https://doi.org/10.48047/AFJBS.6.Si3.2024.2277-2287

On Square Difference Geometric Mean 3-Equitable Graphs

V Annamma¹, Jawahar Nisha M I²

¹Department of Mathematics, L.N. Government College, Ponneri, 601204, Tamil Nadu, India ²Department of Mathematics, Justice Basheer Ahmed Sayeed College for Women (Autonomous) Teynampet, Chennai, 600018, Tamil Nadu, India

E-mail: ²nishabdulbasith@gmail.com

Article Info

Volume 6, Issue S i 3, June 2024 Received: 18 April 2024 Accepted: 26 May 2024 Published: 20 June 2024 *doi: 10.48047/AFJBS.6.Si3.2024.2277-2287*

ABSTRACT:

A Square Difference Geometric Mean (SDGM) 3-Equitable labeling of a graph G = (V, E) is a mapping $f:V(G) \rightarrow \{0, 1, 2\}$ such that the induced mapping $g: E(G) \rightarrow \{0, 1, 2\}$ is defined by $\left|\sqrt{|(f(u))^2 - (f(v))^2|}\right|, \forall uv \in E(G)$ with the condition $|v_f(i) - v_f(j)| \leq 1$ and $|e_g(i) - e_g(j)| \leq 1$ for all $0 \leq i, j \leq 2$. Also, if $|(v_f + e_g)(i) - (v_f + e_g)(j)| \leq 1$ for all $0 \leq i, j \leq 2$ then the labeling is called perfect square difference geometric mean 3-equitable labeling. A graph is called a square difference geometric mean (SDGM) 3-Equitable graph if there exists a SDGM 3-equitable labeling and perfect square difference geometric mean 3-equitable graph if there exists a Perfect SDGM 3-Equitable labeling. In this paper we investigate the SDGM 3-Equitable labeling or Perfect SDGM 3-Equitable labeling of certain cycle related graphs such as alternate triangular cycle graph, flower graph and petersen graph.

Keywords: Alternate Triangular Cycle graph, Flower graph, Petersen graph, Square Difference Geometric Mean 3-Equitable Graph.

© 2024 V Annamma, This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Creative Commons license, and indicate if changes were made

1. Introduction

A non-trivial, simple, finite and undirected graphs are considered in this article. An assignment of integers to the vertices or edges, or both subject to certain conditions is called graph labeling [3]. Cahit introduced the concept of cordial and 3-equitable labeling [1]. Ponraj et al., introduced

the concept of mean cordial labeling [5]. Geometric mean cordial labeling was introduced by K. Chitra Lakshmi, K. Nagarajan [2].

Motivated by these definitions, we define the new notion called Square Difference Geometric Mean (SDGM) 3-Equitable labeling. We investigate the SDGM 3-Equitable labeling of certain cycle related graphs such as Alternate Triangular Cycle graph, Flower graph and Petersen graph.

Definition 1.1 [4]: An Alternate Triangular Cycle $A(C_{2n})$ is obtained from an even cycle $C_{2n} = \{u_1, v_1, u_2, v_2, ..., u_n, v_n\}$ by joining u_i and v_i to a new vertex w_i . That is, every alternate edge of a cycle C_{2n} is replaced by C_3 .

Definition 1.2 [6]: A Flower graph Fl_n is the graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Definition 1.3 [7]: The generalized Petersen graph P(n,k), (n > 2k) is defined to be a graph on 2n vertices with $V(P(n,k)) = \{v_i, u_i: 1 \le i \le n\}$ and $E(P(n,k)) = \{v_i v_{i+1}, v_i u_i, u_i u_{i+k}: 1 \le i \le n\}$, subscripts modulo $n\}$.

