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1. Introduction 

A non-trivial, simple, finite and undirected graphs are considered in this article. An assignment 

of integers to the vertices or edges, or both subject to certain conditions is called graph labeling 

[3]. Cahit introduced the concept of cordial and 3-equitable labeling [1]. Ponraj et al., introduced 
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the concept of mean cordial labeling [5]. Geometric mean cordial labeling was introduced by K. 

Chitra Lakshmi, K. Nagarajan [2].  

Motivated by these definitions, we define the new notion called Square Difference Geometric 

Mean (SDGM) 3-Equitable labeling. We investigate the SDGM 3-Equitable labeling of certain 

cycle related graphs such as Alternate Triangular Cycle graph, Flower graph and Petersen graph. 

 

Definition 1.1 [4]: An Alternate Triangular Cycle 𝐴(𝐶2𝑛) is obtained from an even cycle 𝐶2𝑛 =
{𝑢1, 𝑣1, 𝑢2, 𝑣2, … , 𝑢𝑛 , 𝑣𝑛} by joining 𝑢𝑖 and 𝑣𝑖 to a new vertex 𝑤𝑖. That is, every alternate edge of 

a cycle 𝐶2𝑛 is replaced by 𝐶3. 

Definition 1.2 [6]: A Flower graph 𝐹𝑙𝑛 is the graph obtained from a helm by joining each 

pendant vertex to the central vertex of the helm. 

 

Definition 1.3 [7]: The generalized Petersen graph 𝑃(𝑛, 𝑘), (𝑛 > 2𝑘) is defined to be a graph 

on 2𝑛 vertices with 𝑉(𝑃(𝑛, 𝑘))  = {𝑣𝑖 , 𝑢𝑖: 1 ≤  𝑖 ≤  𝑛} and 𝐸(𝑃(𝑛, 𝑘)) =
{𝑣𝑖𝑣𝑖+1, 𝑣𝑖𝑢𝑖 , 𝑢𝑖𝑢𝑖+𝑘: 1 ≤ 𝑖 ≤ 𝑛,   subscripts modulo 𝑛}. 
 

2. Main Results 

 

Definition 2.1:  

A Square Difference Geometric Mean (SDGM) 3-Equitable labeling of a graph 𝐺 =
(𝑉, 𝐸) is a surjective mapping 𝑓: 𝑉(𝐺) → {0, 1, 2} such that the induced mapping 𝑔: 𝐸(𝐺) →

{0, 1, 2} is defined by ⌈√|(𝑓(𝑢))2 − (𝑓(𝑣))2| ⌉, ∀ 𝑢𝑣 ∈ 𝐸(𝐺) with the condition |𝑣𝑓(𝑖) −

𝑣𝑓(𝑗)| ≤ 1 and |𝑒𝑔(𝑖) − 𝑒𝑔(𝑗)| ≤ 1 for all 0 ≤ 𝑖, 𝑗 ≤ 2. Also, if |(𝑣𝑓 + 𝑒𝑔)(𝑖) − (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤

1 for all 0 ≤ 𝑖, 𝑗 ≤ 2 then the labeling is called Perfect Square Difference Geometric Mean 3-

Equitable labeling. A graph is called a Square Difference Geometric Mean (SDGM) 3-Equitable 

graph if there exists a SDGM 3-Equitable labeling and Perfect Square Difference Geometric 

Mean 3-Equitable graph if there exists a Perfect SDGM 3-Equitable labeling. 

Remarks 2.1: If we consider 𝑓: 𝑉(𝐺) → {0, 1}, the definition 3.1 coincides with that of cordial 

labeling. Hence we consider 𝑓: 𝑉(𝐺) → {0, 1, 2}. 
 

Theorem 2.1: The Alternate Triangular Cycle graph 𝐴(𝐶2𝑛) is a Perfect SDGM 3-Equitable 

graph ∀ 𝑛. 

Proof: Let G be a Alternate Triangular Cycle graph 𝐴(𝐶2𝑛) with the vertex set 𝑉(𝐺) =
{𝑢𝑖, 𝑣𝑖, 𝑤𝑖 / 1 ≤  𝑖 ≤  𝑛} and  the  edge  set 𝐸(𝐺) = {𝑢𝑖𝑣𝑖 , 𝑢𝑖𝑤𝑖, 𝑣𝑖𝑤𝑖/ 1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑣𝑖𝑢𝑖+1 / 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑣𝑛