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ABSTRACT 

In stem cell research, extending the stem cell phenotype which is undifferentiated, is among the most 

challenging aspects. The accuracy of the mathematical models often used to depict the stem cells growth 

is not as optimal as desired. The Deasy model is used to compare experimental results on polio stem cells 

with embryonic stem cells, with the aid of hyperbolastic growth model H3. Here, we offer multiple 

models that are applicable to the study of stem cell populations in general and are particularly useful for 

modeling cell proliferation in the real world. We talked about structured cell population models and 

contrasted various methodologies used in cell proliferation mathematical modeling. The findings of this 

study advance our scientific and mathematical knowledge of stem cell dynamics. The models are also 

expected to be useful in standardizing cell culture conditions and scalable systems, as well as in the 

development of clinical procedures for stem cell treatments. Moreover, it may be used to conduct a more 

accurate examination of preexisting data. Certain experiments' outcomes can be predicted. In this 

manuscript, all data analysis is shown in Figures 1-15. 

Keyword: Embryonic stem cells, Polio cell, Hyperbolastic growth model and Deasy model. 
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1.Introduction: 

Stem cells vary from other types of cells in that they may divide and self-renew to differentiate 

into multiple cell types (Arif, 2014; Pauklin & Vallier, 2013; Wang et al., 2020). Although the 

process is extremely dynamic, the stem cell population is continuous and close to constant.A list 

of fundamental claims is constructed based on experimental information regarding hemopoietic 

stem cells. This leads to the development of a simple mathematical model of the mechanisms 

controlling hemopoietic control (Catholic & Therapy, 2010; Loeffler & Wichmann, 1980; 

Michor, 2008).The use of stem cells in cell-based therapy and regenerative medicine has 

enormous potential. Key to progressing these initiatives include the creation of methods that 

grow cells to retaining the appropriate stem cell phenotype while obtaining therapeutically 

applicable numbers (Beerman et al., 2010; Words & Green, 2002).A simple mathematical model 

to depict the growth dynamics of stem cells is required in the field of stem cell research, which is 

currently of great interest. The goal of this study is to demonstrate the Tabatabai et al. (M. 

Tabatabai et al., 2005)hyperbolastic growth models as a precise and useful method of modeling 

the dynamics of stem cell proliferation. We talked about structured cell population models and 

contrasted various methodologies used in cell proliferation mathematical modeling. A time 

continuous daughter cell model that was investigated in (Arino, 1995; Arino & Kimmel, 1993)is 

presented in a somewhat expanded form.We illustrate the precision and potency of these models, 

which include the polio cell, adult stem cells, and embryonic stem cells, using experimental data 

(M. Tabatabai et al., 2005; M. A. Tabatabai et al., 2011).The cycle of interphase time and 

division time below enables us to observe the mitotic cell division of any steam cell. 



Page 2307 of 2328 

Rashedul Islam/Afr.J.Bio.Sc. 6(5)(2024).2305-2328 

 

 

Fig:The presence of non-dividing cells in the population leads to nonlinear growth: 

Diagrammatic representation of the quiescence (G1), terminal differentiation, and 

apoptosis/senescence non-diverging cellular phases. Cells move through the cycle and divide to 

form daughter cells, which could start a fresh mitotic cycle. Alternately, the offspring cells could 

exit the cycle and go into senescence or apoptosis, or they could briefly enter the dormant G2 

state. 

The embryo is the body's first stem cell, also known as a cell population, and it has the ability to 

differentiate into every type of human body cell like polio, tumor, and cancer as well as the 

tissues that will support the development embryo(MacLean et al., 2013; Michor, 2008; Staddon, 

2018).Self-renewal, differentiation, and proliferation are all crucial topics in the field of stem cell 

research. We join other academics who have previously investigated this topic and concentrate 

on providing an appropriate mathematical model for stem cell proliferation(Wadkin et al., 2019; 

Wilson & Trumpp, 2006).It is thought that adult stem cells maintain their steamness through 

intricate interactions with their surroundings and progeny. Here, we incorporate these findings 

into a population biology framework that enables us to draw from ecological principles and 

provide insight on the dynamics of the stem cell niche(MacLean et al., 2017).The efficacy of 
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many stem cell therapies will depend on the quantity of transplantable stem cells predicts (Aguila 

& Rowe, 2005; Hoang et al., 2022; Mousaei Ghasroldasht et al., 2022). 