2. Main Results

Definition 2.1:

A Square Difference Geometric Mean (SDGM) 3-Equitable labeling of a graph G = (V, E) is a surjective mapping $f: V(G) \rightarrow \{0, 1, 2\}$ such that the induced mapping $g: E(G) \rightarrow \{0, 1, 2\}$ is defined by $\left[\sqrt{|(f(u))^2 - (f(v))^2|}\right], \forall uv \in E(G)$ with the condition $|v_f(i) - v_f(j)| \leq 1$ and $|e_g(i) - e_g(j)| \leq 1$ for all $0 \leq i, j \leq 2$. Also, if $|(v_f + e_g)(i) - (v_f + e_g)(j)| \leq 1$ for all $0 \leq i, j \leq 2$ then the labeling is called Perfect Square Difference Geometric Mean 3-Equitable labeling. A graph is called a Square Difference Geometric Mean (SDGM) 3-Equitable graph if there exists a SDGM 3-Equitable labeling and Perfect Square Difference Geometric Mean 3-Equitable graph if there exists a Perfect SDGM 3-Equitable labeling.

Remarks 2.1: If we consider $f: V(G) \rightarrow \{0, 1\}$, the definition 3.1 coincides with that of cordial labeling. Hence we consider $f: V(G) \rightarrow \{0, 1, 2\}$.

Theorem 2.1: The Alternate Triangular Cycle graph $A(C_{2n})$ is a Perfect SDGM 3-Equitable graph $\forall n$.

Proof: Let G be a Alternate Triangular Cycle graph $A(C_{2n})$ with the vertex set $V(G) = \{u_i, v_i, w_i \mid 1 \le i \le n\}$ and the edge set $E(G) = \{u_i v_i, u_i w_i, v_i w_i \mid 1 \le i \le n\} \cup \{v_i u_{i+1} \mid 1 \le i \le n-1\} \cup \{v_n u_1\}, |V(G)| = l = 3n$ and |E(G)| = k = 4n. The Alternate Triangular Cycle graph $A(C_{2n})$ is shown in the following fig 2.1 (a).

Fig 2.1 (a). Alternate Triangular Cycle graph $A(C_{2n})$

Define $f : V(G) \rightarrow \{0, 1, 2\}$ as follows: **Case (i):** $n \equiv 0 \pmod{3}$ $f(u_i) = \begin{cases} 1, & i \equiv 1,2 \pmod{3} \\ 2, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n$

$$f(v_i) = \begin{cases} 0, & i \equiv 1,0 \pmod{3} \\ 2, & i \equiv 2 \pmod{3} \end{cases} \text{ for all } 1 \le i \le n$$

$$f(w_i) = \begin{cases} 0, \ i \equiv 1 \pmod{3} \\ 1, \ i \equiv 2 \pmod{3} \\ 2, \ i \equiv 0 \pmod{3} \end{cases} \text{ for all } 1 \le i \le n$$

Here $l \equiv 0 \pmod{3}$ i.e. l = 3t, so $v_f(0) = v_f(1) = v_f(2) = t$ and $k \equiv 0 \pmod{3}$ i.e. k = 3s, so $e_g(0) = e_g(1) = e_g(2) = s$.

Also
$$(v_f + e_g)(0) = (v_f + e_g)(1) = (v_f + e_g)(2) = t + s.$$

Case (ii): $n \equiv 1 \pmod{3}$ $f(u_i) = \begin{cases} 1, & i \equiv 1,2 \pmod{3} \\ 2, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n-1$ and $f(u_n) = 0$ $f(v_i) = \begin{cases} 0, & i \equiv 1,0 \pmod{3} \\ 2, & i \equiv 2 \pmod{3} \end{cases}$ for all $1 \le i \le n-2$ and $f(v_{n-1}) = 1, f(v_n) = 0$ $f(w_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 1, & i \equiv 2 \pmod{3} \\ 2, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n-1$ and $f(w_n) = 2$

Here $l \equiv 0 \pmod{3}$ i.e. l = 3t, so $v_f(0) = v_f(1) = v_f(2) = t$ and $k \equiv 1 \pmod{3}$ i.e. k = 3s + 1, so $e_g(0) = e_g(1) = s$, $e_g(2) = s + 1$.

