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Abstract: 
Background: As world economy develops, with advance and updated lifestyle profoundly, 

the chronic diseases happenings rise continually. Cardiovascular diseases (CVD), is group of 

disorder and leading cause of mortality from last three decades. Despite significant advances 

in cardiovascular disease in prevention and treatment, the morbidity and mortality increase 

continually in developed countries. Underlying causes of cardiovascular disease are multiple 

factors, complex mechanisms and some common components at end stage that carries 

thrombosis. Number of safe and effective antithrombotic drugs plays critical role in the 

treatment of cardiovascular diseases.  

Objective: The Insilco methodologies are in use now-a days can impacts the entire drug 

development process as identifying and discovering new potential drug is time and cost 

effective. Here, we are using different Insilco methodologies to study FXa inhibition 

activity. 

Methods: In our present work, we screened and assesses the toxic profile of the selected 

ligands by OSIRIS property explorer and TOXTREE web server online source in order to 

obtain the novel or potent molecule for designing. 

Result: In our present work, total seven compounds were taken and using in-silico approach 

only three L1, L4 and L5 showed a remarkable binding energy, therapeutics activity in 

addition to pharmacological activity.  

Conclusion: Further, directional approach is also need in clinical trials and 

commercialization. All the selected ligands satisfactorily accepted and developing a new 

agent. 

Keywords: ADME, Drug likeliness, thrombolytics, QSAR studies, biological activity, 

toxicity 
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1. Introduction 

Globally, over the last few decades an estimated 17.9 million peoples dies due to 

cardiovascular diseases (CVD) and has been growing exponentially among developed 

and developing nations [1]. As world economy develops, with advance and updated 

lifestyle profoundly, the chronic diseases happenings rise continually. Cardiovascular 

diseases (CVD), is group of disorder and leading cause of mortality from last three 

decades [2,3]. As per the GBR report, the occurrence of CVD in men is more as 

compared to women, men mortality was 9,346,335 [9,173,337–9,526,547] and in women 

8,444,614 [8,266,536–8,615,992] [4]. 

 

Technological advancements automate the world and transforming healthcare system via 

innovations, new devices but emergence of chronic disorders is still increases [5]. Despite 

significant advances in cardiovascular disease in prevention and treatment, the morbidity 

and mortality increase continually in developed countries. Underlying causes of 

cardiovascular disease are multiple factors, complex mechanisms and some common 

components at end stage that carries thrombosis. Number of safe and effective 

antithrombotic drugs plays critical role in the treatment of cardiovascular diseases [6]. 

 

On pathogenesis basis, thromboembolic events play a pivotal role for occurrence of via 

Acute Coronary Syndrome (ACS), Unstable angina, Pulmonary Embolism (PE), Deep 

Venous Thrombosis (DVT), Venous Thromboembolism (VTE) and Ischemic stroke [7,8]. 

Traditionally, warfarin and heparin were used as pharmacotherapies and have been 

extensively in use but carries some limitations as interactions with other drugs and foods, 

monitoring clotting time [9]. With reference to anticoagulant, FXa (Coagulation enzyme 

factor Xa) is located at conglomerate point between coagulation cascade (intrinsic and 

extrinsic) and works as a promising target for converting fibrinogen to fibrin (soluble) 

[10]. From last decades, number of oral, Selective and Direct FXa inhibitors include: 

Apixaban, Betrixaban, Edoxaban, Rivaroxaban These are all approved and are currently 

in clinical studies [11,12]. All factor Xa (FXa) inhibitors are more specific and lowers the 

risk of bleeding time by preventing the conversion of prothrombin to thrombin [13]. On 

the available data, apixaban becomes the novel scaffold and further developments as 

combating the complications of bleeding and reducing the overdose and quantity of 

administer dosage then series of derivatives were synthesized and step forwards towards 

the drug discovery and drug development [14,15]. 

 

In the design of novel drug, conventional drug discovery and development processes 

(discovery for novel molecule and its optimization, target finding and its validation, 

preclinical and clinical trials and its approval) are time consuming, risky, costly [16-18]. 

