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Abstract— Head and Neck Squamous Cell Carcinomas 

(HNSCC) is one of the major types of head and neck cancers. 

The diagnosis, staging, and radiotherapy planning of HNSCC is 

usually done using PET, CT, MRI, among many others. Due to 

the inherent limitations of using these imaging modalities, 

thermal imaging of head and neck cancer has shown significant 

attention during the past decade. However, the challenge lies in 

using thermal images of head and neck suspected patients, partly 

due to the lack of benchmark datasets, and nascent technology 

used for the analysis of thermal images. This study utilizes 

thermal data obtained from adult patients with suspected head 

and neck cancers using a FLIR-E60 thermal camera at Homi 

Bhabha Cancer Hospital (HBCH), Sangrur, Punjab, a unit of 

TATA MEMORIAL CENTRE. The proposed methodology 

employs optimal temperature thresholding to automatically 

identify and highlighting the cancerous regions from surrounding 

tissues, enhancing visualization by eliminating background noise 

and highlighting malignant areas. Mean temperatures were found 

to be significantly elevated in malignant tumors compared to 

benign ones (37.0 ±1.2℃ and 33.5 ±1.8℃, respectively; p=0.01), 

with a temperature threshold above 34.5℃ demonstrating a 

correlation with malignancy (sensitivity 76%, specificity 80%; 

p=0.01). Thermographic evaluation contributes to early cancer 

detection and aids in prognostic assessment for patients. 

Keywords—Computer aided diagnosis, Head and Neck cancer 

detection, Image Processing, Infrared Imaging, Thresholding. 
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I. INTRODUCTION 

The early diagnosis of head and neck cancer (commonly known as H.N.C) helps the radiation oncologists in 

treatment planning [1]. The risk factors associated with H.N.C are smoking [2], alcohol consumption [3], and human  

papillomavirus (HPV) [4], etc. The risk of developing laryngeal cancer is more than that of the pharyngeal cancer in 

patients with excessive smoking habits [5]. The alcohol consumption increases the risk of developing pharyngeal 

cancer more than that of the laryngeal cancer [6]. The tonsillar cancer is found more frequently in HPV infected 

patients [7]. The diagnosis of H.N.C begins with the physical examination of the patients followed by the pathology 

tests. The patients suspected with head and neck cancer during the physical examination and from the pathology test 

reports are usually undergone with an endoscopy procedure to visualize the inner lining of tissues [8]. Subsequently, 

the imaging techniques are used to find the cancerous cells and to assess the site of cancer. The biopsy procedure is 

recommended for patients with high risk factors, adverse reports of preliminary examination, and unfavourable 

results obtained from the imaging modalities. 

The physical examination includes observation (patches in the mouth, swelling of the neck, and nose bleeding, 

etc.) [9], palpation (tonsillar fossa, jaw joints, and thyroid gland, etc.) [10], auscultation (cervical, cranial, and 

continuous arterial murmurs, etc.) [11], and percussion (maxillary sinus, sphenoid sinus, and occasionally frontal 

sinus, etc.) [12]. The common symptoms of H&N cancer include ear pain [13], change in voice [14], sore in mouth 

[15], and lump in the neck [16], etc. In addition, leukoplakia (white patches in the mouth) [17], erythroplakia (red 

patches in the mouth) [18], and difficulty in swallowing [19] are the important signs of H&N cancer which are useful 

in the diagnosis. For patients progressing to head and neck squamous cell carcinoma (HNSCC), erythroplakia is more 

likely to occur than leukoplakia [20]. The sign of nose bleeding alone is rarely detected in case of paranasal sinus 

cancer, which is one of the major types of H&N cancer [21].  

 
   Figure 1: Treatment options for H.N.C patients 
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The pathology tests include a complete blood count (CBC), blood typing, and enzyme analysis. The CBC 

examines the number of red blood cells, white blood cells, and platelets. The endoscopy of the patients suspected 

with head and neck cancer helps to find the malignant cells and to determine the extent of the tumor. The commonly 

used imaging modalities viz. X-rays, panoramic radiograph, computed tomography (CT), positron emission 

tomography (PET), ultrasound, and magnetic resonance imaging (MRI), etc. are proved to be useful tools in the 

diagnosis of H.N.C. In biopsy, a sample tissue is collected from the tumor or lymph node using a fine needle 

aspiration [22]. The collected sample tissue is investigated under an electron microscope by a pathologist for 

cytologic examination. The digitized microscopic images (whole slide images) are analyzed using standard software 

such as Digital Imaging and Communications in Medicine (DICOM) or customized machine learning models. The 

biopsy is sometimes combined with biomarkers in order to identify either the specific genes (NOTCH1, ALDH2, 

SDHD, and SDHB, etc.), or specific proteins (salivary, IL-6, IL-8, MMP-9, chemerin, Naalop, CEA, Cyfra21-1, and 

angiogenic factor, etc.) for genetic testing [23].  