Also $(v_f + e_g)(0) = (v_f + e_g)(1) = t + s, (v_f + e_g)(2) = t + s + 1.$

Case (iii): $n \equiv 2 \pmod{3}$ $f(u_i) = \begin{cases} 1, & i \equiv 1,2 \pmod{3} \\ 2, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n-2$ and $f(u_{n-1}) = 0, f(u_n) = 2$ $f(v_i) = \begin{cases} 0, & i \equiv 1,0 \pmod{3} \\ 2, & i \equiv 2 \pmod{3} \end{cases}$ for all $1 \le i \le n-2$ and $f(v_{n-1}) = 1, f(v_n) = 0$ $f(w_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 1, & i \equiv 2 \pmod{3} \\ 2, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n-2$ and $f(w_{n-1}) = 1, f(w_n) = 2$

Here $l \equiv 0 \pmod{3}$ i.e. l = 3t, so $v_f(0) = v_f(1) = v_f(2) = t$ and $k \equiv 2 \pmod{3}$ i.e. k = 3s + 2, so $e_g(0) = e_g(2) = s + 1$, $e_g(1) = s$.

Also
$$(v_f + e_g)(0) = (v_f + e_g)(2) = t + s + 1, (v_f + e_g)(1) = t + s.$$

In all the above cases, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_g(i) - e_g(j)| \le 1$ for all $0 \le i, j \le 2$. Also $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$.

Hence Alternate Triangular Cycle graph $A(C_{2n})$ is a Perfect SDGM 3-Equitable graph $\forall n$.

Illustration 2.1: Perfect SDGM 3-Equitable Labeling of Alternate Triangular Cycle graph $A(C_{12})$ is shown in fig 2.1 (b).

Fig 2.1 (b). Perfect SDGM 3-Equitable Labeling of Alternate Triangular Cycle graph $A(C_{12})$

Here $v_f(0) = v_f(1) = v_f(2) = 6$ and $e_g(0) = e_g(1) = e_g(2) = 8$. Also $(v_f + e_g)(0) = (v_f + e_g)(1) = (v_f + e_g)(2) = 14$. Therefore $|v_f(i) - v_f(j)| \le 1$, $|e_g(i) - e_g(j)| \le 1$ and $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$.

Theorem 2.2: The Flower graph Fl_n is a Perfect SDGM 3-Equitable graph when $n \equiv 0,1 \pmod{3}$ and SDGM 3-Equitable graph when $n \equiv 2 \pmod{3}$.

Proof: Let Fl_n be a Flower graph with vertex set $V(Fl_n) = \{u, u_i, v_i: 1 \le i \le n\}$ and edge set $E(Fl_n) = \{uu_i, uv_i, u_iv_i: 1 \le i \le n\} \cup \{u_iu_{i+1}: 1 \le i \le n-1\} \cup \{u_nu_1\}$. Let $|V(F_n)| = l$ and $|E(F_n)| = k$. Then l = 2n + 1 and k = 4n. Flower graph Fl_n is shown in the following fig 2.2 (a).

Fig 2.2 (a). Flower graph Fl_n

Define $f : V(G) \rightarrow \{0, 1, 2\}$ as follows: **Case (i):** $n \equiv 0, 1 \pmod{3}$ f(u) = 0 $f(u_i) = \begin{cases} 1, & i \equiv 1,2 \pmod{3} \\ 0, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n$

$$f(v_i) = \begin{cases} 2, & i \equiv 1,2 \pmod{3} \\ 0, & i \equiv 0 \pmod{3} \end{cases} \text{ for all } 1 \le i \le n$$

Sub Case (i): $n \equiv 0 \pmod{3}$

Here $\equiv 1 \pmod{3} \ l = 3t + 1$, so $v_f(0) = t + 1$, $v_f(1) = v_f(2) = t$ and $k \equiv 0 \pmod{3}$ i.e. k = 3s, so $e_g(0) = e_g(1) = e_g(2) = s$.

Also
$$(v_f + e_g)(0) = t + s + 1, (v_f + e_g)(1) = (v_f + e_g)(2) = t + s.$$

Sub Case (ii): $n \equiv 1 \pmod{3}$

Here $\equiv 0 \pmod{3} \ l = 3t$, so $v_f(0) = v_f(1) = v_f(2) = t$ and $k \equiv 1 \pmod{3}$ i.e. k = 3s + 1, so $e_g(0) = e_g(1) = s$, $e_g(2) = s + 1$.

