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Abstract: This study explores the use of Steel Slag Aggregate 

(SSA) as a sustainable alternative in concrete, addressing 

environmental concerns like resource depletion and high CO2 

emissions. Four modeling techniques—Gene Expression 

Programming (GEP), Artificial Neural Network (ANN), Random 

Forest Regression (RFR), and Gradient Boosting (GB)—were used 

to predict the compressive strength (CS) of SSA concrete using 367 

datasets. Among the models, Gradient Boosting (GB) showed the 

best performance, with the highest R2 values and lowest error 
                                                                     metrics, outperforming RFR, GEP, and ANN. The findings 

highlight GB's effectiveness in predictive modeling for sustainable 

construction. 
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Introduction 

 

The construction industry is a significant consumer of natural resources, with concrete being 

a key material composed of cement, water, and aggregates. Aggregates, which make up 80% of 

concrete's weight, provide essential structural qualities but contribute to environmental issues such as 

resource depletion, noise pollution, habitat loss, and increased CO2 emissions due to extensive 

mining, processing, and transportation. In 2018, Europe's aggregate industry was the largest non- 

energy mining sector, producing 3 billion tons across 39 nations. Globally, 60% of raw materials in 

construction come from the lithosphere, accounting for substantial energy and water use [1-2]. 

 

To reduce the industry's carbon footprint, more sustainable solutions are needed. Qatar, 

committed to sustainability through its Qatar National Vision 2030 (QNV 2030) and Qatar National 

Development Strategy (QNDS), faces local shortages of natural resources for concrete production. In 

response, Qatar has increased the use of green concrete, incorporating recycled materials like steel 

slag aggregate (SSA), wadi gravel, excavation waste, and construction and demolition wastes (CDW) 

[3]. 

 

Qatar's second development strategy recognized that 80% of generated solid waste, 

amounting to 80–100 million tons, ends up in landfills. In 2022, the country set targets to recycle 15% 

of all solid waste and use 20% of construction waste in building projects. The adoption of green 

concrete supports these goals by reducing construction waste, greenhouse gas emissions, and the 

reliance on imported materials, aligning with the QNV 2030 objectives. 

 

Steel slag, a by-product of the steel industry, can be effectively used as a replacement for 

traditional aggregates in concrete. The iron and steel sector contributes significantly to global 

greenhouse emissions, with a notable portion used in construction. Using steel slag as an aggregate 

substitute offers financial benefits by reducing reliance on expensive imported materials like gabbro, 

especially in Qatar, where local natural aggregates are limited. Additionally, recycling steel slag helps 

mitigate environmental issues such as landfill overuse, leading to more eco-friendly concrete that 

lowers waste, costs, and CO2 emissions [4]. 

 

Artificial intelligence (AI), aligned with Qatar’s National Vision 2030 (QNV 2030), is 

revolutionizing various sectors, including construction. AI, particularly machine learning (ML), has 

transformed the prediction of structural properties by eliminating inefficiencies in traditional methods. 

Machine learning algorithms, which learn from data rather than explicit programming, can analyze 

and predict complex datasets, offering valuable insights into concrete performance. This can guide 

material selection, optimize mix designs, and enhance structural performance, promoting a more 

sustainable and resilient construction sector in Qatar. This research aims to advance knowledge in 

sustainable construction by studying the effects of steel slag aggregate (SSA) on concrete 

compressive properties and exploring innovative predictive modeling methods. The findings are 

intended to assist engineers, researchers, and policymakers in promoting sustainable construction 

practices. By integrating SSA, the research seeks to reduce environmental impact and address 

resource scarcity, aligning with Qatar's sustainability goals as outlined in the QNV 2030 and national 

development strategies, which emphasize recycling and minimizing construction waste [5-6]. 

 

2. Literature Review 

 
Steel slag, a byproduct of steel production that also contains large stones and dust, is a 
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significant industrial waste. As worldwide unrefined steel creation keeps on rising, roughly 150 kg of 

steel slag is produced per ton of steel, frequently winding up in open regions and presenting 

ecological risks. Regardless of these difficulties, steel slag has acquired consideration for its expected 

in substantial applications because of its extraordinary properties. A few examinations have explored 

the mechanical characteristics of cement containing steel slag totals (SSA) contrasted with regular 

totals. 