Recently developed and first approach in terms of drug design, CADD (Computer-aided 
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drug design) in collaboration with wet laboratory structure elucidation, mechanism and 

active site or target irrespective of novel and known targets becomes boon for researchers 

and academicians [19]. The Insilco methodologies are in use now-a days can impacts the 

entire drug development process as identifying and discovering new potential drug is 

time and cost effective [20-25]. Computer-aided drug design, utilizes the available 

information and knowledge for screening of novel drug candidates and estimates the 

hazardous effects by interacting the one bond with other including toxicity. In our present 

work, we screened and assesses the toxic profile of the selected ligands by OSIRIS 

property explorer and TOXTREE web server online source in order to obtain the novel or 

potent molecule for designing [26,27]. 

2. Methods 

2.1. Protein Preparation for FXa inhibitor and Optimization of Ligands 

For clarification of binding site of compounds, in detailed docking studies was carried 

out. The protein structure for human FXa inhibitors (PDB Id:2P16) was downloaded 

from Protein data Bank (https://www.rcsb.org) in pdb format with resolution between 

2.1 to 2.5A. From literature survey, ligands(L1-L6) (Table 1) with specific binding 

site were searched and downloaded from PubChem 

(https://pubchem.ncbi.nlm.nih.gov) in Structured Data Format (SDF) format then 

these were drawn by using Chem Draw Ultra (Cambridge Soft Corporation, USA) 

and their smiles were generated and saved in .mol file in order to carry out docking. 

For theoretical validation, the structures were optimized for ADME and in silico 

investigations were also performed in order to get minimum energy by Avogadro 

Software v1.2.0. Furthermore, all ligands were evaluated for biological activities and 

ADME properties as a result of structural input. 

Table 1: Description of selected Ligands 

Ligand Chemical Structure 

Molecular 

Weight 

(g/mol) 

L(Atorvastatin) 

 

558.6 
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L1 (Apixaban) 

 

459.5 

L2 (Edoxaban) 

 

548.1 

L3 (Rivaroxaban) 

 

435.9 

L4 (Betrixaban) 

 

451.9 
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L5 (DX-9065a) 

 

571.1 

L6 (ZK-807834) 

 

526.5 

 

2.2. Evaluation of ADME and Docking studies 

SwissADME algorithm (http://www.swissadme.ch) was used to perform the analysis 

of ADME properties of selected ligands. Within screening, SMILES format was used 

for analysis of bioavailability and major pharmacokinetic properties (absorption, 

distribution, metabolism and excretion) of the selected ligands [28]. The drug’s 

absorption depends on Gastro-Intestinal absorption (GSI), membrane & skin 

permeability, water solubility and P-gp substrate. The Blood-Brain Barrier (BBB) 

take hold of the drug distribution.  

 

The volume of distribution and metabolism evaluation is carried out by using CYP 

models such as CYP3A4, CYP2C9 and CYP1A2 inhibitor [29]. At last, excretion 

depends on renal OCT2 substrate and total clearance and results are in Table 2. 

 

2.3. Drug score and toxicity prediction of selected compounds 

In the drug discovery and development process, the designing of compounds by 

computational based designing especially in molecular structural compounds to the 

biopharmaceutical formulation for installation into retail should be safe for oral usage 

drugs. For medications to enter the bloodstream by oral absorption, they must 

demonstrate GI tract absorption. Hence, for drug-likeliness prediction, drug 

dissolution i.e., Solubility (Log S) is the important parameter. Furthermore, by 

OSIRIS tool [30], the simulation was also performed as solubility, drug –likeliness, 

Drug score and toxicity predictions (skin irritations, tumorigenic, mutagenic and 

reproductive effect) of selected or studied compounds (L1- L6) were noted in tabular 

form. Highly toxic (Red color), medium (Yellow color) and no toxicity (Green color). 

http://www.swissadme.ch/
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Additionally, for comparison, we added the SMILES of ligands in Toxtree 

(3.1.0.1851 version) openly accessible software, wherein the decision-tree method for 

evaluating toxic risks covers factors such as Cramer's rule, eye irritation, genotoxicity, 

carcinogenicity, corrosion, and skin sensitivity, among others. and results are obtained 

in table after processing [31]. Furthermore, CLC (Cell Line Cytotoxicity predictor) is 

a web-based service was used for Cytotoxicity prediction to evaluate the hazardous or 

cytotoxic effects of organic compounds [32-35]. 