Also
$$(v_f + e_g)(0) = (v_f + e_g)(1) = t + s, (v_f + e_g)(2) = t + s + 1.$$

Case (ii): $n \equiv 2 \pmod{3}$ f(u) = 0 $f(u_i) = \begin{cases} 1, & i \equiv 1,2 \pmod{3} \\ 0, & i \equiv 0 \pmod{3} \end{cases}$ for all $1 \le i \le n$

 $f(v_i) = \begin{cases} 2, & i \equiv 1,2 \pmod{3} \\ 0, & i \equiv 0 \pmod{3} \end{cases} \text{ for all } 1 \le i \le n-1 \text{ and } f(v_n) = 0$

Here $\equiv 2 \pmod{3} \ l = 3t + 2$, so $v_f(0) = v_f(1) = t + 1$, $v_f(2) = t$ and $k \equiv 2 \pmod{3}$ i.e. k = 3s + 2, so $e_g(0) = e_g(1) = s + 1$, $e_g(2) = s$.

Also $(v_f + e_g)(0) = (v_f + e_g)(1) = t + s + 2, (v_f + e_g)(2) = t + s.$

In case (i), we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_g(i) - e_g(j)| \le 1$ for all $0 \le i, j \le 2$. Also $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$ and in case (ii) we see that $|v_f(i) - v_f(j)| \le 1$, $|e_g(i) - e_g(j)| \le 1$ and $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$.

Hence Flower graph Fl_n is a Perfect SDGM 3-Equitable graph when $n \equiv 0,1 \pmod{3}$ and SDGM 3-Equitable graph when $n \equiv 2 \pmod{3}$.

Illustration 2.2: Perfect SDGM 3-Equitable Labeling of Flower graph Fl_{12} is shown in fig 2.2 (b).

Fig 2.2 (b). Perfect SDGM 3-Equitable Labeling of Flower graph Fl_{12}

Here $v_f(0) = 9$, $v_f(1) = v_f(2) = 8$ and $e_g(0) = e_g(1) = e_g(2) = 16$. Also $(v_f + e_g)(0) = 25$, $(v_f + e_g)(1) = (v_f + e_g)(2) = 24$. Therefore $|v_f(i) - v_f(j)| \le 1$, $|e_g(i) - e_g(j)| \le 1$ and $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$.

Theorem 2.3: Petersen graph P(n, 2) with $n \ge 5$ is a Perfect SDGM 3-Equitable graph when $n \equiv 0,1,2,4,5 \pmod{6}$.

Proof: Let G be a Petersen graph P(n, 2) with the vertex set $V(G) = \{v_i, u_i / 1 \le i \le n\}$, where v_i be the outer vertices and u_i be the inner vertices and the edge set $E(G) = \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_n v_1\} \cup \{v_i u_i / 1 \le i \le n\} \cup \{u_i u_{i+2} / 1 \le i \le n-2\} \cup \{u_{n-1}u_1, u_n u_2\}, |V(G)| = 2n$ and |E(G)| = 3n. The Petersen graph P(n, 2) is shown in the following fig 2.3 (a).

Fig 2.3 (a). Petersen Graph P(n, 2)

Define $f : V(G) \to \{0, 1, 2\}$ as follows: **Case (i):** $n \equiv 0 \pmod{6}$ $f(v_i) = \begin{cases} 0, i \equiv 1, 4 \pmod{6} \\ 1, i \equiv 2, 3 \pmod{6} \\ 2, i \equiv 0, 5 \pmod{6} \end{cases}$ for all $1 \le i \le n$ $f(u_i) = \begin{cases} 0, i \equiv 1, 2 \pmod{6} \\ 1, i \equiv 3, 4 \pmod{6} \\ 2, i \equiv 0, 5 \pmod{6} \end{cases}$ for all $1 \le i \le n$ Here $l \equiv 0 \pmod{3}$ i.e. l = 3t, so $v_f(0) = v_f(1) = v_f(2) = t$ and $k \equiv 0 \pmod{3}$ i.e. k = 3s, so $e_g(0) = e_g(1) = e_g(2) = s$.