 

For instance, Qasrawi reported that steel slag with a high Fe2O3 content improves the 

compressive and structural strength of concrete, surpassing the strength development of conventional 

concrete over time. Alizadeh et al. evaluated hardened concrete using SSA and found that it had a 

higher modulus of elasticity, flexural strength, and compressive strength than natural aggregate 

concrete. This finding is in line with that study. As to appraisals, Awwad et al. examined the 

replacement of SSA for sand in substantial blends in with target qualities of 25 MPa. Their outcomes 

showed worked on substantial strength without compromising functionality, especially eminent at a 

30% substitution proportion. 

 

Borole et al. utilized M30 grade cement to assess the impacts of to some degree subbing steel 

slag for regular total, finding that a 25% substitution rate ideally upgrades compressive, flexural, and 

rigid qualities without negative impacts. Sinha also looked into the effects of using steel slag to 

replace fine and coarse aggregates in conventional concrete mixes. He found that after 28 days, the 

concrete had improved flexural and tensile strength as well as increased compressive strength. Further 

upgrading substantial properties, Pushpakumara and Silva assessed the adequacy of steel slag in 

supplanting fine and coarse totals, confirming that substantial containing 75% steel slag shows 

expanded unit weight, parting elasticity, compressive strength, and consumption opposition. 

 

Tarawneh et al. looked at environmental factors and compared SSA's physical and 

mechanical properties to those of conventional crushed limestone aggregate concrete. They found that 

steel slag had a faster rate of early strength development and was more resistant to abrasion. Nguyen 

et al. zeroed in on the compressive properties of steel slag concrete by supplanting it with coarse total, 

noticing fast strength increments inside the initial 7 days. 

 

Aparicio et al. concentrated on the impacts of natural circumstances on concrete containing 

reused total or SSA, affirming prevalent compressive strength for SSA concrete at 28 days. Lately, 

respectful designing has experienced issues requiring instinct and gaining from previous encounters. 

SCT gather measurable, risky, and enhancement instruments to gain from previous encounters and 

utilize these discoveries to create new information, distinguish designs, or anticipate novel patterns. 

Different AI and delicate processing strategies, like fake brain organizations, fluffy rationale, and 

hereditary calculations, can take care of these issues. A few examinations have utilized ML and SCT 

to foresee the underlying properties of cement containing SSA. 

 

For instance, Kumar et al.'s prediction models for fly ash concrete based on ELM, MARS, 

and DNN demonstrated their effectiveness in predicting compressive strength. Additionally, Kumar et 

al. utilized ANNs to anticipate past cement's compressive strength and penetrability with GGBS. In 

general, these studies demonstrated that a variety of soft computing and machine learning methods 

can accurately predict concrete's compressive strength. The number of experiments required to 

determine concrete's structural factors could be reduced by using these models and methods, saving 

money. The accompanying segment will give an understanding into the overall technique utilized in 

this examination and the standards of the various models. 
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3. Methodology Overview 

 
This research employed Machine Learning (ML) and Soft Computing Techniques (SCT) to 

predict the compressive strength (CS) of concrete containing steel slag aggregate (SSA). The study 

began by compiling and pre-processing 367 datasets from the literature, standardizing parameters like 

cement content, SSA, water, coarse and fine aggregates, age, and superplasticizer. Data was 

normalized using Min-Max scaling, and an 80–20 split was applied to create training and testing sets. 

 

3.1. Data Collection and Statistical Analysis 

The research began by gathering data on steel slag concrete strengths from sources like 

Google Scholar and Mendeley. After preprocessing, the dataset was narrowed to 334 samples, 

excluding those with fly ash (FA) content and 0% SSA substitution. The final dataset includes 367 

samples, covering a wide range of concrete mix compositions and experimental conditions, with SSA 

content varying from 0% to 100%. It also accounts for curing periods from 1 to 365 days, focusing on 

key intervals like 7, 28, and 90 days. Key variables such as cement content, water-to-cement ratio, 

and superplasticizer were included to capture complex interactions affecting compressive strength [7- 

8] 

 
3.2. Data Grouping 

This study evaluated the effectiveness of four machine learning and soft computing 

techniques: Gene Expression Programming (GEP), Artificial Neural Networks (ANN), Random 

Forest Regression (RFR), and Gradient Boosting (GB). Two datasets were created, with 80% (267 

observations) used for model training and 20% (67 observations) for accuracy testing. The study 

assessed each input variable's importance using established methods, including the stepwise 

significance method and feature importance scores generated by ANN and tree-based models like 