 

2.4. Target prediction and Bioactivity prediction 

For docking, the targeted site and active site plays an important role in simulation 

studies. The specific site prediction and binding site for protein binding with selected 

compounds (FXa inhibitors) is crucial for structure-based docking. For target 

prediction, Swiss target prediction (http://www.swisstargetprediction.ch) was use 

[36]. Molinspiration, a web-based tool for bioactivity score prediction. From drug 

score overall potential of the drug molecule were checked and the from its bioactivity 

score of the selected compounds were evaluated against human receptors i.e., kinases, 

nuclear receptors, ion channels, GPCRs, proteases and enzymes. Molinspiration 

Cheminformatics Online Server shows the biological characteristics of the selected 

ligands [37]. 

 

2.5. Docking studies of selected ligands (L1-L6) 

From ADME profile, drug score, target prediction and toxicity profile of the selected 

compounds, the best drug score and best targeted site predicted and then after toxicity 

prediction software least toxic compounds were selected for docking. We utilized CB-

Dock 2 Online platform (a user–friendly, freely available and used for blind docking) 

for binding energies prediction automatically. This web server can be accessed at 

https://cadd.labshare.cn/cb-dock2/ and provides interactive 3D visualization of 

results. CB-Dock 2, is an improved version that detects the cavities on proteins on 

basis of clustering of solvent-accessible surface and calculates automatically the 

active centers and size of cavity [38].  

 

3. Results 

During new drug development/ processing, various types of unfavorable absorption, 

distribution, metabolism, and elimination properties are the main cause of new drug 

molecules being rejected. Computer-Aided Drug Design (CADD) is a systematic 

approach that uses ADME properties to predict the properties of high-quality drugs 

[39,40]. However, there is unexpected rise in demand for the In-silico prediction tools for 

ADME properties before planning of synthesis of any novel drug molecule. Within this 

context, ADME or physicochemical properties for all selected ligands i.e., L1-L6 ligands 

http://www.swisstargetprediction.ch/
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were assayed on the basis of their water-solubility, lipophilicity, drug-likeliness, 

pharmacokinetics and in reference to medicinal chemistry as Lipinski’s rule of 5 for all 

drug candidates such as no. of H-bond acceptors is less than 10, H-bond donors is less 

than 5, molecular weight less than 500Da and log P value is less than 5 in the reference 

with standard drug (L). Swiss dock- ADME analysis is illustrated in Table 2. It can be 

observed from table 2, significant ADME analysis results and docking results of selected 

ligands as binding energies were evaluated individually for all ligands [41-44]. 

Table 2: Results of ADME and docking studies 

Ligands 
Physicochemical 

Properties# 

Lipophilici

ty 

Water 

Solubility 

Pharmacokineti

cs 

Drug 

likeness 

Medicinal 

Chemistr

y 

Docking 

results 

Binding 

energies 

(kcalMo

l-1) 

L 

(Atorvastati

n) 

MF = 

C33H35FN2O5 

MW =558.64g/mol 

nHA =41 

nArHA =23  

Fraction (Csp3) = 

0.27 

nRB = 13 

nHBA = 6 

nHBD = 4 

MR = 158.26 

TPSA = 111.79A2 

Log Po/w 

(iLOGP) =  

 

3.81 

 

Log Po/w 

(XLOGP3) 

= 4.96 

Log S 

(ESOL) = 

-5.99  

Solubility 

=  

1.03e-0.6 

mol/I 

 

 

Class = 

Soluble 

GI absorption = 

Low 

BBB permeant = 

No 

P-gp substrate = 

Yes 

CYP1A2 

inhibitor = No 

CYP2C19 

inhibitor = Yes 

Lipinski = 

Yes;  