Although, the imaging modalities, biopsy, whole slide imaging, and biomarker testing are the useful tools for 

diagnosis, nevertheless each of these methods suffer from one drawback or the other. For instance, MRI is a preferred 

imaging modality for soft tissues such as tonsils, torn ligaments, and base of tongue, however a contrast medium 

needs to be injected into the patient's body which might not be convenient or might have complications in some cases 

[24]. Furthermore, MRI is an expensive instrument which might not be available in many diagnostic centers. Another 

approach known as (bone scan) is often used for the task, however specific radioactive traces such as tritium, carbon-

11, carbon-14, oxygen-14, fluorine-18, phosphorous-32, sulfur-35, technetium-99, iodine-123, and gallium-67, etc. 

must be injected into the vein in order to obtain high contrast image of the organ [25]. The treatment planning is a 

crucial step that depends on various factors such as age, medical history, and physical condition of the patient. Figure 

1 shows the treatment options for the head and neck cancer patients that include surgery, radiation therapy, 

chemotherapy, and a combination of these treatments. 

Considering the limitations and the difficulties in the use of above-mentioned diagnostic methods; a non-invasive, 

portable, and inexpensive imaging modality, namely the thermal imaging, also known as thermography, has become 

a preferable diagnostic modality since the last two decades [26]. This is partly due to advancement in the sensor 

technology and the availability of fast computational methods [27]. The thermal imaging is based on the concept of 

heat map which is generated due to variations in the energy (E) of infrared radiation emitted per unit area per unit 

time by the human body according to Stefan-Boltzmann law as given in equation (1). 

  E = σεT4           (1) 

where, σ is called Stefan-Boltzmann constant and its value is 5.67037×10-8Wm-2K-4.ε is the emissivity of human 

skin with a typical value of 0.98 (unitless). T is the absolute temperature of the human body in Kelvin. The maximum 

wavelength (λmax) of the IR radiation emitted by a body at absolute temperature T follows Wien's displacement law 

which is given by equation (2). 

  λmax =
b

T
           (2) 

where, b=2898 μm is Wien's displacement constant. The typical values for the wavelength of IR radiation emitted 

by the body at various temperatures is enumerated in Figure 2. 

  
    Figure 2: Effect of temperature on wavelength of emitted thermal radiation 
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It is observed that the objects emit radiation in mid IR wavelength range for temperature between -50 ℃ to +50 

℃. Infrared region of the electromagnetic spectrum in the wavelength range from 1 (μm) to 14 (μm).  The thermal 

imaging methods are divided into two types. One is the passive thermography in which a heat map is generated from 

thermal radiations emitted from the body and another is the active thermography in which the subject is exposed to 

stimulus (heat or cold). Thermal imaging offers a visual representation of the thermal characteristics of the affected 

skin area. By employing appropriate processing techniques, quantitative data can be compared and associated with 

various disease conditions, automating the detection of cancers. In medical thermography, abnormalities can be 

visually diagnosed through thermograms, but accurately quantifying thermal patterns necessitates objective analysis 

approaches for regions of interest (ROIs). This study aims to identify heat patterns within ROIs, interpreting the 

presence of malignancy by analysing the prominence of red color relative to other hues, potentially indicating thermal 

characteristics of cancerous lesions.  

II. MATERIALS AND METHODS 

The dataset used in this paper consists of thermal images taken with FLIR E-60 thermal camera from head and 

neck cancer suspected patient. The dataset of thermal images of the head and cancer patients were taken from Homi 

Bhabha Cancer Hospital (HBCH) Sangrur, Punjab –A Unit of TATA MEMORIAL CENTRE, IEC, A Grant-in-Aid 

Institution Under Department of Atomic Energy. Govt. of India.  

A. Dataset Used 

The thermal images are captured using FLIR E-60 thermal camera, the images are in the standard JPEG format 

with a spatial resolution of 320 X 240. Each of the images is 3-channel RGB image with 8-bit pixel depth. For quality 

assurance in clinical thermal imaging and for patient safety, standard protocols for thermal imaging have been used 

while capturing the thermal data. The protocols include clinical settings, instructions to the patients, safety protocols, 

and infrastructural facilities, etc.  