RFR and GB. Additionally, correlation analysis was conducted to measure the strength and direction 

of relationships between input and output variables. These approaches ensured a thorough and 

transparent analysis of each variable's contribution to the predictive models [9-10] 

 
3.3. Developing Models 

 
This study utilized four machine learning and soft computing techniques—Gene Expression 

Programming (GEP), Artificial Neural Networks (ANNs), Random Forest Regression (RFR), and 

Gradient Boosting (GB)—to predict the compressive strength of steel slag concrete. These models 

were chosen for their ability to handle complex relationships, non-linear data, and large datasets while 

reducing overfitting. Hyperparameters for each model were carefully optimized using grid and 

random search techniques, ensuring robustness and generalizability. Performance was evaluated using 

metrics like MAE, RMSE, and R², with the best configurations used to train the final models. 

 

3.3.1. Artificial Neural Network (ANN) 

 
The purpose of ANNs is to imitate the human brain's biological nervous system's function and 

ability to learn, particularly in information processing. ANNs emulate the cerebrum's usefulness in 

two essential ways: gaining information through a growing experience and putting away or 



Sunil SK/Afr.J.Bio.Sc. 6(15) (2024) Page 10059 to 11 

 

 

remembering data by means of the qualities of interconnected neurons, known as synaptic loads. An 

ANN's structure is characterized by a parallel arrangement of highly interconnected neurons that are 

capable of complex training. Information are handled through a progression of interconnected layers, 

isolated into three segments: input, stowed away layers, and result, each including a few hubs 

(neurons). The info layer gets and processes information prior to passing it to the following hubs. The 

secret layers perform complex numerical activities to remove helpful elements, while the result layer 

delivers the last result or expectation. An ANN's capacity to adjust to changing information and result 

information, perform non-straight capability planning, and catch obscure connections makes it a 

flexible model for resolving genuine issues [11]. 

 

During the testing stage, explicit upgrades were made to improve the presentation and 

exactness of the ANN model. These upgrades zeroed in on enhancing the model design, changing 

hyperparameters, and carrying out regularization procedures to forestall overfitting. Experiments with 

various numbers of hidden layers and neurons per layer were initially used to refine the model 

architecture. An ideal arrangement was distinguished through iterative testing and assessment, 

adjusting intricacy and execution. It was found that rising the quantity of secret layers and neurons 

improved the model's capacity to catch complex examples in the information. However, due to the 

risk of overfitting, an excessively complex model was avoided. To improve the model's performance, 

grid and random search methods were used to systematically adjust hyperparameters. A scope of 

values for key hyperparameters, including the learning rate, bunch size, and the quantity of ages, were 

investigated. The model's performance on a validation set was looked at to find the best 

hyperparameter combination that produced the lowest validation error and highest predictive accuracy 

[12]. 

 

3.3.2. Gene Expression Programming (GEP) 

 
Hereditary calculations (GA) are one of the fundamental sorts of AI and SCT; the primary 

guideline of this strategy or method depends on the Darwinian standard of regular choice to take care 

of perplexing issues. This technique has been utilized to tackle numerous issues, zeroing in 

principally on enhancement issues constrained by different factors. Through the Gene Expression 

Program (GEP), Ferreira proposed a more advanced type of genetic programming (GP). The GEP is a 

learning algorithm that creates a model to explain the relationships between various variables in 

datasets and focuses on understanding these relationships. A type of GA called the GEP employs 

chromosomes and the Tree's method to solve problems. The first or initial chromosome population is 

constructed from these chromosomes, which contain mathematical information or functions. The 

fitness of each chromosome is checked, and the ones with the highest fitness are chosen for 

reproduction. The hereditary activities performed incorporate hybrid, change, and generation. The GA 

keeps on developing until a palatable arrangement is found. A relatively straightforward estimation 

equation is produced by this approach, and it can be utilized for practical design and hand calculation. 