1 violation 

Ghose = No 

Veber = No 

Egan = No 

Muegge = 

Yes 

Bioavailabili

ty Score = 

0.56 

PAINS = 0 

alert 

 

Lead 

likeness = 

No;  

3violation:  

 

 

 

Synthetic 

accessibili

ty = 4.95 

 

 

-7.8 

L1 

(Apixaban) 

MF = 

C25H25N5O4 

MW =  459.50 

g/mol 

nHA = 34 

nArHA = 17 

Fraction (Csp3) = 

0.28 

nRB = 5 

nHBA =5  

nHBD = 1 

MR = 132.70 

TPSA =110.76 A2 

Log Po/w 

(iLOGP) =  

3.62 

 

Log Po/w 

(XLOGP3) 

= 2.24 

Log S 

(ESOL) = 

-4.14 

Solubility 

= 7.24e-

0.5  mol/I 

 

 

 

Class = 

Moderatel

y soluble 

GI absorption = 

High 

BBB permeant = 

No 

P-gp substrate = 

Yes 

CYP1A2 

inhibitor = No 

CYP2C19 

inhibitor = Yes 

Lipinski = 

Yes; 0 

Violation 

Ghose = Yes 

Veber = Yes 

Egan = Yes 

Muegge = 

No; 2 

violations: 

MW<200; 

XLOGPS<-2 

Bioavailabili

ty Score = 

0.55 

PAINS = 0 

alert 

 

Lead 

likeness = 

No 

 

 

Synthetic 

accessibili

ty = 3.48 

-10.1 

L2 

(Edoxaban) 

MF = 

C24H30ClN7O

4S 

MW = 548.06 

g/mol 

nHA =37 

Log Po/w 

(iLOGP) = 

2.97 

 

 

 

Log Po/w 

Log S 

(ESOL) = 

-3.69 

Solubility 

= 2.03E-

04 mol/I 

 

GI absorption = 

Low 

BBB permeant = 

No 

P-gp substrate = 

Yes 

CYP1A2 

Lipinski = 

No; 2 

Violation 

Ghose = No; 

2 violations: 

#atoms<20 

Veber = No 

PAINS = 0 

alert 

Lead 

likeness = 

No; 2 

violations 

 

-8.7 
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nArHA =11 

 0Fraction (Csp3) = 

0.50  

nRB = 10 

nHBA = 7 

nHBD = 3 

MR = 143.24 

TPSA = 164.87 A2 

(XLOGP3) 

= 1.42 

 

Class = 

soluble 

inhibitor = No 

CYP2C19 

inhibitor = No 

Egan = No 

Muegge = 

No; 1 

violation: 

MW<200 

Bioavailabili

ty Score = 

0.55 

 

 

Synthetic 

accessibili

ty = 5.04 

L3 

(Rivaroxaba

n) 

MF = 

C19H18ClN3O

5S 

MW = 435 g/mol 

nHA = 29 

nArHA = 11 

Fraction (Csp3) 

=0.32  

nRB = 6 

nHBA =5  

nHBD = 1 

MR = 114.09 

TPSA =116.42 A2 

Log Po/w 

(iLOGP) =  

2.66 

 

 

Log Po/w 

(XLOGP3) 

= 2.49 

Log S 

(ESOL) =  

-.4.00 

Solubility 

= 1.01e-

04 mol/I 

 

 

Class = 

Soluble 

GI absorption = 

High 

BBB permeant = 

No 

P-gp substrate = 

Yes 

CYP1A2 

inhibitor = No 

CYP2C19 

inhibitor = Yes 

Lipinski = 

Yes; 0 

violation 

Ghose = Yes 

Veber = Yes 

Egan = Yes 

Muegge =  

Yes 

Bioavailabili

ty Score = 

0.55 

PAINS = 0 

alert 

Lead 

likeness = 

No; 1 

violation: 

MW<350 

 

 

 

Synthetic 

accessibili

ty = 3.63 

-8.8 

L4 

(Betrixaban) 

