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1. Introduction  
Bone fractures ensue when 

external forces surpass the structural integrity of bone, especially traumatic occurrences such 

as falls, vehicular accidents, and sports-related incidents precipitate fractures [1]. Moreover, 

osteoporosis, a condition characterized by diminished bone density, heightens susceptibility 
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to fractures even from trivial trauma[2]. Prolonged or repetitive mechanical stress on specific 

skeletal sites may incite stress fractures, evolving insidiously due to incremental 

microstructural compromise[3]. Furthermore, pathological etiologies such as neoplastic 

processes or metabolic aberrations can undermine osseous robustness, culminating in 

fractures termed pathological in nature[4]. Within contemporary healthcare practices, the 

identification and categorization of bone fractures[5] entail collaborative endeavors among 

healthcare professionals, utilizing a spectrum of imaging modalities such as X-rays, 

computed tomography (CT), and magnetic resonance imaging (MRI). Of these modalities, X-

ray imaging emerges as a pivotal tool renowned for its cost-effectiveness and widespread 

availability[6]. The convolutional neural network (CNN) is essential in deep learning for 

automatic image feature extraction, widely used in disease detection[7-8]. Despite the success 

of CNN-based models in medical image classification, they face significant challenges[9], 

particularly the need for large amounts of labeled data, which is difficult and expensive to 

obtain in the medical field. In response, researchers have introduced the concept of transfer 

learning[10]. This paradigm involves retraining a CNN, initially trained on a large dataset, on 

a novel problem with a smaller dataset, leveraging the knowledge gleaned from the former to 

swiftly acquire features from the latter[11]. Transfer learning proves particularly 

advantageous when data are scant for achieving specific tasks, as the pre-trained model 

furnishes a superior starting point, circumventing the need to retrain an extensive model from 

scratch. This, in turn, facilitates efficacious resolution of various image-classification 

challenges. Despite the commendable performance exhibited by numerous methodologies in 

classifying bone fractures, inherent limitations persist in these proposed methods. 

Specifically, extant methodologies demonstrate superior performance during the training 

phase; however, their accuracy markedly declines during validation and testing phases. 

Within the realm of automated healthcare, testing accuracy assumes paramount importance, 

as even a marginal enhancement in accuracy can precipitate more precise and expeditious 

diagnoses, thereby ameliorating patient outcomes and treatment strategies[12]. To overcome 

these predicaments and alleviate the variability while using individual models, this paper 

introduces a novel innovative technique for building a weighted ensemble model utilizing 

transfer-learning principles for bone fracture diagnosis[13]. Encouragingly, this has 

demonstrated commendable outcomes relative to extant strategies.  

The contributions of this study are delineated as follows: Mainly, the inception of the 

envisaged model, adeptly harmonizing the virtues of DenseNet201 and MobileNetV2 through 

a nuanced weighted ensemble methodology, thus enabling flexible feature learning and 
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portrayal. Additionally, a comprehensive evaluation encompassing various CNN models like 

ResNet152, Inception V3, and the proposed ensemble model, was undertaken, with 

meticulous analysis of their respective performance metrics. Furthermore, a thorough 

evaluation of diverse weight configurations was conducted to ascertain optimal coefficients 

that elevate performance metrics. 

2. Literature Review 
The utilization of artificial intelligence (AI) in diagnostic imaging has marked a 

groundbreaking period in diagnosis of fractures, revolutionizing traditional methods by 

offering automated and precise fracture detection and categorization from various imaging 

facilities[14]. Through deep learning algorithms, AI systems[15] can swiftly and accurately 

identify fractures, aiding radiologists in timely diagnosis and treatment planning while 

reducing the risk of oversight or misdiagnosis. 

