, R. (1979). Modeling and performance evaluation
670	of nonlinear satellite links-a Volterra series approach. IEEE Transactions on Aerospace
671	and Electronic Systems, 4, 494–507.
672	10. Berberich, K., Bedathur, S., Alonso, O., & Weikum, G. (2010). A Language Modeling
673	Approach for Temporal Information Needs. In C. Gurrin, Y. He, G. Kazai, U.
674	Kruschwitz, S. Little, T. Roelleke, S. Rüger, & K. Van Rijsbergen (Eds.), Advances in
675	Information Retrieval (Vol. 5993, pp. 13–25). Springer Berlin Heidelberg.
676	https://doi.org/10.1007/978-3-642-12275-0_5
677	11. Bikas, H., Stavropoulos, P., & Chryssolouris, G. (2016). Additive manufacturing
678	methods and modelling approaches: A critical review. The International Journal of
679	Advanced Manufacturing Technology, 83(1–4), 389–405. https://doi.org/10.100//s001/0-
680	$\begin{array}{c} 015-7576-2 \\ 12 \text{ Describe O} \mathbb{D} \text{Keywords Handahis } \mathcal{M} = 0 \text{ Labinary Tr} (2022) Supervised handahis and the second se$
681 682	12. Brunna, UP., Kunnaala-Hyrkki, V., & Inkinen, I. (2023). Sustainable small ports:
682 682	renormance assessment tool for management, responsibility, impact, and self-
003 601	001/2-7
004	00142-2

685	13. Calvo, R. A., & D'Mello, S. (2010). Affect detection: An interdisciplinary review of
686	models, methods, and their applications. IEEE Transactions on Affective Computing,
687	1(1), 18–37.
688	14. Cantone, I., Marucci, L., Iorio, F., Ricci, M. A., Belcastro, V., Bansal, M., Santini, S., Di
689	Bernardo, M., Di Bernardo, D., & Cosma, M. P. (2009). A yeast synthetic network for in
690	vivo assessment of reverse-engineering and modeling approaches. Cell, 137(1), 172–181.
691	15. Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent
692	selection bias in performance evaluation. The Journal of Machine Learning Research, 11,
693	2079–2107.
694	16. Chen, J., Havtun, H., & Palm, B. (2014). Investigation of ejectors in refrigeration system:
695	Optimum performance evaluation and ejector area ratios perspectives. Applied Thermal
696	Engineering, 64(1–2), 182–191.
697	17. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent
698	Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte
699	Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Information
700	Systems Research, 14(2), 189–217. https://doi.org/10.1287/isre.14.2.189.16018
701	18. Cipolla, C. L., Lolon, E. P., Erdle, J. C., & Rubin, B. (2010). Reservoir modeling in
702	shale-gas reservoirs. SPE Reservoir Evaluation & Engineering, 13(04), 638–653.
703	19. Cui, H., Zhang, L., Li, W., Yuan, Z., Wu, M., Wang, C., Ma, J., & Li, Y. (2021). A new
704	calibration system for low-cost sensor network in air pollution monitoring. Atmospheric
705	Pollution Research, 12(5), 101049.
706	20. Dahlke, H. E., LaHue, G. T., Mautner, M. R., Murphy, N. P., Patterson, N. K.,
707	Waterhouse, H., Yang, F., & Foglia, L. (2018). Managed aquifer recharge as a tool to
708	enhance sustainable groundwater management in California: Examples from field and
709	modeling studies. In Advances in chemical pollution, environmental management and
710	protection (Vol. 3, pp. 215–275). Elsevier.
711	https://www.sciencedirect.com/science/article/pii/S2468928918300212
712	21. Darban, A. (2024). Numerical modeling of Managed Aquifer Recharge (MAR) systems
713	[PhD Thesis, Politecnico di Torino]. https://webthesis.biblio.polito.it/30336/
714	22. Demir, C., Fanta, D., Akıntuğ, B., & Ünlü, K. (2022). Modeling coastal Güzelyurt
715	(Morphou) aquifer in northern Cyprus for mitigation of groundwater depletion through
716	managed aquifer recharge. Sustainable Water Resources Management, 8(4), 96.