MF = 

C23H22ClN5O

3 

MW =  451.91 

g/mol 

nHA = 32 

nArHA = 18 

Fraction (Csp3) = 

0.13  

nRB = 9 

nHBA =5  

nHBD = 3 

MR = 125.23 

TPSA =107.41 A2 

Log Po/w 

(iLOGP) =  

2.72 

 

 

Log Po/w 

(XLOGP3) 

= 3.56 

Log S 

(ESOL) = 

-4.71 

Solubility 

= 1.96e-

05 mol/I 

 

 

Class = 

Moderatel

y soluble 

GI absorption = 

High 

BBB permeant = 

No 

P-gp substrate = 

No 

CYP1A2 

inhibitor = No 

CYP2C19 

inhibitor = Yes 

Lipinski = 

Yes; 0 

violation 

Ghose = Yes 

Veber = Yes 

Egan = Yes 

Muegge = 

Yes 

Bioavailabili

ty Score = 

0.55 

PAINS = 0 

alert 

Lead 

likeness = 

No; 3 

violations: 

MW<250 

 

 

 

Synthetic 

accessibili

ty = 3.05 

-9.9 

L5 

(DX-9065a) 

MF = 

C26H39ClN4O

8 

MW =571.06 g/mol 

nHA =39 

nArHA =16  

Fraction (Csp3) = 

0.27 

nRB = 8 

nHBA =10  

nHBD = 9 

MR = 157.07 

TPSA = 169.64 A2 

Log Po/w 

(iLOGP) =  

0.00 

 

 

Log Po/w 

(XLOGP3) 

= 1.78 

Log S 

(ESOL) = 

-4.28 

Solubility 

= 5.28e-

05 mol/I 

 

 

Class = 

Moderatel

y Soluble 

GI absorption = 

Low 

BBB permeant = 

No 

P-gp substrate = 

No 

CYP1A2 

inhibitor = No 

CYP2C19 

inhibitor = No 

Lipinski = 

No; 3 

Violation 

Ghose = No; 

3 violations:  

Veber = No 

Egan = No 

Muegge = 

No; 2 

violations: 

MW<200 

Bioavailabili

ty Score = 

0.17 

PAINS = 0 

alert 

Lead 

likeness = 

No; 2 

violations 

 

 

 

Synthetic 

accessibili

ty = 4.51 

-11.5 

L6 

(ZK-807834) 

MF = 

C25H24F2N6O

5 

Log Po/w 

(iLOGP) =  

2.87 

 

Log S 

(ESOL) = 

-4.28  

Solubility 

GI absorption = 

Low 

BBB permeant = 

No 

Lipinski = 

No; 2 

violations 

Ghose = No; 

PAINS = 0 

alert 

Lead 

likeness = 

-9.6 
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MW =526.49 g/mol 

nHA =38 

nArHA =18  

Fraction (Csp3) = 

0.20  

nRB = 9 

nHBA = 10  

nHBD = 4 

MR = 142.35 

TPSA = 157.59 A2 

 

Log Po/w 

(XLOGP3) 

= 2.25 

= 5.27e-

05 mol/l 

 

 

 

Class = 

Moderatel

y soluble 

P-gp substrate = 

Yes 

CYP1A2 

inhibitor = No 

CYP2C19 

inhibitor = No 

2 violations:  

Veber = No 

Egan = No 

Muegge = 

No; 1 

violation: 

Bioavailabili

ty Score = 

0.55 

No. 2 

violation 

 

 

 

Synthetic 

accessibili

ty = 4.03 

 

Ligands 

Anatomical 

Therapeutic 

Chemical 

(ATC) 

Classification 

Class 

(Best) 
Pie Chart 

L  

(Atorvastati

n) 

C10AA: HMG 

CoA reductase 

inhibitors, plain 

lipid modifying 

drugs 

C10A: lipid 

modifying 

agents, plain 

C10: lipid 

modifying 

agents 

 

 

Cardiovasc

ular system 

drugs 

 

L1 

(Apixaban) 