In our research, we address Thehyperbolastic growth model H3 is applied to experimental data 

involving polio stem cells and embryonic stem cells. The outcomes are compared to those of 

other well-known models, including the Deasy model and logistic, which are often employed in 

the polio and embryonic stem cell studies for stem cell proliferation.Finally, we show how to 

estimate the kinetic parameters more accurately. This research adds to our understanding of stem 

cell dynamics from both a biological and mathematical perspective. Additionally, it is anticipated 

that the models would be necessary for developing clinical procedures for stem cell treatments 

and will be helpful in standardizing cell culture conditions and scalable systems. 

2.2 Cell Population dynamics models(methods) 

2.2.1Deasy Model 

The exponential equation is frequently used to compute population growth and estimates of 

parameters affecting proliferation: The equation  𝑁= 𝑁02
𝑡

𝐷𝑇 assumes that every cell is actively 

dividing to produce two daughter cells and that the number of cells N, at the time, t, entirely 

depends on the initial number of cells, and its division time, DT. The Sherley model [ hand-35] 

incorporates a parameter that accounts for the existence of non-dividing cells to capture the 

dynamics. We created a mathematical technique to express the proliferation potential of cells as 

a single quantity 𝛼, which is referred to as the percentage of dividing daughter cells. Based on a 

sequence of photographs depicting the process of cell growth that included the concept of the 

production of both dividing and non-dividing daughter cells in a growing population (Klose et 

al., 2019; Sherley et al., 1995). 
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𝑁(𝑡) = 𝑁0  0.5 +
1 −  2𝛼 

1

𝐷𝑇
+1

2 1 − 2𝛼 
                                                                     (1) 

Where 𝛼 an is the mitotic fraction, 𝑁0 is the starting number of cells, DT is the division time, and 

𝑁(𝑡) is the population size at time t. As the percentage of cells whose cellular divisions are still 

occurring is represented by the parameter a, a must meet the conditions of 0 ≤ 𝛼 ≤ 1. The 

Sherley model was used by Deasy et al. (Hayflick, n.d.)to explain the mechanisms of cytokine-

induced muscle stem cell growth.One of the most widely used models for hPSCs comprises two 

populations of dividing and non-dividing cells, along with a term for accounting for cell loss due 

to death or differentiation (often referred to as the Deasy model, which is a development of the 

Sherley model to include cell loss) (Sherley et al., 1995; Words & Green, 2002). 

In a set of discrete equations, where M is the total number of dead or lost cells at time t and N is 

the number of live cells at time t, we obtain 

N𝑖 =  (1 − α)(2α)0N0  +  (1 − α)(2α)1(N0)  +  (1 − α)(2α)2(N0)  + ⋯ + (1

− α)(2α)𝑖−1(N0)  +  (2α)𝑖(N0) –  M𝑖  

A geometric series is created by enlarging and rearranging the terms to 

N𝑖 = N0  0.5 + 0.5 (2α)i

n

0

 − M𝑖 

where N𝑖  is the total number of live cells at time t, M𝑖  is the total number of dead cells at time t, 

and N0 is the initial number of cells, and iis any positive value of t/DT. 

Following that, the model equation for growth with cell loss is given: 
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𝑁 𝑡 = 𝑁0  0.5 +
1 −  2𝛼 

1

𝐷𝑇
+1

2 1 − 2𝛼 
 − 𝑀                                                                   (2) 

Under conditions of significant cell loss, the final factor, M, which is new to this equation, 

provides a more precise prediction. Without this phrase, the mitotic fraction is overstated since it 

gives the impression that fewer cells were generated overall than was the case. 

The Deasy growth model is what we refer to as formula (2) in this article. 

3.2.TheHyperbolastic Model H3 

The hyperbolastic model H3 is used to analyze stem cell growth. The hyperbolastic growth 

models of(M. Tabatabai et al., 2005)were just recently developed to give growth models more 

accuracy as well as flexibility in the growth rate as the population reaches its carrying capacity.It 

has been shown that these models are very accurate, especially when it comes to simulating 

biological growth, as in (Ahmadi & Mottaghitalab, 2007; Eby et al., 2010; M. A. Tabatabai et al., 

2011; Wadkin et al., 2020). For the sake of this paper, we will focus on H3, a type III 

hyperbolastic development model. 