Also $(v_f + e_g)(0) = (v_f + e_g)(1) = (v_f + e_g)(2) = t + s$.

Case (ii): $n \equiv 1 \pmod{6}$ $f(v_i) = \begin{cases} 0, i \equiv 1, 4 \pmod{6} \\ 1, i \equiv 2, 3 \pmod{6} & \text{for all } 1 \le i \le n-1 \\ 2, i \equiv 0, 5 \pmod{6} & \end{cases}$

 $f(v_n) = 2$

$$f(u_i) = \begin{cases} 0, \ i \equiv 1, 2 \pmod{6} \\ 1, \ i \equiv 3, 4 \pmod{6} \\ 2, \ i \equiv 0, 5 \pmod{6} \end{cases} \text{ for all } 1 \le i \le n-1$$

 $f(u_n) = 1$

Here $l \equiv 2 \pmod{3}$ i.e. l = 3t + 2, so $v_f(0) = t$, $v_f(1) = v_f(2) = t + 1$ and $k \equiv 0 \pmod{3}$ i.e. k = 3s, so $e_g(0) = e_g(1) = e_g(2) = s$.

Also $(v_f + e_g)(0) = t + s, (v_f + e_g)(1) = (v_f + e_g)(2) = t + s + 1.$

Case (iii): $n \equiv 2 \pmod{6}$ $f(v_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 1, & i \equiv 0, 2 \pmod{3} \end{cases}$ for all $1 \le i \le \frac{n}{2}$ $f(v_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 2, & i \equiv 0, 2 \pmod{3} \end{cases}$ for all $\frac{n}{2} + 1 \le i \le n - 2$ $f(v_{n-1}) = f(v_n) = 2$ $f(u_i) = \begin{cases} 0, & i \equiv 2 \pmod{3} \\ 1, & i \equiv 0, 1 \pmod{3} \end{cases}$ for all $2 \le i \le \frac{n}{2} + 1$ $f(u_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 2, & i \equiv 0, 2 \pmod{3} \end{cases}$ for all $\frac{n}{2} + 2 \le i \le n - 1$ $f(u_1) = 0, f(u_n) = 1$ Here $l = 1 \pmod{3}$ is l = 3t + 1 so $w_i(0) = w_i(1) = t$ with

Here $l \equiv 1 \pmod{3}$ i.e. l = 3t + 1, so $v_f(0) = v_f(1) = t$, $v_f(2) = t + 1$ and $k \equiv 0 \pmod{3}$ i.e. k = 3s, so $e_g(0) = e_g(1) = e_g(2) = s$.

Also
$$(v_f + e_g)(0) = (v_f + e_g)(1) = t + s, (v_f + e_g)(2) = t + s + 1$$

Case (iv):
$$n \equiv 4 \pmod{6}$$

 $f(v_i) = \begin{cases} 0, & i \equiv 0.5 \pmod{6} \\ 2, & i \equiv 1, 2, 3, 4 \pmod{6} \end{cases}$ for all $1 \le i \le n - 6$
 $f(v_{n-5}) = 1, \quad f(v_{n-4}) = f(v_{n-3}) = f(v_n) = 0, \quad f(v_{n-1}) = f(v_{n-2}) = 2$
 $f(u_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 1, & i \equiv 0, 2 \pmod{3} \end{cases}$ for all $1 \le i \le n$
Here $l \equiv 2(\mod{3})$ i.e. $l = 3t + 2$, so $v_f(0) = v_f(1) = t + 1$, $v_f(2) = t$ and $k \equiv 0 \pmod{3}$
i.e. $k = 3s$, so $e_g(0) = e_g(1) = e_g(2) = s$.
Also $(v_f + e_g)(0) = (v_f + e_g)(1) = t + s + 1, (v_f + e_g)(2) = t + s$.
Case (v): $n \equiv 5 \pmod{6}$
 $f(v_i) = \begin{cases} 0, & i \equiv 1 \pmod{3} \\ 1, & i \equiv 0, 2 \pmod{3} \end{cases}$ for all $1 \le i \le \frac{n+1}{2}$
 $f(v_i) = \begin{cases} 0, & i \equiv 0 \pmod{3} \\ 2, & i \equiv 1, 2 \pmod{3} \end{cases}$ for all $\frac{n+3}{2} \le i \le n$
 $f(u_i) = 0, f(u_n) = 2$
 $f(u_i) = \begin{cases} 0, & i \equiv 2 \pmod{3} \\ 1, & i \equiv 0, 1 \pmod{3} \end{cases}$ for all $\frac{2 \le i \le \frac{n+3}{2}}{2}$
 $f(u_i) = \begin{cases} 0, & i \equiv 2 \pmod{3} \\ 2, & i \equiv 0, 1 \pmod{3} \end{cases}$ for all $\frac{n+5}{2} \le i \le n - 1$
Here $l \equiv 1 \pmod{3}$ i.e. $l = 3t + 1$, so $v_f(0) = v_f(2) = t$, $v_f(1) = t + 1$ and $k \equiv 0 \pmod{3}$
i.e. $k = 3s$, so $e_g(0) = e_g(1) = e_g(2) = s$.
Also $(v_f + e_g)(0) = (v_f + e_g)(2) = t + s, (v_f + e_g)(1) = t + s + 1$.