 

3.3.3. Random Forest Regression (RFR) 

 
The irregular backwoods relapse ML strategy is known for its incredible capacity to deal with 

huge arrangements of information with various characteristics and give an exact or precise assessment 

of property significance. RFR deals with the guideline of gathering picking up, consolidating the 

prescient force of various choice trees to improve exactness and dependability. Each tree is made 

freely on an irregular subset of the preparation information, which makes difference and decreases 

overfitting. Through bootstrap collection (stowing), RFR can fabricate a strong model via preparing 



Sunil SK/Afr.J.Bio.Sc. 6(15) (2024) Page 10060 to 11 

 

 

on various dataset varieties. The last not set in stone by averaging the expectations from every one of 

the singular trees in the woods. This system guarantees that the aggregate choice of many trees is 

more precise and stable than any singular tree's. This cycle is rehashed consistently until the expected 

level of accuracy is achieved. The RFR's singular ability is to improve its predictive power as a whole 

[14-15]. 

 

 
 

3.4. Statistical Indicators and Measurements 

 
Factual measures like the mean absolute error (MAE), root mean square error (RMSE), and the 

coefficient of determination (R²) are used to assess a model's accuracy. R² indicates how well the 

model's predictions match the actual data, ranging from negative infinity to 1, with 1 being ideal. 

MAE measures the average difference between predicted and actual values, with lower values 

indicating higher accuracy. RMSE, similar to MAE but more sensitive to outliers, emphasizes larger 

errors. Together, these metrics provide a comprehensive view of a model's performance, with a high 

R² and low MAE and RMSE indicating accurate predictions with minimal error. 

 

Tables 1-3 summarize the evaluation metrics (R2, MAE, and RMSE) of the four models created. 

 
Table 1. Training set statistical measurements. 

Model MAE (MPa) RMSE (MPa) Mean R2 

GEP 6.2 6.4 1.10 0.89 

ANN 10.2 11.00 1.23 0.66 

RFR 3.11 4.11 1.006 0.96 

GB 0.77 2.33 1.01 0.99 

 

Table 2. Testing set statistical measurements. 

 

Model MAE (MPa) RMSE (MPa) Mean R2 

GEP 6.65 8.02 1.111 0.89 

ANN 7.70 9.29 1.19 0.83 

RFR 5.17 6.34 1.09 0.994 

GB 3.61 4.95 1.02 0.97 

 

 
Table 3. All datasets statistical measurements. 

 

Model MAE (MPa) RMSE (MPa) Mean R2 STDV COV 

(%) 

GEP 5.88 7.36 1.08 0.86 0.49 46.77 

ANN 8.89 11.18 1.21 0.67 0.32 31.96 
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RFR 2.55 3.71 1.06 0.96 0.12 11.73 

GB 1.25 2.47 1.02 0.98 0.06 5.98 

 

 

 

 

 

4. Results and Discussion 
 

In a study comparing four predictive models—Random Forest Regression (RFR), Gene 

Expression Programming (GEP), Artificial Neural Network (ANN), and Gradient Boosting (GB)—for 

predicting the compressive strength of steel slag aggregate (SSA) concrete, various performance 

metrics were evaluated, including R², root mean squared error (RMSE), mean absolute error (MAE), 

and mean values. The GB model consistently outperformed the others, with the lowest MAE (0.79), 

RMSE (1.90), and highest R² (0.99) during training, indicating near-perfect fit and minimal error. In 

testing, GB maintained its lead with a low MAE (1.15), RMSE (2.45), and high R² (0.98), 

demonstrating stable and accurate predictions. 

 

In contrast, the ANN model struggled, showing the highest MAE (9.51), RMSE (12.03), and 

the lowest R² (0.61) during training, and despite some improvement in testing, it remained the least 

accurate with the highest variability and error. Both GEP and RFR performed reasonably well, with 

RFR showing strong R² values and low errors, though not as robust as GB. GEP also offered decent 

predictive accuracy but was slightly less reliable than GB. Overall, the GB model proved to be the 

most reliable for predicting compressive strength in SSA concrete, while ANN lagged behind in 

accuracy and consistency. The GB model shows the most minor changeability and most noteworthy 

forecast dependability, as shown by its low STDV and COV. This settles on it a dependable decision 

for reasonable applications where consistency is pivotal. The R2 values across datasets highlight the 

unwavering quality of the GB and RFR models. These models can be relied upon to give precise 

expectations, with the GB model being especially important for its close amazing fit. These plots 

show how well and accurately each model predicts CS within a 30 percent error range and visually. 