The nonlinear hyperbolastic differential equation of the following form, which takes into account 

a third growth curve 

𝐝𝐩(𝐭)

𝐝𝐭
= (𝐋 − 𝐏(𝐭)  𝛃𝛄𝐭𝛄−𝟏 +

𝛉

 𝟏+𝛉𝟐𝐭𝟐
 (3)    

 

WhereL is the carrying capacity and β,γ and θ are parameters, with initial condition 𝑃 𝑡0 = 𝑝0. 

Model (3) is the type III hyperbolastic ordinary differential equation. 
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This rate of increase is the result of two factors, one representing how far the existing population 

is from its limiting value and the other includingthe intrinsic rate β, an allometric constant γ, and an 

additional term θ allowing flexibility in growth rate over time.The solution to equation (3) is a four 

parameter model 

                                        𝑷(𝒕)  =  𝑳 −  𝜶 𝑬𝑿𝑷[−𝜷 𝒕𝜸 −  𝐚𝐫𝐜𝐬𝐢𝐧𝐡(𝜽𝒕)](4) 

                      where 

𝜶 =  (𝑳 −  𝑷𝟎) 𝑬𝑿𝑷[𝜷 𝒕𝟎
𝜸 +  𝐚𝐫𝐜𝐬𝐢𝐧𝐡(𝜽 𝒕𝟎)] 

The biological significance of the parameters L, β, γ, and θ is briefly discussed here. The 

carrying capacity or limiting value of the population size is represented by the parameter L, 

which has the same units as 𝑃(𝑡) and in this example, is the number of stem cells.The 

𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) function mustbe entered using its definition in terms of logarithms: 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 𝑥 =

ln(𝑥 +  1 + 𝑥2. The parameter β is equivalent to the intrinsic biological growth rate; however, 

all of the parameters β, γ, and θ work together to determine the total rate of growth. 1/(𝑡𝑖𝑚𝑒)𝛾or 

1/(𝑑𝑎𝑦𝑠)𝛾 in the case of this article, is the unit of measurement for β. The Weibull model has a 

parameter akin to the allometric denoted as γ.In order to more accurately represent the biological 

significance of the parameter θ, which has units of 1/(time), in our instance 1/(days), we rewrite 

equation (4) as follows. 

     𝑷 𝒕 = 𝐋 −
𝛂

𝛉𝐭 +  𝟏 +  𝛉𝐭 𝟐
𝐄𝐗𝐏[−𝜷 𝒕𝜸] 

The term before the exponential simplifies to a for θ = 0, and the model then becomes the 

Weibull growth model. The expression 𝛼 𝑡, 𝜃 =
𝛂

𝛉𝐭+ 𝟏+ 𝛉𝐭 𝟐
permits this factor to change with 

time t when 𝜃 ≠  0, based on this formula and the value of θ. 
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The hyperbolastic ordinary differential equation of typeIII can also be represented in the 

following form 

𝐝𝐩(𝐭)

𝐝𝐭
= 𝐚 𝐭 − 𝐛(𝐭) 

Where b(t) represents variables slowing or delaying population increase and a(t) represents 

forces causing population growth. Here  

𝑎 𝑡 = 𝐿  𝛃𝛄𝐭𝛄−𝟏 +
𝛉

 𝟏 + 𝛉𝟐𝐭𝟐
  

                                               and 

 𝑏 𝑡 = 𝑝(𝑡)  𝛃𝛄𝐭𝛄−𝟏 +
𝛉

 𝟏 + 𝛉𝟐𝐭𝟐
  

We therefore refer to the function 𝑃(𝑡) of equation as the hyperbolastic growth model of type III 

or simply H3 (4). Any and all hyperbolastic growth models may, when necessary, include shift 

or delay effects. 