717	https://doi.org/10.1007/s40899-022-00683-4
718	23. Dillon, P., Fernández Escalante, E., Megdal, S. B., & Massmann, G. (2020). Managed
719	aquifer recharge for water resilience. In Water (Vol. 12, Issue 7, p. 1846). MDPI.
720	https://www.mdpi.com/2073-4441/12/7/1846
721	24. Dillon, P., Pavelic, P., Palma Nava, A., & Weiping, W. (2018). Advances in multi-stage
722	planning and implementing managed aquifer recharge for integrated water management.
723	Sustainable Water Resources Management, 4(2), 145–151.
724	https://doi.org/10.1007/s40899-018-0242-8
725	25. Dong, Z., Khan, F. N., Sui, Q., Zhong, K., Lu, C., & Lau, A. P. T. (2015). Optical
726	performance monitoring: A review of current and future technologies. Journal of
727	Lightwave Technology, 34(2), 525–543.
728	26. Dookran, V. R. (2012). Managing scope change within fast track project teams.
729	University of Johannesburg (South Africa).

730	https://search.proquest.com/openview/4007e828b50cfd9c46b8028fd326efda/1?pq-
731	origsite=gscholar&cbl=2026366&diss=y
732	27. Ebrahim, G. Y., Lautze, J. F., & Villholth, K. G. (2020). Managed aquifer recharge in
733	Africa: Taking stock and looking forward. <i>Water</i> , 12(7), 1844.
734	28. Estrada, M. A. R. (2020). A New International Trade Modeling Approaches to Evaluate
735	COVID-19 Effects. https://europepmc.org/article/ppr/ppr240425
736	29. Farag, W. A., Quintana, V. H., & Lambert-Torres, G. (1998). A genetic-based neuro-
737	fuzzy approach for modeling and control of dynamical systems. IEEE Transactions on
738	Neural Networks, 9(5), 756–767.
739	30. Fathi, S., Hagen, J. S., Matanó, A., & Nogueira, G. E. H. (2021). Review of GIS Multi-
740	Criteria Decision Analysis for Managed Aquifer Recharge in Semi-Arid Regions. In C.
741	B. Pande & K. N. Moharir (Eds.), Groundwater Resources Development and Planning in
742	the Semi-Arid Region (pp. 19–52). Springer International Publishing.
743	https://doi.org/10.1007/978-3-030-68124-1_2
744	31. Feamster, N., Andersen, D. G., Balakrishnan, H., & Kaashoek, M. F. (2003). Measuring
745	the effects of internet path faults on reactive routing. ACM SIGMETRICS Performance
746	<i>Evaluation Review</i> , 31(1), 126–137. https://doi.org/10.1145/885651.781043
747	32. Fehrenbacher, D. D., Schulz, A. KD., & Rotaru, K. (2018). The moderating role of
748	decision mode in subjective performance evaluation. <i>Management Accounting Research</i> ,
749	41, 1–10.
750	33. Fernández Escalante, E., Henao Casas, J. D., San Sebastián Sauto, J., & Calero Gil, R.
751	(2022). Monitored and intentional recharge (MIR): A model for managed aquifer
752	recharge (MAR) guideline and regulation formulation. <i>Water</i> , 14(21), 3405.
753	34. Franco-Santos, M., Lucianetti, L., & Bourne, M. (2012). Contemporary performance
754	measurement systems: A review of their consequences and a framework for research.
755	Management Accounting Research, 23(2), 79–119.
756	35. Frantz, J. H., Williamson, J. R., Sawyer, W. K., Johnston, D., Waters, G., Moore, L. P.,
757	MacDonald, R. J., Pearcy, M., Ganpule, S. V., & March, K. S. (2005). Evaluating Barnett
758	Shale production performance using an integrated approach. SPE Annual Technical
759	Conference and Exhibition?, SPE-96917. https://onepetro.org/SPEATCE/proceedings-
760	abstract/05ATCE/All-05ATCE/89443
761	36. Fuentes, I., & Vervoort, R. W. (2020). Site suitability and water availability for a
762	managed aquifer recharge project in the Namoi basin, Australia. Journal of Hydrology:
763	Regional Studies, 27, 100657.
764	37. García-Menéndez, O., Renau-Pruñonosa, A., Morell, I., Ballesteros, B. J., & Esteller, M.