• Clinical Settings: The appropriate clinical settings are necessary in order to obtain high contrast, accurate, and 

reliable thermal images of the patients. The room design and the environmental control are the important 

aspects of clinical settings. The room in which the data is collected has a size with dimensions of 8 meter 

(width) X 6 meter (length) X 3 meter (height). The adequate lighting conditions were maintained using 

standard fluorescent lamps. There was no incandescent lamp in the room as the incandescent lamps use a 

tungsten filament that emits IR radiations which may interfere with the thermal camera. The heating ducts and 

the air conditioning vents were kept away from the patient while taking the thermal images. 

• Instructions to the Patients: A set of instructions were conveyed to the patients prior to the imaging procedure. 

The patients were instructed to avoid long sun exposure or sun bathing five days prior to visiting the clinic for 

thermal imaging. The use of foundation, body lotion, deodorants, other cosmetic products were prohibited on 

the day of imaging. The ornaments such as necklace, earrings, nose pins, etc. were also prohibited. The 

patients wearing contact lenses, eye glasses, or spectacles were asked to remove them during the scanning 

process. 

• Safety Protocols: As the data has been collected during the covid pandemic, the covid safety protocols were 

also used along with general clinical safety protocols such as hygiene, proper shielding, sterilization of 

equipment, and use of floor disinfectant, etc.  

• Infrastructural Facilities: The imaging room was equipped with humidity monitor, indoor thermometer, and 

patient monitoring equipment. The wheelchair, ramp, handrail, and braille facilities were available for people 

with disabilities. The common facilities such as elevator, ambulance service, drinking water, waiting area, 

restrooms, and nursing room were also available.  

B. Infrared Imaging Protocols 

Before the thermographic examination, patients were instructed to abstain from alcohol, caffeine, physical 

exercise, and nicotine for a minimum of two hours. Room temperature was maintained within the range of 20℃ to 
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23℃, as per the standard thermal imaging protocols. Prior to the examination, patients were required to remove 

earrings, necklaces, or any other accessories. Positioned in front of the camera, the patient's distance from it was 

standardized to approximately 1 meter, although variations from 0.8 meters to 1.2 meters were permitted, contingent 

upon the patient's size. Parameters such as distance, room temperature, and relative air humidity were meticulously 

recorded and inputted into the FLIR-E60 thermal camera. 

C. Study Design 

The study was designed to assist the oncologist in deciding the appropriate dose and treatment procedure based on 

the extracted cancerous region at an early stage, hence improving the quality of life after treatment. No person will be 

harmed physically, emotionally, psychologically, financially, or in any other way during this data collection. The 

study employed inclusive eligibility criteria, encompassing patients who underwent radiotherapy, with or without 

chemotherapy, for head and neck cancers. Participation was voluntary, with individuals exercising their autonomy in 

deciding whether to partake. Approval for the research was secured from the Tata Memorial Centre. All participants 

provided written consent, receiving a copy of the Informed Consent Form for their records. The study exclusively 

included adults as its primary demographic. The study applied exclusive criteria, omitting studies that met certain 

conditions: It excluded studies involving children (less than 18 years) and pregnant women, as well as patients with 

psychological illnesses. Additionally, individuals who were unwilling to sign the informed consent form were not 

included in the analysis. 

III. PROPOSED METHODOLOGY 

The thermal images were captured using a thermal camera from H.N.C patients over a spam of three months. 

A total of 130 such patients were pre-screened with H.N.C using several pre-screening methods for cancer diagnosis 

such as CT scan and preliminary examination by radiologist. The thermal imaging was carried under control 

conditions such as ambient temperature, humidity, and other distractions. Each patient was asked to refrain from 

alcohol consumption, smoking, and regressive exercise at least 24 hours prior to capturing the thermal images. 

Thermal camera was placed at a distance of 1m away from the patient’s body to capture the thermal images. The size 

of the thermal image captured by the camera was adjusted to 320 X 240 with bit depth to 8 bits per pixel. Image 

processing techniques are required to visualize the region's geometry of interest better to eliminate the background 

interference from thermograms. In this research, an interactive method for optimal threshold is proposed to convert a 

grey- level thermogram into a binary image. The proposed methodology is depicted in Figure 3. 