3.3 Result and Disscussion 

All areas of stem cell research are impacted by the variety of stem cell populations, including 

isolation, cell-cell signaling pathways, and mathematical modeling. Apparently, neither our 

models nor any other model can completely capture all biological phenomena that researchers 

come across in their work. The parameters of heterogeneous cell population expansion can be 

evaluated using the straightforward, approachable models described here. They could also act as 

a framework for more intricate models that include terminology to take interactions between 

subpopulations into account. When applied to the clinical setting, these models could be used as 

forecasting tools to determine how long it will take to expand from cell biopsy to cell 
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transplantation. In that study, it was demonstrated that H3 accurately represented the data in 

comparison to other sigmoidal models including Weibull, Gompertz, logistic, and Richards. The 

Mean Absolute Relative Error for the other models varied from roughly ten to over twenty times 

that of H3. The Deasy and Sherley models, which have been widely used to simulate the 

proliferation of stem cells, are a distinct kind of model, more akin to exponential growth than 

sigmoidal growth. We contrast the Deasy model with the others when analyzing the data related 

to embryonic stem cells because it is the more sophisticated and accurate of these models . We 

also analyze the data of polio cell. We contrast Deasy and H3 specifically in terms of how well 

they describe experimental data. we also compare the data with the logistic model. There are 

available NIH stem cell data [ hand 90-27] online. Table 1 lists the calculated from the data 

predicted values for the Deasy model's parameters. Table 2 contains estimates for the H3 

parameter.Note that the parameter values provided in (M. Tabatabai et al., 2005) for the H3 

model were entered incorrectly; the values that should be used are those in Table 2. Table 3 lists 

the estimated stem cell counts for each of these models in relation to the actual data. 

 

Parameter Estimate 

α 0.90 

DT 2.031 

M 81.670 

Table 1 

Parameter Estimate 

δ 3.237×10
-6 

L 770.922 
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θ 0.058 

γ 8.01 

Table 2 

Both the logistic and Deasy models fared poorly when their accuracy was evaluated, with a mean 

absolute relative error that was higher than that of H3. With more errors than the conventional 

sigmoidal models, which don't perform as well as H3, it becomes the least accurate model in the 

comparison research.  

 

Fig:Steam cell prolification 

Currently, we calculate the projected steam cells over time using several population models, as 

well as the absolute relative error from the observed steam cell value. 

Days Observe number 

of steam cell 

Calculated number of steam cells 

Deasy H3 Logistic 

1 115.000 

76.752 115 154.85 

2 145.375 

134.749 152.335 207.78 

3 188.872 

212.213 198.76 277.55 

4 304.78 

315.657 325.49 368.48 

Hematopoietic steam cell

Common myeloid progenitor

Megakar
yocyte

Thrombocyte

Erythroc
yte

Mast cell
Myelobla
st

Basophil
Neutrop
hil

Eosinoph
il

Monocyt
e

Macroph
ase

Dendritic 
cell

Common lymphoid progenitor

Natural 
killer cell

Small 
lymphoc
yte

T 
lymphoc
yte

B 
lymphoc
yte

Plasma 
cell
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5 595.132 

453.864 626.422 485.391 

6 764.000 

638.43 786.972 633.02 

Table 3 
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Absolute relative error 

Deasy H3 Logistic 

0.332591 0 0.346522 

0.073094 0.047876 0.429269 

0.123581 104.2353 0.469514 

0.035688 0.067951 0.209003 
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0.237373 0.052577 0.184398 

0.164359 0.030068 0.17144 

Table 4 

 

We calculate the various errors of the three estimated models, such as Mean square error and R 

squared error, in order to compare models with varying numbers of parameters on an equal basis 

and to analyze the correctness of these models.The MSE error for the three model is 

MSE(Deasy)=6.3×10
3
, MSE(H3)=3.4×10

2
 and MSE(Logistic)=7.7×10

3
.We also determine the 

vale of R
2
.Now the value of R

2
 for the three model are R

2
Deasy=0.962, R

2
H3=0.991 and 

R
2

Logistic=0.941. It is also possible to calculate other model errors like Weibull, Gompertz, 

Rechards H1 and H2, etc. 