765	V. (2021). Hydrogeochemical changes during managed aquifer recharge (MAR) in a
766	salinised coastal aquifer. Applied Geochemistry, 126, 104866.
767	38. Georgilakis, P. S., & Hatziargyriou, N. D. (2013). Optimal distributed generation
768	placement in power distribution networks: Models, methods, and future research. IEEE
769	Transactions on Power Systems, 28(3), 3420–3428.
770	39. Ghannouchi, F. M., & Hammi, O. (2009). Behavioral modeling and predistortion. IEEE
771	Microwave Magazine, 10(7), 52–64.
772	40. Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for
773	software reliability and other performance measures. IEEE Transactions on Reliability,
774	28(3), 206–211.

775	41. Guenther, T. W., & Heinicke, A. (2019). Relationships among types of use, levels of
776	sophistication, and organizational outcomes of performance measurement systems: The
777	crucial role of design choices. Management Accounting Research, 42, 1–25.
778	42. Hagler, G., Hanley, T., Hassett-Sipple, B., Vanderpool, R., Smith, M., Wilbur, J., Wilbur,
779	T., Oliver, T., Shand, D., & Vidacek, V. (2022). Evaluation of two collocated federal
780	equivalent method PM2. 5 instruments over a wide range of concentrations in Sarajevo,
781	Bosnia and Herzegovina. Atmospheric Pollution Research, 13(4), 101374.
782	43. Halász, G. (2003). Educational Change and Social Transition in Hungary: Scope and
783	Objectives. In Change forces in post-communist Eastern Europe (pp. 77–95). Routledge.
784	https://www.taylorfrancis.com/chapters/edit/10.4324/9780203426500-11/educational-
785	change-social-transition-hungary-g%C3%A1bor-hal%C3%A1sz-national-institute-
786	public-education-budapest-hungary
787	44. Hall, M. (2011). Do comprehensive performance measurement systems help or hinder
788	managers' mental model development? Management Accounting Research, 22(2), 68-83.
789	45. Händel, F., Liu, G., Fank, J., Friedl, F., Liedl, R., & Dietrich, P. (2016). Assessment of
790	small-diameter shallow wells for managed aquifer recharge at a site in southern Styria,
791	Austria. Hydrogeology Journal, 24(8), 2079.
792	46. He, X., Bryant, B. P., Moran, T., Mach, K. J., Wei, Z., & Freyberg, D. L. (2021).
793	Climate-informed hydrologic modeling and policy typology to guide managed aquifer
794	recharge. Science Advances, 7(17), eabe6025. https://doi.org/10.1126/sciadv.abe6025
795	47. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information
796	systems research. MIS Quarterly, 75–105.
797	48. Hill, D. J., & Minsker, B. S. (2010). Anomaly detection in streaming environmental
798	sensor data: A data-driven modeling approach. Environmental Modelling & Software,
799	25(9), 1014–1022.
800	49. Hossain, M. I., Bari, M. N., Miah, S. U., Kafy, AA., & Nasher, N. R. (2021).
801	Application of modified managed aquifer recharge model for groundwater management
802	in drought-prone water-stressed Barind Tract, Bangladesh. Environmental Challenges, 4,
803	100173.
804	50. Hudson, M., Lean, J., & Smart, P. A. (2001). Improving control through effective
805	performance measurement in SMEs. Production Planning & Control, 12(8), 804-813.
806	https://doi.org/10.1080/09537280110061557
807	51. Hyvönen, J. (2007). Strategy, performance measurement techniques and information
808	technology of the firm and their links to organizational performance. Management
809	Accounting Research, 18(3), 343–366.
810	52. Imig, A., Szabó, Z., Halytsia, O., Vrachioli, M., Kleinert, V., & Rein, A. (2022). A
811	review on risk assessment in managed aquifer recharge. Integrated Environmental
812	Assessment and Management, 18(6), 1513–1529. https://doi.org/10.1002/ieam.4584
813	53. Jelinski, Z., & Moranda, P. (1972). Software reliability research. In Statistical computer
814	<i>performance evaluation</i> (pp. 465–484). Elsevier.