The GB model exhibits the nearest arrangement with the best fit line in both datasets, showing its 

hearty presentation and exact expectation of CS across various situations. Predictions from this model 

consistently match the actual experimental values closely, indicating low bias and high reliability. On 

the other hand, the ANN model's predictions are more variable. Some predictions deviate more 

significantly from the ideal line, while others are more closely aligned. This fluctuation proposes 

difficulties in catching all subtleties and intricacies of the information utilizing the ongoing ANN 

design. In order to reduce these deviations and improve its predictive accuracy, additional 

optimization or feature selection may be required. The predictions are tightly clustered in the RFR 

model, which has the smallest scatter around the mean. This shows high accuracy and consistency in 

anticipating CS values, reflecting powerful execution and exact demonstrating of the fundamental 

information designs. 

 

The GEP model, like RFR, shows a slight spread but focuses predictions around the mean, 

indicating generally accurate results with some variability. In contrast, the ANN model exhibits more 

scattered predictions due to its struggle to grasp complex data relationships, suggesting areas for 

improvement. RFR and GEP models have minimal residual errors, indicating strong predictive 

accuracy, while ANN has larger residuals, pointing to less precise predictions. The GB model is 

highly robust, while ANN may need further tuning. Although GEP has a lower R² compared to RFR 
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and GB, its interpretability offers a clear advantage, making it valuable for scenarios requiring 

transparency. The FA variable was excluded due to data quality and model constraints. 

 

5. Sensitivity Study 

 

A responsiveness study or examination is significant to numerous logical examinations. This 

boundary responsiveness investigation assists with understanding what a specific boundary could 

mean for the outcomes or the result of the model expectation. This study gives a comprehension of 

which input boundaries influence the outcomes most and which make less impacts. The GEP model 

was picked for the responsiveness concentrate on in light of its straightforwardness, which can be 

used to break down the elements impacting compressive strength (CS). 

 

5.1. The Effects of Changing Steel Slag Aggregate Content (SSA) 

 
This responsiveness concentrates on analyzed the connection between the level of SSA in 

substantial blends and the subsequent compressive strength. As referenced in the writing survey and 

displayed in Figure 14a, expanding the SSA content will build the compressive strength. Additionally, 

Tarawneh et al. uncovered that adding SSA can further develop substantial's scraped area factor, 

influence esteem, and compressive strength, especially during the beginning phases. When steel slag 

was used, Miah et al. observed a significant decrease in porosity and an increase in compressive 

strength. Sinha additionally affirmed the pattern by noticing an expansion in compressive, flexural, 

and split elastic qualities subsequent to supplanting fine total with a specific percentage of steel slag. 

 

5.2. The Effects of Aging on the Compressive Strength of SSA Concrete 

 
This responsiveness examination zeroed in on researching the impacts of maturing on SSA 

cement's compressive strength. The review's outcomes showed that the CS expanded after some time, 

mirroring the progressive improvement of cement's mechanical properties (as displayed in Figure 

14b). This finding lines up with what Nguyen et al. [30] found. In the first place, compressive strength 

quickly expanded inside the 7-day relieving time of cement, trailed by a slower yet constant 

increment. In addition, Tarawneh et al. emphasized the beneficial effects of SSA on improving 

concrete properties, particularly impact strength and abrasion resistance. This suggests that the 

observed strength may be due to this enhancement. The review showed the ever-evolving 

compressive strength improvement in SSA concrete as it ages. Besides, Aparicio et al. [31] found that 

utilizing SSA can increment compressive strength values following 28 days of relieving, expanding 

with the substitution rate. 

 

6. Conclusions 

 

The construction industry faces challenges related to environmental sustainability and 

resource depletion. This research addresses these by promoting the use of eco-friendly alternatives 

like steel slag aggregate concrete (SSA). The study explored the predictive abilities of various 

machine learning and soft computing techniques, including ANN, GEP, RFR, and GB, to predict the 

compressive strength (CS) of SSA concrete. Using 334 datasets, the GB model showed the highest 

accuracy with an R² of 0.98 and the lowest errors, followed by RFR, GEP, and ANN. 

 

Hyperparameter tuning was crucial for optimizing model performance, ensuring robustness 

and reliable predictions. These models offer practical applications, providing a reliable method for 

predicting the compressive strength of SSA concrete, aiding in mix design optimization, and reducing 
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the need for extensive physical testing. This study contributes to our understanding of SSA concrete's 

mechanical behavior and promotes sustainable construction practices. 
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