 
    Figure 3: Proposed Methodology for ROI Extraction  

 

The thermal images produced from the thermal camera are further analysed and processed to reveal the 

primary location of the malignancy, which is then validated using standard imaging modalities such as 

histopathology findings, CT scans, PET scans, and so on. In this research, an interactive method for optimal 
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threshold is proposed to convert a grey-level thermogram into a binary image. This process is performed in 

the steps illustrated in Algorithm 1. 

 

Algorithm 1 - Optimal temperature thresholding 

Require: T𝑚𝑎𝑥 and T𝑚𝑖𝑛 are the maximum and minimum temperatures of the thermogram image. 

Maximum iteration number N=100, Tolerance T𝑜𝑙=0.001 

The initial value for temperature threshold  

T1 =
T𝑚𝑎𝑥 + T𝑚𝑖𝑛

2
 

and T2= T1+1. 

Variance of thermal image σ2, probability of foreground P𝑓=0.6, probability of background= P𝑏=0.4 

Step 1: for i=1 to N do 

Step 2: If T𝑖+1- T𝑖< T𝑜𝑙=; Terminate 

Step 3: Background image,  

I𝑏 = {
1                     I < T𝑖

0                       𝑒𝑙𝑠𝑒
  

Step 4: Foreground image,  

I𝑓 = {
1                     I ≤ T𝑖

0                       𝑒𝑙𝑠𝑒
  

Step 5: Average temperature µ𝑏 and µ𝑓 of regions I𝑏  and I𝑓, respectively. 

Step 6: T𝑖+1  =  
T𝑚𝑎𝑥 + T𝑚𝑖𝑛

2
+  

σ2

µ𝑏−µ𝑓
+ ln (

P𝑓

P𝑏
) 

Step 7: end 

 

By using temperature thresholding technique, the gray-level thermograms were transformed into binary 

images, where the ROIs were showed with white color, as revealed in Figure 4. Thresholding offers 

improved visualization by removing the background interference and highlighting the cancerous region 

separately. 

 
Figure 4: Illustrates the outcome of thresholding method (a) Gray-level thermogram (b) binary mask of thermogram 

achieved after thresholding technique 
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This image segmentation technique used to automatically determine the optimal threshold for image 

binarization. It aims to maximize the inter-class variance between foreground and background pixels, 

effectively separating them into two distinct classes. This method begins by computing a histogram of pixel 

intensity values in the grayscale image. Then, it iterates through all possible threshold values and calculates 

the weighted sum of variances for the two classes formed by the threshold. The threshold that maximizes 

this inter-class variance is selected as the optimal threshold for binarization. Overall, thresholding method 

offers a simple yet powerful approach for automated image segmentation, providing a robust solution for 

various image analysis tasks.  

IV. RESULTS AND DISCUSSION 

Oral cavity cancer is a significant and rising concern. Patients with a single metastatic lymph node 

on both sides had a 25% worse survival probability than those who did not have lymph node metastasis. 

Thus, the assessment and proper management of cancerous patient treatment is crucial and one of the 

challenges to the researchers. Thermal imaging provides a visual interpretation of the thermal properties of 

the affected skin area. With suitable processing techniques, comparison and association of quantitative data 

with diseases of interest can automate the detection of various cancer conditions. In medical thermography, 

the abnormalities can be diagnosed by visual inspections of thermograms, but the accurate and reliable 

quantification of thermal patterns demands the approaches for objective analysis of ROIs [10]. This work 

aimed to identify heat patterns from ROIs to interpret the presence of malignancy by studying and analysing 

the prominence of red color compared to its counterparts, which could indicate thermal tendencies of 

cancerous lesions. 

Marking the hot spot in thermal imaging is a critical step in diagnosing cancer, especially for detecting 

H.N.C. This process involves identifying areas on the thermal image that exhibit higher temperatures 

compared to surrounding tissues, indicating increased metabolic activity often associated with cancerous 

growths. The procedure begins with acquiring high-resolution thermal images of the patient's head and neck 

using a thermal camera, which captures temperature variations across the skin surface. These images are 

then pre-processed to enhance quality and reduce noise, employing filtering techniques and contrast 

adjustments to ensure clear differentiation between normal and abnormal regions. 

An optimal temperature threshold is determined using methods, which distinguishes the hot spot from the 

background by segmenting the image into regions with temperatures above and below the threshold. 

Regions exceeding the threshold are identified and marked as hot spots, visually highlighted on the thermal 

image for easy identification, often through circles or annotations. These marked hot spots are analysed for 

their location, size, and intensity, and oncologists interpret these findings to assess the likelihood of cancer. 