Evidently, neither our models nor any other model can completely capture all biological 

phenomena that researchers come across in their work. Many different sigmoid growth models 

have been created, and more are constantly being proposed [16-90]. Around the inflection point, 

the logistic function exhibits symmetric behavior. Additionally, the hyperbolic, decelerating 

growth model is remarkably correct. When these models are fitted to one set of data, the 

parameter values may be very different. The Richards model generalizes the logistic model by 

adding a third parameter (γ) to the equation to account for asymmetrical growth, whereas the 
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logistic model employed here is a two parameter symmetric model.When estimating the polio 

cell data using the observed value over time (month), we may detect an increase in growth rate 

and the spread of the disease throughout the body.The computed from the data projected values 

for the Deasy model's parameters are listed in Table 5 below. Estimates for the H3 parameter are 

shown in Table 6. The values in Table 6 should be used instead of the parameter values given in 

[90, 91] for the H3 model. According to the actual data, Table  shows the estimated polio 

numbers for each of Deasy models. 

Parameter Estimate 

α 1.00 

DT 1.375 

M 312.62 

Table 5 

Parameter Estimate 

δ 4.11×10
-6 

L 41359.6 

θ 0.001 

γ 6.18 

Table 6 

 

Utilizing the various parameter values described above and the observed value, we calculate the 

polio cell data as the months pass. Because we can roughly estimate the quantity of polio cells 

without a checkup. It is really beneficial for the patient with polio as well as the doctor.  
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Fig:Syndrome of the pluripotent polio steam cell 

We also use a variety of population growth models, including the logistic, hyperbolistic (H3), 

and deasy models for population growth, to calculate the absolute relative error from the 

estimated value. 

Months Observe number of 

Polio cell 

Calculated number of Polio cell 

Deasy H3 Logistic 

0 

494 494 494 494 

1 

759 504.99 412.34 902.14 

2 

1016 1041.28 383.26 1638.63 

3 

1215 1928.78 479.58 2934.21 

4 

1619 3398.03 1166.84 5232.43 

5 

2964 5830.41 3628.12 8701.87 

6 

8489 9857.16 9778.64 13993.65 

Table 7 

Undiffere
ntiated 
Parent 
Steam 
cell

Tissu 
Precursor 
cells 

Skeletal 
Muscel cell

Brain 
Neuron

Motor 
Neuron

Tissu 
Precursor 
cells

White 
blood cell

Islet cell of 
pancreas

Dopamine 
producing 
bran cell
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Absolute relative error 

Deasy H3 Logistic 

0 0 0 

0.334664 0.456733 0.18859 

0.024882 0.622776 0.612825 

0.587473 0.605284 1.414988 

1.098845 0.279284 2.23189 
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0.967075 0.224062 1.935854 

0.161169 0.151919 0.648445 

Table 8 

 

To compare models with differing numbers of parameters on an equal footing and to assess the 

accuracy of these models, we compute the various errors of the three estimated models, such as 

Mean square error and R squared error. The MSE error for the three model is 

MSE(Deasy)=1.9×10
6
, MSE(H3)=5.6×10

5
 and MSE(Logistic)=1.3×10

7
.We also determine the 

vale of R
2
.Now the value of R

2
 for the three model are R

2
Deasy=0.862, R

2
H3=0.920 and 

R
2

Logistic=0.725. It is also possible to calculate other model errors like Weibull, Gompertz, 

Rechards H1 and H2, etc. 

The hyperbolastic growth model H3 is the most effective at predicting the dynamic behavior of 

stem cells out of the three. The growth dynamics of cell populations, such as cell proliferation 

and quiescence rates, can be understood using this model. 
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Fig 

Finally, the results from our hyperbolastic models are highly encouraging. In both of the 

aforementioned data sets, they provided a better fit to the data than the logistic, Richards, and 

Gompertz models, which were both the worst suited models in terms of MSE, mean RE, and 

prediction accuracy. 

Our models generalize the logistic and weibull models, and two of them are accurate and 

straightforward. 