815	https://www.sciencedirect.com/science/article/pii/B9780122669507500281
816	54. Kakadiaris, I. A., Passalis, G., Toderici, G., Murtuza, M. N., Lu, Y., Karampatziakis, N.,
817	& Theoharis, T. (2007). Three-dimensional face recognition in the presence of facial
818	expressions: An annotated deformable model approach. <i>IEEE Transactions on Pattern</i>
819	Analysis and Machine Intelligence, 29(4), 640–649.

847

848

- 55. Karnon, J., Stahl, J., Brennan, A., Caro, J. J., Mar, J., & Möller, J. (2012). Modeling
 Using Discrete Event Simulation: A Report of the ISPOR-SMDM Modeling Good
 Research Practices Task Force-4. *Medical Decision Making*, 32(5), 701–711.
 https://doi.org/10.1177/0272989X12455462
- 56. Kaur, K., & Kelly, K. E. (2023). Performance evaluation of the Alphasense OPC-N3 and
 Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah. *Atmospheric Measurement Techniques*, *16*(10), 2455–2470.
- 57. Kourakos, G., Brunetti, G., Bigelow, D. P., Wallander, S., & Dahlke, H. E. (2023). 827 Optimizing Managed Aquifer Recharge Locations in California's Central Valley Using 828 an Evolutionary Multi- Objective Genetic Algorithm Coupled With a Hydrological 829 Simulation Model. Water Resources Research. 59(5). e2022WR034129. 830 https://doi.org/10.1029/2022WR034129 831
- 58. Kuchar, J. K., & Yang, L. C. (2000). A review of conflict detection and resolution
 modeling methods. *IEEE Transactions on Intelligent Transportation Systems*, 1(4), 179–
 189.
- 59. Kvedar, J. C., Fogel, A. L., Elenko, E., & Zohar, D. (2016). Digital medicine's march on
 chronic disease. *Nature Biotechnology*, *34*(3), 239–246.
- 60. Levintal, E., Kniffin, M. L., Ganot, Y., Marwaha, N., Murphy, N. P., & Dahlke, H. E.
 (2023). Agricultural managed aquifer recharge (Ag-MAR)—a method for sustainable
 groundwater management: A review. *Critical Reviews in Environmental Science and Technology*, 53(3), 291–314. https://doi.org/10.1080/10643389.2022.2050160
- 61. Lippera, M. C., Werban, U., & Vienken, T. (2023). Application of physical clogging
 models to Managed Aquifer Recharge: A review of modelling approaches from
 engineering fields. *Acque Sotterranee-Italian Journal of Groundwater*, *12*(3), 9–20.
- 62. Lisi, I. E. (2015). Translating environmental motivations into performance: The role of
 environmental performance measurement systems. *Management Accounting Research*,
 29, 27–44.
 - 63. López, J. A. H., & Cuadrado, J. S. (2020). MAR: A structure-based search engine for models. Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, 57–67. https://doi.org/10.1145/3365438.3410947
- 64. Maliva, R. G. (2015). Managed aquifer recharge: State-of-the-art and opportunities. *Water Science and Technology: Water Supply*, *15*(3), 578–588.
- 65. Maliva, R. G., Herrmann, R., Coulibaly, K., & Guo, W. (2015). Advanced aquifer characterization for optimization of managed aquifer recharge. *Environmental Earth Sciences*, 73(12), 7759–7767. https://doi.org/10.1007/s12665-014-3167-z
- 66. Maliva, R., & Missimer, T. (2012). Managed Aquifer Recharge. In R. Maliva & T.
 Missimer, Arid Lands Water Evaluation and Management (pp. 559–630). Springer Berlin
 Heidelberg. https://doi.org/10.1007/978-3-642-29104-3_23
- 67. Manrique-Millones, D., Vasin, G. M., Dominguez-Lara, S., Millones-Rivalles, R., Ricci,
 R. T., Abregu Rey, M., Escobar, M. J., Oyarce, D., Pérez-Díaz, P., & Santelices, M. P.
 (2022). Parental Burnout Assessment (PBA) in different Hispanic countries: An
 exploratory structural equation modeling approach. *Frontiers in Psychology*, *13*, 827014.