 Yubin Qi et al. [16] , used an anchor based Faster RCNN method for fracture 

detection supported by ResNet50 for locating fracture regions and classification for the type 

of fracture in femoral shaft fractures. Additionally, researchers like Chung et al. employ 

ResNet-152 to categorize fractures into five distinct groups. [17].kimet al. made use of pre-

trained algorithm Inception V3 for classification of wrist fractures by retraining its last layer 

with their current dataset of wrist radiographs[18]. AnupKhanalet al. in [19]  created and 

tested an ensemble model with DCNNs’ VGG19, Inception, MobileNet, DenseNet169 and 

ResNet152, for the analysis of fractured limbs and eradicate the generalization errors and the 

dataset used was CT image dataset . In the study [20] three different model VGG16, 

MobileNetV2 and Inception V3 were ensembled for acquiring the best accuracy on training 

humerus dataset from MURA dataset. The images were augmented for the best results. The 

ensemble model was compared on a whole with the above trained models. Riel Castro et 

al.in[21] evaluated the trade-offs between speed and accuracy and the overall effectiveness of 

four broadly used transferred learning convolution neural networks InceptionV3, ResNet50, 

MobileNetV2, and VGG16 in classifying rib fractures. Kim et al. and his team constructed a 

transfer learning ensemble models which comprises of six models which also includes 

MobileNetV2 which gave highest accuracy[22]. Six pre-trained deep convolutional neural 

network (DCNN) architectures with diverse levels of depth were utilized for detecting 

osteoporosis using CT images of spine in [23]. The VGG16 model demonstrated the most 

promising outcome. Zeng, Zhigao, et al. in [24] addressed a solution for musculoskeletal 

abnormality detection using light weighted network MobileNetV2 fused with EfficientNet-

B2 which resulted in subjected recognition of bone abnormalities with decent accuracy.A 



 Susmitha N /Afr.J.Bio.Sc. 6(13) (2024)  Page 6354 of 15 
 

novel lightweight network architecture termed MobileNetV2 was introduced by Sandler, 

Mark, et al. designed to uphold high accuracy in image classification while ensuring 

computational efficiency, particularly on small devices with limited resources[25]. This study 

[26] elaborates about the light weighted architecture of MobileNetV2 and understand the 

proposed SSD(single shot multi box detector) algorithm and how it enhanced the detection 

performance. To understand the characteristics and underlying architecture of MobileNetV2, 

the study [27] was examined and comprehended the working of the same. Researchers in [28] 

comprehend that DenseNet and VGG19 CNN architectures to discern fractures in the images 

of X-rays. The research [29] describes a new architecture for segmentation of skull images 

using DenseNet and U-Net resulting in 87% specificity. The paper [30] introduced IDNet, a 

network combining perception and DenseNet, achieving  92% accuracy in classifying upper 

limb bone injuries. This research [31] uses a deep learning method to analyze X-ray images 

of the humerus, first standardizing their size, then employing DenseNet-169 to distinguish 

between normal and abnormal scans. 

 Based on the literature survey, improving accuracy and other metrics is possible. A 

large dataset with simple models increases computational cost, while a small dataset with 

complex models risks over fitting. From previous research, one can derive suggestions, 

conclusions, and further improvements. Systematic examination of model accuracies, dataset 

size, model complexity, and implementation steps is essential. 

Paper organization-Section III explicates the proposed model architecture, while Section 

IV elaborates on the characteristics of the dataset(s). Section V delves into the results and 

engages in discussions. Sections VI and VII encapsulate the conclusions and references, 

respectively. 

3. Proposed Model Architecture 
In the proposed research, the opted dataset was carried out for training with ResNet152, 

MobileNetV2, Inception V3 and DenseNet201. The existing pre trained models were 

analyzed meticulously for their individual performance on the select fracture dataset. 

 

3.1. Transfer Learning and Fine Tuning  

 These four models were previously trained on large ImageNet dataset which contained 

1000 classes. So, the transfer-learning approach was subsequently employed to structure the 

four existing CNN models for training. In the process of training , the models were trained by 

freezing all the layers from their existing structure but  the top layer was made “false” and 
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replaced by the customized dense layer which was added. Subsequently these models were 

fine-tuned by selecting weights from pre-training ensues. Talking about the workflow of the 

proposed project elucidated in Figure 1, the input dataset is split into training’s and testing’s 

in the ratio of 0.8 and 0.2. Then the pre-processing and batch normalization steps transpire. 

During preprocessing, images are resized to 224x224 pixels, aligning with default input 

dimensions of many pre trained deep learning models. Rescaling the images with a rate of 

1/255 optimizes training and computational efficiency. These steps enhance model 

performance and reduce computational cost. In scrutinizing the efficacies of four DCNN 

models MobileNetV2[33] and DenseNet201[34] showed unmatched competence on the 

dataset used for the proposed system in terms of accuracy.  