B01af: Direct 

Factor Xa 

Inhibitors 

B01a: 

Antithrombotic 

Agents 

B01: 

Antithrombotic 

Agents 

Blood And 

Blood 

Forming 

Organ 

Drugs 

 

Enzymes 

Family A 

G-protein-

coupled 

receptor 
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L2 

(Edoxaban) 

B01AF:  

Direct factor Xa 

inhibitors 

B01A: 

ANTITHROM

BOTIC 

AGENTS 

Blood and 

blood 

forming 

organ 

drugs 

Protease 

Kinase 

 

L3(rivaroxa

ban) 

B01AF (95%) Lyase 

Hydrolase 

Enzyme 

 

L4 

(Betrixaban

) 

B01AF:  

Direct factor Xa 

inhibitors 

Lyase 
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L5  

(DX-9065a) 

B01AF:  

Direct factor Xa 

inhibitors 

Oxidoredu

ctase 

 

L6  

(ZK-

807834) 

B01AF:  

Direct factor Xa 

inhibitors 

Family A 

G protein-

coupled 

receptor 

 

 

In order to carry out docking, binding energies of ligand and receptors plays an important role to 

bind specifically to show specific biological activity. From table 2, the binding energies of 

ligands as L1, L4 and L5 showed remarkable binding energies as -10.5, -9.9 and -11.5 

respectively from all selected ligands (L, L1- L6). Docking results of chosen ligands i.e., L, L1-

L6 outlined in Table 7. SwissADME, and docking studies showed that only the three L1, L4 and 

L5 showed the highest performance and were chosen for further processing, and were also 

considered suitable for high-grade FXa inhibitors. 

In order to check biological activity score, results from Molinspiration in table 3 showed L1, L4 

and L5 magnificent biological activity score. Furthermore, the ATC (Anatomical Therapeutic 

Chemical) classification system showed the relationship of drug’s therapeutic, chemical 

properties and pharmacological activities of selected drugs. ATC classification system is a drug 

classification system that categorizes a drug's directing activity to a specific organ based on its 
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therapeutic, chemical and pharmacological properties [45,46]. It serves as a tool to track the 

usage of drugs as well as to enhance the quality of drug use for research. Figured results for 

different cell line cytotoxicity’s for selected ligands (L, L1- L6) were illustrate in Table 4. In 

combination with the Pa values and Pi values, the bioavailability score demonstrated good drug-

like properties and also has great potential for the development of an oral drug for its therapeutic 

use. Our study displayed, the L1, L4 and L5 considered to be safe and effective for FXa 

inhibitors. Although, L1, L4 and L5 having minute toxicities as per OSIRIS property explorer, 

Toxtree and cell-lines cytotoxicity investigations but can be further investigated for better ADME 

and reduction of toxicities, efforts to be carried out. 

Table 3: Molinspiration-predicted biological characteristics of L1-L6 

Ligand GPCR Ligand 
Ion channel 

modulator 

Kinase 

inhibitor 

Nuclear 

receptor 

ligand 

Protease 

inhibitor 

Enzyme 

inhibitor 

L(Atorvastatin) 0.13 -0.14 -0.07 0.18 0.27 0.21 

L1 (Apixaban) -0.00 -0.29 -0.15 -0.31 -0.01 0.01 

L2 (Edoxaban) 0.11 -0.31 -0.24 -0.70 0.34 -0.04 

L3 

(Rivaroxaban) 
0.40 -0.25 -0.32 -0.14 0.43 0.11 

L4 

(Betrixaban) 
0.19 -0.04 0.17 -0.39 0.40 -0.01 

L5 (DX-

9065a) 
0.77 0.52 0.05 0.24 1.21 0.49 

L6 (ZK-

807834) 
0.77 0.36 0.15 -0.10 0.97 0.48 

 

Table 4: Drug score and toxicity prediction of studied ligands using OSIRIS freeware 