- 862 68. Maples, S. R., Fogg, G. E., & Maxwell, R. M. (2019). Modeling managed aquifer
 863 recharge processes in a highly heterogeneous, semi-confined aquifer system.
 864 *Hydrogeology Journal*, 27(8), 2869–2888.

- 69. Mar, T., Zaunseder, S., Martínez, J. P., Llamedo, M., & Poll, R. (2011). Optimization of
 ECG classification by means of feature selection. *IEEE Transactions on Biomedical Engineering*, 58(8), 2168–2177.
- 70. March, S. T., & Smith, G. F. (1995). Design and natural science research on information
 technology. *Decision Support Systems*, 15(4), 251–266.
- 870 71. Marginson, D., McAulay, L., Roush, M., & van Zijl, T. (2014). Examining a positive
 871 psychological role for performance measures. *Management Accounting Research*, 25(1),
 872 63–75.
- 873 72. Marshall, A., Altman, D. G., Royston, P., & Holder, R. L. (2010). Comparison of techniques for handling missing covariate data within prognostic modelling studies: A simulation study. *BMC Medical Research Methodology*, *10*(1), 7.
 876 https://doi.org/10.1186/1471-2288-10-7
- 73. Mauck, B., & Winter, K. (2021). Assessing the potential for managed aquifer recharge
 (MAR) of the Cape Flats Aquifer. *Water Sa*, 47(4), 505–514.
- 74. Mazor, E., Averbuch, A., Bar-Shalom, Y., & Dayan, J. (1998). Interacting multiple
 model methods in target tracking: A survey. *IEEE Transactions on Aerospace and Electronic Systems*, 34(1), 103–123.
- 75. Miguel, J. A., Lechuga, Y., Allende, M. A., & Martínez, M. (2020). Performance
 evaluation of CCOs for the optimization of low-power pressure-based implantable
 wireless systems. *Microprocessors and Microsystems*, *79*, 103273.
- 76. Muhuri, A., Gascoin, S., Menzel, L., Kostadinov, T. S., Harpold, A. A., SanmiguelVallelado, A., & López-Moreno, J. I. (2021). Performance assessment of optical satellitebased operational snow cover monitoring algorithms in forested landscapes. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 14, 7159–
 7178.
- 77. Murphy, K. R., & Cleveland, J. N. (1995). Understanding performance appraisal: Social, organizational, and goal-based perspectives. Sage.
 https://books.google.com/books?hl=en&lr=&id=CnpuE09Vit0C&oi=fnd&pg=PP15&dq
 =Modeling+Approaches+for+MAR+Performance+Evaluation&ots=mfpjt5KkpW&sig=c
 IWSwkXEw5VrycNXpQVVaipZYb8
- 78. Nijkamp, P., Van Der Burch, M., & Vindigni, G. (2002). A Comparative Institutional Evaluation of Public-Private Partnerships in Dutch Urban Land-use and Revitalisation Projects. Urban Studies, 39(10), 1865–1880.
 https://doi.org/10.1080/0042098022000002993
- 79. Niyato, D., Hossain, E., & Han, Z. (2008). Dynamics of multiple-seller and multiplebuyer spectrum trading in cognitive radio networks: A game-theoretic modeling
 approach. *IEEE Transactions on Mobile Computing*, 8(8), 1009–1022.
- 80. O'Connor, G. C. (1998). Market Learning and Radical Innovation: A Cross Case
 Comparison of Eight Radical Innovation Projects. *Journal of Product Innovation Management*, 15(2), 151–166. https://doi.org/10.1111/1540-5885.1520151
- 81. Osváth, M., Yang, Z. G., & Kósa, K. (2023). Analyzing Narratives of Patient
 Experiences: A BERT Topic Modeling Approach. *Acta Polytech. Hung*, 20(7), 153–171.
- 907 82. Perdikaki, M., Makropoulos, C., & Kallioras, A. (2022). Participatory groundwater
 908 modeling for managed aquifer recharge as a tool for water resources management of a
 909 coastal aquifer in Greece. *Hydrogeology Journal*, 30(1), 37–58.