In all the above cases, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_g(i) - e_g(j)| \le 1$ for all $0 \le i, j \le 2$. Also $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$.

Hence Petersen graph P(n,2) with $n \ge 5$ is a Perfect SDGM 3-Equitable graph when $n \equiv 0,1,2,4,5 \pmod{6}$.

Illustration 2.3: Perfect SDGM 3-Equitable Labeling of Petersen graph P(6,2) is shown in fig 2.3 (b).

Fig 2.3 (b). Perfect SDGM 3-Equitable Labeling of Petersen Graph P(6,2)

Here $v_f(0) = v_f(1) = v_f(2) = 4$ and $e_g(0) = e_g(1) = e_g(2) = 6$. Also $(v_f + e_g)(0) = (v_f + e_g)(1) = (v_f + e_g)(2) = 10$. Therefore $|v_f(i) - v_f(j)| \le 1$, $|e_g(i) - e_g(j)| \le 1$ and $|(v_f + e_g)(i) - (v_f + e_g)(j)| \le 1$ for all $0 \le i, j \le 2$.

3. Conclusion

In this paper we investigated the SDGM 3-Equitable labeling or Perfect SDGM 3-Equitable labeling of certain cycle related graphs such as Alternate Triangular Cycle graph, Flower graph and Petersen graph. The future work includes SDGM 3-Equitable labeling or Perfect SDGM 3-Equitable labeling of ladder related graphs, tree related graphs and some interconnection networks such as honeycomb network and benes network.

4. References

- 1. Cahit I, "On cordial and 3-equitable labeling of graphs", *Utilitas Math*, Vol.37, pp. 189 198, 1990.
- 2. Chitra Lakshmi K and Nagarajan K, "Geometric Mean Cordial Labeling of Graphs", *International Journal of Mathematics and Soft Computing*, Vol.7, pp. 75 87, 2017.
- 3. Joseph. A. Gallian, "A Dynamic Survey of Graph Labeling", *The Electronic Journal of Combinatorics*, 2023.
- 4. Mohamed R. Zeen El Deen, "Edge δ Graceful Labeling for Some Cyclic-Related Graphs", *Hindawi Advances in Mathematical Physics*, Vol. 2020, pp. 1 18, 2020.
- 5. Ponraj R, Sivakumar M and Sundaram M, "Mean cordial labeling of graphs", *Open J. Discrete math.*, Vol.2, pp. 145 148, 2012.
- 6. Putra Yudha Pranata, Mariatul Kiftiah and Fransiskus Fran, "Star number of flower graphs", *AIP Conference Proceedings*, Vol.2268, No.1, 2020.
- 7. Sumiya Nasir, Nazeran Idrees, Afshan Sadiq, Fozia Bashir Farooq, Salma Kanwal and Muhammad Imran, "Strongly Multiplicative Labeling of Diamond Graph, Generalized

Petersen Graph, and Some Other Graphs", *Journal of Mathematics (Hindawi)*, Vol. 2022, pp. 1-5, 2022.