The presence of a hot spot in specific areas prone to tumors can be a significant indicator of malignancy. 

The thermal imaging results are then correlated with other clinical data, such as physical 

examinations, patient history, and additional diagnostic tests like MRI or CT scans. This comprehensive 

analysis helps confirm the diagnosis and plan further treatment. In Figure 5 and Table 2, the hot spot 

identified through this process is clearly marked, providing a visual cue for medical professionals. This 

marked hot spot is a crucial piece of evidence in the diagnostic workflow, aiding in the early detection and 

treatment of cancer. Precision in marking and interpreting these hot spots can significantly impact the 

prognosis and treatment outcomes for patients. Some of the common segmentation algorithms are the 

graphic cut method, region growth method, active contour method, and level set method. When outlining 
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the region of interest of a tumor, it is necessary to pay attention to whether the image needs to be aligned, as 

the ROI is generally small in size [11]. 

 
Figure 5: Marking the hot spots in the thermal image 

Table 1: Shows the asymmetry on both sides 

S. No Right Side Left Side Remarks 

1. Sp1: 36.3℃ Sp8: 33.7℃  

H.N.C patient Site: 

Right Buccal Mucosa, 

Stage: IV(B), Clinically 

Node: 0 

2. Sp2: 36.5℃ Sp7: 32.8℃ 

3. Sp5 :36.3℃ Sp9: 33.2℃ 

4. Sp4: 37.0℃ Sp6: 31.8℃ 

5. Max: 37.3℃ Max: 36.0℃ 

6. Min: 26.7℃ Min: 29.7℃ 

7. Average: 36.1℃ Average: 33.6℃ 

 