 910 https://doi.org/10.1007/s10040-021-02427-8

83. Pesaran, M. H., & Shin, Y. (1995). An autoregressive distributed lag modelling approach 911 to cointegration analysis (Vol. 9514). Department of Applied Economics, University of 912 Cambridge Cambridge, UK. http://request-913 attachments.storage.googleapis.com/bRv1Dv9b8djCBcOc9hAnvz9gHg1eA4HF1gOGvS 914 UCokMEpfXnVvGzMvfj3Hu6YWtrdDaYEeP7BAVQP0FTkZs8JQKRIh6HNaElqtPV/ 915 An Autoregressive Distributed Lag Modeling Approac.pdf 916 917 84. Prentis, E. L. (1989). Master project planning: Scope, time and cost. https://www.academia.edu/download/48429751/Master Project Planning -918 Scope Time and Cost.PDF 919 85. Punt, A. E., A'mar, T., Bond, N. A., Butterworth, D. S., de Moor, C. L., De Oliveira, J. 920 A., Haltuch, M. A., Hollowed, A. B., & Szuwalski, C. (2014). Fisheries management 921 under climate and environmental uncertainty: Control rules and performance simulation. 922 923 ICES Journal of Marine Science, 71(8), 2208–2220. 86. Rajadesingan, A., Zafarani, R., & Liu, H. (2015). Sarcasm Detection on Twitter: A 924 Behavioral Modeling Approach. Proceedings of the Eighth ACM International 925 926 Conference on Web Search and Data Mining. 97-106. https://doi.org/10.1145/2684822.2685316 927 87. Regnery, J., Gerba, C. P., Dickenson, E. R. V., & Drewes, J. E. (2017). The importance 928 929 of key attenuation factors for microbial and chemical contaminants during managed aquifer recharge: A review. Critical Reviews in Environmental Science and Technology, 930 47(15), 1409–1452. https://doi.org/10.1080/10643389.2017.1369234 931 932 88. Rezamand, M., Kordestani, M., Carriveau, R., Ting, D. S.-K., & Saif, M. (2019). A new hybrid fault detection method for wind turbine blades using recursive PCA and wavelet-933 based PDF. IEEE Sensors Journal, 20(4), 2023–2033. 934 935 89. Rostami, M., Koushanfar, F., & Karri, R. (2014). A primer on hardware security: Models, methods, and metrics. Proceedings of the IEEE, 102(8), 1283-1295. 936 90. Ruíz-López, P., Domínguez, J. M., & del Mar Granados, M. (2020). Intraoperative 937 938 nociception-antinociception monitors: A review from the veterinary perspective. Veterinary Anaesthesia and Analgesia, 47(2), 152–159. 939 91. Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., & Baldocchi, 940 941 D. D. (2010). How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agricultural and Forest Meteorology, 942 150(1), 63-76. 943 92. Sallwey, J., Glass, J., & Stefan, C. (2018). Utilizing unsaturated soil zone models for 944 assessing managed aquifer recharge. Sustainable Water Resources Management, 4(2), 945 383–397. https://doi.org/10.1007/s40899-018-0214-z 946 947 93. Sanghera, P. (2019). Project Scope Management. In P. Sanghera, CAPM® in Depth (pp. 135–171). Apress. https://doi.org/10.1007/978-1-4842-3664-2 4 948 94. San-Sebastián-Sauto, J., Fernández-Escalante, E., Calero-Gil, R., Carvalho, T., & 949 950 Rodríguez-Escales, P. (2018). Characterization and benchmarking of seven managed aquifer recharge systems in south-western Europe. Sustainable Water Resources 951 Management, 4(2), 193–215. https://doi.org/10.1007/s40899-018-0232-x 952 953 95. Seeling, P., Reisslein, M., & Kulapala, B. (2004). Network performance evaluation using frame size and quality traces of single-layer and two-layer video: A tutorial. IEEE 954 955 *Communications Surveys & Tutorials*, 6(3), 58–78.