In fact, stem cell research places a lot of emphasis on and struggles with managing cell 

differentiation. Although the potential of stem cell therapy depends on these cells' capacity for 

multilineage differentiation, practical treatments will call for in vitro augmentation of the 

undifferentiated phenotype. Both the differentiated phenotype and the self-renewing phenotype 

are represented in our model by words. Therefore, the models are may be used to analyze the 

growth kinetics brought on by mixed subpopulations and the heterogeneity of a cell 
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population.These models make use of a mathematical method to evaluate the proliferation of 

stem cells while paying close attention to the varied phenotypes produced by different stem cell 

fates. There are actually a number of intermediate phenotypes that may emerge at various speeds, 

despite the fact that we have reduced the model to only include the self-renewing and terminally 

differentiated stages. Although the estimate of the mitotic fraction is specifically enhanced for 

the instance of myogenic differentiation, the model might be used in subsequent studies to 

construct functions utilizing proliferation and differentiation rates based on the non-exponential 

model. 

The models discussed in this study should make it easier to comprehend the dynamics and 

heterogeneity of stem cells from both a biological and mathematical perspective. With the help 

of these methods, we are able to statistically evaluate stem cell population growth parameters 

that are influenced by both intrinsic and extrinsic control. The creation of bioreactor systems 

intended for the mass production of phenotypically defined stem cells for use in cellular therapy 

strategies will be possible with an improved understanding of the intercellular and 

microenvironmental determinants of stem cell fate combined with suitable growth models. 

Conclusion: 

Stem cells are vital to human life and have great therapeutic promise, our understanding of their 

role is still imperfect at times. Because of both theoretical and experimental developments, the 

field of stem cell biology has significantly expanded recently.We may make sensible 

assumptions about medical information using a variety of mathematical methodologies, which 

will be very helpful for forecasting the growth of many sorts of cells over time, including 

leukemia, polio, and tumor cells. The mathematical models are therefore very helpful for 
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prescribing therapy and for further treatment, making the work and research for doctors and 

researchers easier. 

 

Aguila, H. L., & Rowe, D. W. (2005). Skeletal development, bone remodeling, and 

hematopoiesis. Immunological Reviews, 208, 7–18. https://doi.org/10.1111/j.0105-

2896.2005.00333.x 

Ahmadi, H., & Mottaghitalab, M. (2007). Hyperbolastic models as a new powerful tool to 

describe broiler growth kinetics. Poultry Science, 86(11), 2461–2465. 

https://doi.org/10.3382/ps.2007-00086 

Arif, S. (2014). Modeling Stem Cell Population Dynamics PhD Thesis Defense Presentation. 

https://doi.org/10.25777/thnx-6q07 

Arino, O. (1995). A survey of structured cell population dynamics. Acta Biotheoretica, 43(1–2), 

3–25. https://doi.org/10.1007/BF00709430 

Arino, O., & Kimmel, M. (1993). Comparison of approaches to modeling of cell population 

dynamics. SIAM Journal on Applied Mathematics, 53(5), 1480–1504. 

https://doi.org/10.1137/0153069 

Beerman, I., Maloney, W. J., Weissmann, I. L., & Rossi, D. J. (2010). Stem cells and the aging 

hematopoietic system. Current Opinion in Immunology, 22(4), 500–506. 

https://doi.org/10.1016/j.coi.2010.06.007 

Catholic, T., & Therapy, H. C. (2010). T ISSUE -S PECIFIC S TEM C ELLS Concise Review : 

Multiple Niches for Hematopoietic Stem Cell Regulations. 1243–1249. 



Page 2326 of 2328 

Rashedul Islam/Afr.J.Bio.Sc. 6(5)(2024).2305-2328 

 

Eby, W. M., Tabatabai, M. A., & Bursac, Z. (2010). Hyperbolastic modeling of tumor growth 

with a combined treatment of iodoacetate and dimethylsulphoxide. BMC Cancer, 10. 

https://doi.org/10.1186/1471-2407-10-509 

Hayflick, L. (n.d.). Quantitative estimate of Cell Proliferation Process V.L.Vengrinovich 

Institute of Applied Physics of the National Academy of sciences of Belarus 1 Introduction. 