Subject Temp. on 

Right side 

Temp. on Left 

side 

Temp. profile on 

cancerous region  

Temp. profile on 

normal region  

Site of 

cancer 

1 Sp2- 34.3°C 

Sp4- 34.4°C 

Sp1- 37°C 

Sp3- 36.8°C 

Max.-37.1°C 

Min.- 35.2°C 

Avg.- 36.5°C 

Max.- 34.8°C 

Min.- 30.6°C 

Avg.- 33.2°C 

Left 

2 Sp1- 37.1°C 

Sp3- 37°C 

Sp2- 34°C 

Sp4- 33.6°C 

Max.-37.1°C 

Min.- 35.7°C 

Avg.- 36.6°C 

Max.- 35.7°C 

Min.- 27.9°C 

Avg.- 33.2°C 

Right 

3 Sp2- 32.3°C 

Sp4- 32.7°C 

Sp1- 35.2°C 

Sp3- 35°C 

Max.-35.7°C 

Min.- 26.6°C 

Avg.- 34.7°C 

Max.- 34.3°C 

Min.- 23.9°C 

Avg.- 31.2°C 

Left 

4 Sp2- 32.4°C 

Sp4- 33.1°C 

Sp1- 35.7°C 

Sp3- 35.6°C 

Max.-35.9°C 

Min.- 33.9°C 

Avg.- 35°C 

Max.-34.9°C 

Min.- 31.4°C 

Avg.- 33.1°C 

Left 

5 Sp2- 33.4°C 

Sp4- 32.3°C 

Sp1- 34.6°C 

Sp3- 34.5°C 

Max.-35.6°C 

Min.- 31.4°C 

Avg.- 33.5°C 

Max.-34.7°C 

Min.- 26.1°C 

Avg.- 32°C 

Left 

6 Sp2- 33.9°C 

Sp4- 33.1°C 

Sp1- 35.4°C 

Sp3- 34.9°C 

Max.-36.2°C 

Min.- 32.2°C 

Avg.- 34.1°C 

Max.-34.2°C 

Min.- 30.8°C 

Avg.- 32.5°C 

Left 

7 Sp1- 36.4°C 

Sp3- 35.8°C 

Sp2- 33.9°C 

Sp4- 33.7°C 

Max.-37°C 

Min.- 33.8°C 

Avg.- 36.1°C 

Max.-35.1°C 

Min.- 32.6°C 

Avg.- 34.1°C 

Right 

8 Sp2- 34.8°C 

Sp4- 34°C 

Sp1- 36°C 

Sp3- 35.8°C 

Max.-36.5°C 

Min.- 34°C 

Avg.- 35.3°C 

Max.-35°C 

Min.- 32.5°C 

Avg.- 33.6°C 

Left 
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9 Sp2- 34.2°C 

Sp4- 34.1°C 

Sp1- 36.5°C 

Sp3- 36.4°C 

Max.-36.7°C 

Min.- 34.7°C 

Avg.- 36.3°C 

Max.-35.2°C 

Min.- 29.2°C 

Avg.- 34.3°C 

Left 

10 Sp1- 34.6°C 

Sp3- 33.9°C 

Sp2- 31.7°C 

Sp4- 30.1°C 

Max.-35.2°C 

Min.- 32.6°C 

Avg.- 34.1°C 

Max.-34.2°C 

Min.- 27.4°C 

Avg.- 31.6°C 

Right 

 

The optimal temperature thresholding method for Region of Interest (ROI) extraction is a crucial 

step in thermal imaging analysis, particularly in medical applications such as cancer diagnosis. This method 

involves identifying temperature thresholds that delineate areas of interest, such as potential tumor sites, 

from background tissue in thermographic images. To determine these thresholds, various statistical and 

computational techniques are employed. One common approach is to calculate statistical measures such as 

mean and standard deviation of temperature values within the image. Based on these statistics, a threshold 

temperature can be determined, beyond which pixels are classified as part of the ROI. Another method 

involves using histogram analysis to identify distinct temperature distributions corresponding to different 

tissue types, with thresholds selected accordingly. The selection of the optimal temperature threshold is 

critical as it directly impacts the accuracy of ROI extraction. Setting the threshold too low may result in 

including irrelevant regions, leading to false positives, while setting it too high may lead to missing 

important areas, resulting in false negatives. Therefore, careful calibration and validation of the thresholding 

method are essential to ensure accurate and reliable ROI extraction. 

 
Figure 6: Cancer leads to an increase in temperature 

Cancer leads to an increase in temperature, a phenomenon observed in thermal imaging. This rise in 

temperature is due to the higher metabolic activity of cancerous cells, which require more energy and, 

consequently, generate more heat compared to normal cells. The localized increase in temperature can serve 

as an indicator of malignancy, making thermal imaging a valuable tool in the early detection and diagnosis 

of cancer. By identifying areas with elevated temperatures, medical professionals can pinpoint potential 

tumor sites and assess the extent of the disease, aiding in the formulation of effective treatment plans. Figure 

6 illustrates that cancer leads to an increase in temperature Moreover, advancements in image processing 

techniques, such as machine learning algorithms, have been increasingly utilized to optimize temperature 

thresholding for ROI extraction. These techniques enable the automated learning of optimal thresholds from 

training data, improving the efficiency and accuracy of the extraction process. 

Overall, the optimal temperature thresholding method plays a crucial role in extracting meaningful 

information from thermographic images, particularly in medical contexts where precise delineation of ROIs 

is essential for diagnosis and treatment planning. Continued research and development in this area are 

essential to further enhance the accuracy and efficiency of ROI extraction techniques. 
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This method does not require any prior knowledge about the image or manual tuning of parameters. 

It is particularly effective in scenarios where the histogram of pixel intensities exhibits distinct peaks 

corresponding to different image regions, making it suitable for a wide range of applications, including 

medical imaging, document processing, and object recognition. This method not perform optimally in cases 

where the foreground and background distributions overlap significantly or when the image contains noise. 

In such situations, preprocessing techniques or alternative thresholding methods may be necessary to 

improve segmentation accuracy. 

V. CONCLUSION 

Infrared thermal imaging has recently attracted the attention of a variety of research to find solutions to the 

issues in a larger area of medicine and engineering fields. It has been used to detect various abnormalities in 

which increased or decreased skin temperature specifies the existence of reduced blood flow related to 

physiological abnormalities. Thermal imaging is ideal for medical diagnostics when patient care is 

considered non-invasive and non-ionizing. CT scans, X- ray scans, mammography, and magnetic resonance 

imaging are well- equipped medical imaging procedures to evaluate the anatomy and diagnosis of different 

parts of the human body. On the other hand, these methods are based on radiation and are hazardous to 

humans. With recent improvements in sensor technology and analysis tools, the time required to capture a 

thermal image, pre- process it and evaluate it has reduced significantly over the last few decades. The 

computational time of the optimal thresholding method is 0.178226 seconds. Recent advancements and 

research in thermal imaging applications have shown encouraging results. As a result, more research and 

development of thermography procedures as a health and diagnostic tool in the framework of precancerous 

stage diagnosis is required. 
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