956	96. Seidl, C., Wheeler, S. A., & Page, D. (2024). Understanding the global success criteria
957	for managed aquifer recharge schemes. Journal of Hydrology, 628, 130469.
958	97. Sherif, M., Sefelnasr, A., Al Rashed, M., Alshamsi, D., Zaidi, F. K., Alghafli, K., Baig,
959	F., Al-Turbak, A., Alfaifi, H., & Loni, O. A. (2023). A review of managed aquifer
960	recharge potential in the Middle East and North Africa Region with examples from the
961	Kingdom of Saudi Arabia and the United Arab Emirates. Water, 15(4), 742.
962	98. Sølvik, U. Ø., Stavelin, A., Christensen, N. G., & Sandberg, S. (2006). External quality
963	assessment of prothrombin time: The split- sample model compared with external quality
964	assessment with commercial control material. Scandinavian Journal of Clinical and
965	Laboratory Investigation, 66(4), 337–350. https://doi.org/10.1080/00365510600684580
966	99. Soner, O., Akyuz, E., & Celik, M. (2018). Use of tree based methods in ship performance
967	monitoring under operating conditions. Ocean Engineering, 166, 302-310.
968	100. Stolz, T., Huertas, M. E., & Mendoza, A. (2020). Assessment of air quality
969	monitoring networks using an ensemble clustering method in the three major
970	metropolitan areas of Mexico. Atmospheric Pollution Research, 11(8), 1271–1280.
971	101. Szymański, P. (2017). Risk management in construction projects. Procedia
972	Engineering, 208, 174–182.
973	102. Tang, J., & Johannesson, K. H. (2003). Speciation of rare earth elements in
974	natural terrestrial waters: Assessing the role of dissolved organic matter from the
975	modeling approach. Geochimica et Cosmochimica Acta, 67(13), 2321–2339.
976	103. Tran, D. Q., Kovacs, K., & Wallander, S. (2020). Water Conservation with
977	Managed Aquifer Recharge under Increased Drought Risk. Environmental Management,
978	66(4), 664–682. https://doi.org/10.1007/s00267-020-01329-x
979	104. Tzoraki, O., Dokou, Z., Christodoulou, G., Gaganis, P., & Karatzas, G. (2018).
980	Assessing the efficiency of a coastal Managed Aquifer Recharge (MAR) system in
981	Cyprus. Science of the Total Environment, 626, 875–886.
982	105. Uzsoy, R., Lee, CY., & Martin-Vega, L. A. (1992). A REVIEW OF
983	PRODUCTION PLANNING AND SCHEDULING MODELS IN THE
984	SEMICONDUCTOR INDUSTRY PART I: SYSTEM CHARACTERISTICS,
985	PERFORMANCE EVALUATION AND PRODUCTION PLANNING. IIE
986	Transactions, 24(4), 47-60. https://doi.org/10.1080/07408179208964233
987	106. van der Weyden, M. S., Merrigan, J. J., Newman, K., Hahn, J., & Martin, J.
988	(2022). Army Combat Fitness Test Scores Moderate Cognitive Function Improvements
989	After a Ruck March: A Hierarchical Linear Model Approach. The Journal of Strength &
990	Conditioning Research, 10–1519.
991	107. Vergara-Sáez, C., Prommer, H., Siade, A. J., Sun, J., & Higginson, S. (2024).
992	Process-Based and Probabilistic Quantification of Co and Ni Mobilization Risks Induced
993	by Managed Aquifer Recharge. Environmental Science & Technology, 58(17), 7567-
994	7576. https://doi.org/10.1021/acs.est.3c10583
995	108. Wang, CX., Bian, J., Sun, J., Zhang, W., & Zhang, M. (2018). A survey of 5G
996	channel measurements and models. IEEE Communications Surveys & Tutorials, 20(4),
997	3142–3168.
998	109. Wang, D., Wang, S., Bai, L., Nasir, M. S., Li, S., & Yan, W. (2020).