 In optimizing the models, the Adam optimizer was employed in conjunction with 

fine-tuned learning rates. Binary Cross Entropy function served as the loss function to gauge 

model performance and refine parameters accordingly. Delving into the mathematical 

modeling of the selected optimal models, MobileNetV2 follows a simple single shot 

detecting mechanism with a light weighted architecture using a depth wise separable 

convolution strategy formulated in Equations 1-4 where X is the input tensor which is used 

for expanded point wise in (1), depth wise in (2) and projected point wise convolution in (3). 

Yr denoted the output tensor from residual connection , W represented weights and b 

represented bias values. 

 
𝑋𝑝 = 𝑅𝑒𝐿𝑈6(𝑋 ∗ 𝑊1 + 𝑏1)            (1) 

 

𝑋𝑑 = 𝑅𝑒𝐿𝑈6(𝑋𝑝 ∙ 𝑊𝑑 + 𝑏𝑑)           (2) 

 

Xpr = 𝑋𝑝 ∗ 𝑊2 + 𝑏2                        (3) 

 

𝑌𝑟 = 𝑋𝑝𝑟                                           (4) 

 

 

Another model DenseNet201 which consists of convolution dense blocks represented in 

Equation 5 where I is the inpiut image vector and K is the kernel filter with dimension (m,n) 

and (x,y) represented input image dimensions and transition blocks layer wise with a 

mechanism of global average pooling broadly represented in the Equation 6 where d[L]  is the 

collected output value from all the layers and d[1] to d[L-1] denoted the individual layer outputs. 

d[1] will be the input value for the 2nd dense block and d[2]  will be its output value. 

 
(𝐼 ∗ 𝐾)(𝑥,𝑦) = ∑ ∑ 𝐼(𝑥+𝑚,𝑦+𝑛)𝐾(𝑚,𝑛)

𝑁−1
𝑛=0

𝑀−1
𝑚=0    (5) 
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𝑑[𝑙] = 𝑔(𝑑[1], 𝑑[2], 𝑑[3], … 𝑑[𝑙−1])                    (6) 

 

In the construction of DenseNet201, the dropout value of 0.5 was implemented, while 

MobileNetV2 incorporated a similar dropout ratio. 

 

 

 

 

 

Figure 1. Block diagram of project flow 

 

3.2 Weighted Ensemble Approach 
  

In this study, a novel ensemble methodology was introduced in which the input data 

underwent parallel processing through select architectures - MobileNetV2 (Mm) and 

DenseNet201 (Md) and the predicted outputs were amalgamated .The output value of the 

model was illustrated in Equation 7 where N represents the no.of models used for the 

ensemble. In the ensemble approach, a meticulously calibrated weighted average technique 

delineated in Equation 8 was used where Wm is the best possible added weight for 

MobileNetV2 and Wd for DenseNet201 respectively. The added weights (Wm & Wd) were 

chosen only after an iterative exploration of grid combination of different weight ratios to 

govern the influence of each model's contribution, favoring superior accuracy whereas Mm & 

Md were the yielded individual predictions of the models in testing phase.  Mm and Md here 

refer to the difference between the true values and the predicted values of MobileNetV2 and 

DenseNet201 models respectively as elucidated in Equations 9 and 10. Throughout the 

individual model training and testing, a notable prevalence of false positives and false 
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negatives was identified. Nevertheless, the ensemble approach effectively resolved these 

issues, showcasing its prowess in improving predictive accuracy.T he illustrated architecture 

diagram of the proposed system is depicted in Figure 2. 

 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 =  
1

𝑁
∑ 𝑀𝑜𝑑𝑒𝑙𝑖

𝑁
𝑖=1 (𝐼𝑛𝑝𝑢𝑡)      (7) 

 

 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒_𝑃𝑟𝑒𝑑𝑠 = (𝑊𝑚. 𝑀𝑚 + 𝑊𝑑 . 𝑀𝑑)/2         (8) 

 

  𝑀𝑚 = 𝑦𝑚 − 𝑦𝑚̂                                                     (3) 

 𝑀𝑑 = 𝑦𝑑 − 𝑦𝑑̂                                                        (4) 

 

 

 

This technique served to mitigate the over fitting conundrum by introducing stochasticity 

during training, thus enhancing model generalization and robustness. 