Hoang, D. M., Pham, P. T., Bach, T. Q., Ngo, A. T. L., Nguyen, Q. T., Phan, T. T. K., Nguyen, 

G. H., Le, P. T. T., Hoang, V. T., Forsyth, N. R., Heke, M., & Nguyen, L. T. (2022). Stem 

cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 7(1). 

https://doi.org/10.1038/s41392-022-01134-4 

Klose, M., Florian, M. C., Gerbaulet, A., Geiger, H., & Glauche, I. (2019). Hematopoietic Stem 

Cell Dynamics Are Regulated by Progenitor Demand: Lessons from a Quantitative 

Modeling Approach. Stem Cells, 37(7), 948–957. https://doi.org/10.1002/stem.3005 

Loeffler, M., & Wichmann, H. E. (1980). a Comprehensive Mathematical Model of Stem Cell 

Proliferation Which Reproduces Most of the Published Experimental Results. Cell 

Proliferation, 13(5), 543–561. https://doi.org/10.1111/j.1365-2184.1980.tb00494.x 

MacLean, A. L., Lo Celso, C., & Stumpf, M. P. H. (2013). Population dynamics of normal and 

leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where 

leukaemia will be controlled. Journal of the Royal Society Interface, 10(81). 

https://doi.org/10.1098/rsif.2012.0968 

MacLean, A. L., Lo Celso, C., & Stumpf, M. P. H. (2017). Concise Review: Stem Cell 

Population Biology: Insights from Hematopoiesis. Stem Cells, 35(1), 80–88. 

https://doi.org/10.1002/stem.2508 



Page 2327 of 2328 

Rashedul Islam/Afr.J.Bio.Sc. 6(5)(2024).2305-2328 

 

Michor, F. (2008). Mathematical models of cancer stem cells. Journal of Clinical Oncology, 

26(17), 2854–2861. https://doi.org/10.1200/JCO.2007.15.2421 

Mousaei Ghasroldasht, M., Seok, J., Park, H. S., Liakath Ali, F. B., & Al-Hendy, A. (2022). 

Stem Cell Therapy: From Idea to Clinical Practice. International Journal of Molecular 

Sciences, 23(5). https://doi.org/10.3390/ijms23052850 

Pauklin, S., & Vallier, L. (2013). XThe cell-cycle state of stem cells determines cell fate 

propensity. Cell, 155(1), 135. https://doi.org/10.1016/j.cell.2013.08.031 

Sherley, J. L., Stadler, P. B., & Stadler, J. S. (1995). A quantitative method for the analysis of 

mammalian cell proliferation in culture in terms of dividing and non‐ dividing cells. Cell 

Proliferation, 28(3), 137–144. https://doi.org/10.1111/j.1365-2184.1995.tb00062.x 

Staddon, J. E. R. (2018). Adaptive Dynamics. Adaptive Dynamics, 013(May 2018), 101–112. 

https://doi.org/10.7551/mitpress/1092.001.0001 

Tabatabai, M. A., Bursac, Z., Eby, W. M., & Singh, K. P. (2011). Mathematical modeling of 

stem cell proliferation. Medical and Biological Engineering and Computing, 49(3), 253–

262. https://doi.org/10.1007/s11517-010-0686-y 

Tabatabai, M., Williams, D. K., & Bursac, Z. (2005). Hyperbolastic growth models: Theory and 

application. Theoretical Biology and Medical Modelling, 2, 1–13. 

https://doi.org/10.1186/1742-4682-2-14 

Wadkin, L. E., Orozco-Fuentes, S., Neganova, I., Bojic, S., Laude, A., Lako, M., Parker, N. G., 

& Shukurov, A. (2019). Seeding hESCs to achieve optimal colony clonality. Scientific 

Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-51897-0 

Wadkin, L. E., Orozco-Fuentes, S., Neganova, I., Lako, M., Shukurov, A., & Parker, N. G. 



Page 2328 of 2328 

Rashedul Islam/Afr.J.Bio.Sc. 6(5)(2024).2305-2328 

 

(2020). The recent advances in the mathematical modelling of human pluripotent stem cells. 

SN Applied Sciences, 2(2), 1–14. https://doi.org/10.1007/s42452-020-2070-3 

Wang, Y., Lo, W. C., & Chou, C. S. (2020). Modelling stem cell ageing: A multi-compartment 

continuum approach. Royal Society Open Science, 7(3). https://doi.org/10.1098/rsos.191848 

Wilson, A., & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nature 

Reviews Immunology, 6(2), 93–106. https://doi.org/10.1038/nri1779 

Words, K., & Green, A. (2002). Riginal Rticle ®. 338–346. 

 

 

 

 

 