999	Mathematical modeling approaches for assessing the joint toxicity of chemical mixtures

1001	110. Wang, X., & Dunston, P. S. (2006). Potential of Augmented Reality as an
1002	Assistant Viewer for Computer-Aided Drawing. Journal of Computing in Civil
1003	Engineering, 20(6), 437-441. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:6(437)
1004	111. Wearne, S. (2014). Evidence-Based Scope for Reducing "Fire-Fighting" in
1005	Project Management. Project Management Journal, 45(1), 67–75.
1006	https://doi.org/10.1002/pmj.21395
1007	112. Westgaard, S., & Van der Wijst, N. (2001). Default probabilities in a corporate
1008	bank portfolio: A logistic model approach. European Journal of Operational Research,
1009	135(2), 338–349.
1010	113. Xu, B., Yang, C., & Pan, Y. (2015). Global neural dynamic surface tracking
1011	control of strict-feedback systems with application to hypersonic flight vehicle. IEEE
1012	Transactions on Neural Networks and Learning Systems, 26(10), 2563–2575.
1013	114. Xu, J., Wang, J., Izadi, I., & Chen, T. (2011). Performance assessment and design
1014	for univariate alarm systems based on FAR, MAR, and AAD. IEEE Transactions on
1015	Automation Science and Engineering, 9(2), 296–307.
1016	115. Yadavalli, N. A. K. (2006). An evaluation of microbial monitoring techniques for
1017	optimizing hydrogen sulfide biological air emissions. Texas A&M University-Kingsville.
1018	https://search.proquest.com/openview/5fbf9242ce76c5f0bfc8b594acdf2864/1?pq-
1019	origsite=gscholar&cbl=18750&diss=y
1020	116. Ye, M., Liu, X., & Lee, WC. (2012). Exploring social influence for
1021	recommendation: A generative model approach. Proceedings of the 35th International
1022	ACM SIGIR Conference on Research and Development in Information Retrieval, 671–
1023	680. https://doi.org/10.1145/2348283.2348373
1024	117. Yuan, J., Van Dyke, M. I., & Huck, P. M. (2016). Water reuse through managed
1025	aquifer recharge (MAR): Assessment of regulations/guidelines and case studies. Water
1026	Quality Research Journal of Canada, 51(4), 357–376.
1027	118. Zaidi, M., Ahfir, ND., Alem, A., El Mansouri, B., Wang, H., Taibi, S.,
1028	Duchemin, B., & Merzouk, A. (2020). Assessment of clogging of managed aquifer
1029	recharge in a semi-arid region. Science of the Total Environment, 730, 139107.
1030	119. Zhang, H. (2019). Assessment of managed aquifer recharge using GIS based
1031	modeling approach in West Coast, South Africa. https://etd.uwc.ac.za/handle/11394/7973
1032	120. Zhang, W., Lin, S., Bijarbooneh, F. H., Cheng, HF., Braud, T., Zhou, P., Lee,
1033	LH., & Hui, P. (2022). EdgeXAR: A 6-DoF Camera Multi-target Interaction
1034	Framework for MAR with User-friendly Latency Compensation. Proceedings of the
1035	ACM on Human-Computer Interaction, 6(EICS), 1-24. https://doi.org/10.1145/3532202
1036	121. Zhao, T., March, V., Dong, S., & See, S. (2010). Evaluation of a performance
1037	model of lustre file system. 2010 Fifth Annual ChinaGrid Conference, 191-196.
1038	https://ieeexplore.ieee.org/abstract/document/5562884/
1039	122. Zhiteneva, V., Mosher, J., Gerba, C. P., Rauch-Williams, T., & Drewes, J. E.
1040	(2023). A new workflow for assigning removal credits to assess overall performance of
1041	managed aquifer recharge (MAR). Water Research, 235, 119836.
1042	123. Zimmermann, A., Freiheit, J., German, R., & Hommel, G. (2000). Petri Net
1043	Modelling and Performability Evaluation with TimeNET 3.0. In B. R. Haverkort, H. C.
1044	Bohnenkamp, & C. U. Smith (Eds.), Computer Performance Evaluation. Modelling
	Techniques and Tools (Vol. 1786, pp. 188–202). Springer Berlin Heidelberg.
	https://doi.org/10.1007/3-540-46429-8_1

Dr. Sumit Dilip Ingle/Afr.J.Bio.Sc. 6(13)(2024).2890-2917