  

 

 Figure 2. Illustrated architecture diagram of the proposed ensemble model 
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for non-fractured or class 1 for fractured during the training phase. The sample distribution of 

fracture dataset of images for training and testing phase were elucidated in Table 1. Upon 

model evaluation, random X-ray images, portraying either fractures or non-fractures, were 

submitted for prediction. The study was conducted using the Keras framework in the Colab 

Pro environment, leveraging a Tesla T4 GPU for computational processing. Employing Keras 

offered extensive support for deep learning tasks, featuring an intuitive interface and access 

to a rich library of pre-implemented neural network architectures and optimization 

techniques. Figure 3 showed the sample X-ray images from the opted fractured dataset in 

which (a) represented fractured X-ray and (b) represented non-fractured image of X-ray. 

Table 1. Dataset description table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Sample images from X-ray dataset 

 

Class Label Total no.of images Training samples Testing samples 

Class 0 

Non Fractured class 

 

4382 
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876 
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Fractured class 

 

4480 
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896 

   (a)    (b) 
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5. Results and DiscussionThis section elaborates the outcomes derived from 

scrutinizing class wise results, incorporating labels, performance metrics from diverse models 

employed in training, and contrasting the findings with the weighted ensemble method. 

Figure 4 elucidated the performance trends cross diverse weight ratios, further illustrating the 

efficacy of the identified optimal combination. The synergistic fusion of DenseNet201 and 

MobileNetV2, with weights of 0.9 and 0.1 respectively, represents an optimal amalgamation. 

This approach harnesses the robust feature extraction capabilities of DenseNet201 while 

embracing the inherent computational efficiency of MobileNetV2. When juxtaposing the 

performance measures of the four CNN architectures with the proposed ensemble model, a 

discernible trend emerges: the ensemble model unequivocally surpasses its predecessors. The 

culmination of our research endeavors is encapsulated within Table 1, wherein the discerning 

metrics of training’s accuracy, validation’s accuracy, training’s loss and validation’s loss are 

meticulously documented alongside the cardinal parameters of trainable and total model 

parameters. Upon meticulous scrutiny, our proposed model emerges as the preeminent 

contender, boasting the loftiest testing accuracy amongst its peers and the ensemble 

counterpart. This unequivocally underscores the efficacy and supremacy of the proposed 

model in predictive performance over the gamut of models scrutinized in this study. 
  

Figure 4. Weighted Ensemble Accuracy values for different weight ratios 

Pursuant to Table 2, DenseNet201 exhibited superior training accuracy compared to the 

proposed model, albeit at the expense of higher loss. However, upon scrutinizing validation 

accuracies, the proposed model emerged as the frontrunner, achieving the highest values with 

minimal loss. InceptionV3, renowned for its complexity, demands substantial computational 

resources during training, whereas ResNet152 encountered challenges due to its skip 

connection property, necessitating prolonged training durations. 
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Conversely, MobileNetV2's lightweight architecture and single-shot detection mechanism 

facilitated commendable performance. DenseNet201's prowess stems from its adept feature 

selection capability. Remarkably, the proposed model surpasses all pre- trained counterparts 

by a noteworthy 1% margin in validation accuracy while exhibiting a favorable parameter 

count. 

Despite DenseNet201 exhibiting superior competence on the training set compared to the 

proposed model, it yielded a higher number of false positives, consequently leading to 

diminished specificity and sensitivity. 

The analysis of class-wise metrics revealed that the judicious allocation of weights between 

model predictions and ensemble averages yields peak performance across all classes, 

epitomizing the efficacy of nuanced ensemble optimization. This underscored the 

indispensability of meticulous weight tuning in enhancing predictive efficacy, particularly in 

contexts marked by class disparities or heterogeneous class complexities. Table 3 delineated 

the parameters explained in Table 2. Furthermore, the proposed model underwent rigorous 

testing on numerous images, showcasing exemplary performance. Four select results from the 

test dataset are presented, featuring two images per designated class effectively discerned by 

the model in accordance with ground truth labels. Figure 5 delineated the categorized 

predicted outputs, aligning them with the corresponding ground truth categories. 