Ligand Log S 
Drug 

likeliness 

Drug 

score 
Mutagenic Tumorigenic 

Reproductive 

effect 
Irritant 

L(Atorvastatin) -6.92 -4.036 0.15 1  0.6 1 

L1 (Apixaban) -4.317 -0.372 0.168 0.6 0.6 1 1 

L2 (Edoxaban) -2.801 7.361 0.644 1 1 1 1 

L3 

(Rivaroxaban) 
-4.558 -2.413 0.129 0.6 0.6 1 1 

L4 

(Betrixaban) 
-3.946 -0.815 0.564 1 1 1 1 

L5 (DX-9065a) -3.369 5.391 0.672 1 1 1 1 

L6 (ZK-

807834) 
-5.722 -1.277 0.282 1 1 1 1 
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Table 5: Prediction of cell line cytotoxicity’s of L, L1-L6 

Ligand 
Pa 

values 
Pi values Cell -line details 

L(Atorvastatin) 0.390 0.085 Hep G2, Hepatoblastoma 

L1 (Apixaban) 0.575 0.009 A2780. Ovarian carcinoma 

L2 (Edoxaban) 0.398 0.064 Kasumi-1, Acute myeloblastic leukemia 

L3 

(Rivaroxaban) 
0.307 0.171 CAKI-2, Kidney carcinoma 

L4 

(Betrixaban) 
0.363 0.037 MDA-MB-468, Breast adenocarcinoma 

L5 (DX-9065a) 0.438 0.191 
A2780cisR, Cisplatin-resistant ovarian 

carcinoma 

L6 (ZK-

807834) 
0.350 0.173 MCF7, Breast carcinoma 

 

Table 6: Toxicity prediction of studied ligands using toxtree freeware 

Ligand 
Crammer’s 

rule 

Kroes TTC 

decision tree 

Skin 

sensitivity 

Genotoxic 

carcinogenicity 

Potential carcinogen 

based on QSAR 

L(Atorvastatin) High class Low risk No No No 

L1 (Apixaban) High class Low risk No Yes No 

L2 (Edoxaban) High class Low risk No No No 

L3 

(Rivaroxaban) 
High risk low risk No No No 

L4 

(Betrixaban) 
High risk Low risk No No No 

L5 (DX-

9065a) 
High risk Low risk Yes Yes No 

L6 (ZK-

807834) 
High risk Low risk Yes No No 
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Table 7: Representation of Docking studies of ligands (L, L1-L6) 

Ligand Representation of Docking studies Dock Score 

L 

(Atorvastatin

) 

 

 

 

 

-7.8 

L1 

(Apixaban) 

  

-10.1 

L2 

(Edoxaban) 
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-8.7 

L3 

(rivaroxaban

) 

 

 

-8.8 

L4 

(Betrixaban) 

 

 

 

-9.9 

L5 (DX-

9065a) 

 

 

 

-11.5 
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L6 (ZK-

807834) 

 

 

 

-9.6 

 

4. Discussion 

Computer-Aided Drug Design (CADD) is a systematic approach that uses ADME 

properties to predict the properties of high-quality drugs. ADME or physicochemical 

properties for all selected ligands i.e., L1-L6 ligands were assayed on the basis of their 

water-solubility, lipophilicity, drug-likeliness, pharmacokinetics and in reference to 

medicinal chemistry as Lipinski’s rule of 5 for all drug candidates in the reference with 

standard drug (L). SwissADME, and docking studies showed that only the three L1, L4 

and L5 showed the highest performance and were chosen for further processing, and were 

also considered suitable for high-grade FXa inhibitors. 

5. Conclusion 

From the last few decades, the research focused on the cheap, potent, safe and sustainable 

products for world. In our present work, total seven compounds were taken and only 

three L1, L4 and L5 showed a remarkable binding energy, therapeutics activity in 

addition to pharmacological activity. In our in-silico approach, L1, L4 and L5 showed 

remarkable binding energies as -10.5, -9.9 and -11.5 respectively and significant 

bioavailability score as well as good drug-likeness properties. Further, directional 

approach is also need in clinical trials and commercialization. All the selected ligands 

satisfactorily accepted and developing a new agent. 
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