 
 

Table 3. Parameters of Table 2 
 

Parameter Abbreviation Parameter Explained 

TrA Accuracy in training 

TrL Loss in training 

ValA Accuracy in validation 

ValL Loss in validation 

Prec Precision value of the model 

Rec Recall value of the model 

FS F1 Score of the model 

DenseNet201 0.96 0.12 0.92 0.23 0.91 0.91 0.92 

MobileNetV2 0.93 0.21 0.93 0.2 0.9 0.9 0.93 

Proposed 

Ensemble 

Model 

0.94 0.1 0.94 0.09 0.98 0.98 0.94 
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A comparative analysis conducted against prior literature elucidates the limitations therein, 

highlighting the advancements achieved by the proposed model in Table 4.  

 
 

Table 4. Analysis of previous literature for different bone fracture classifications 
 

 

This table demonstrated the consummate performance of the proposed model, surpassing the 

constraints inherent in previous approaches. The apparent dissonance between DenseNet's 

commendable accuracy, as delineated in Table 2, and its lackluster specificity and sensitivity 

underscores the nuanced nature of its performance evaluation. While accuracy serves as a 

fundamental metric gauging overall correctness, it may obscure finer intricacies inherent in 

classification tasks. Specificity and sensitivity, encapsulating the model's aptitude in 

discerning true negatives and true positives respectively, offer critical insights into its 

discriminatory prowess. The incongruity between high accuracy and deficient 

specificity/sensitivity implies potential shortcomings in correctly identifying certain classes 

or an elevated propensity for false positives/negatives. This necessitates a judicious balance 

of evaluation metrics to comprehensively appraise the model's efficacy, particularly in 

domains where precise classification holds paramount significance, such as medical 

diagnostics. Upon comparing the proposed model with prior literature, it becomes evident 

that the weighted ensemble average method, integrating two superior models within the 

proposed architecture, surpasses previous endeavors across various bone fracture datasets 

pertaining to distinct skeletal regions. Table 2 underscores that InceptionV3, owing to its 

intricacy, fails to deliver optimal performance, whereas InceptionResNetV2 architecture 

exhibits potential for enhancement to augment accuracy. Although MobileNetV2 offers 

Literature Method Accuracy 

achieved  

[17] InceptionV3  0.93 

[20] MobileNetV2  0.92 

[22] Six pre trained algorithms were used in which 

InceptionResNetV2 got highest accuracy 

0.89 

[29] Perception and DenseNet121(IDNet) 0.92 

Proposed DenseNet Transfer Learning of Pre trained DenseNet201 0.96 

 

Proposed MobileNet 

 

Transfer Learning of Pre trained MobileNetV2 

 

0.93 

 

Proposed Weighted 

Ensemble Method 

 

Fusion of pre trained models DenseNet201 and 
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0.94 
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lightweight architecture, instances of misclassifications are noted, while DenseNet121 

exhibits suboptimal performance in isolation. Consequently, the proposed fused weighted 

ensemble average model emerges as the premier choice for bone fracture classification in 

hands, wrists, and fingers, as evidenced by the trained dataset. 

 

 
Figure 5. Prediction of test images by proposed ensemble model 

 

6. Conclusion and Future work 
 

The proposed model has showcased superior efficacy in the realm of bone fracture 

classification, achieved through the amalgamation of MobileNetV2 and DenseNet201 

models. This fusion, coupled with weighted averaging, strategically capitalizes on the 

strengths of each model while alleviating innate constraints and provides invaluable 

perspectives on the potential advantages of employing an ensemble approach with weights to 

bolster accuracy and reduce false positives in bone fracture classification. A primary 

constraint of this study lies in the heightened parameter utilization compared to amalgamated 

models. It is recommended that forthcoming investigations explore alternative methodologies 

for parameter reduction without giving up on efficacies. This system can be enhanced with 

optimistic features which can make it identify multiple fractures and it can be embedded into 

mobile devices as an android application which makes this “bone fracture detection” system 

highly available and accessible by more no.of medical practioners.  
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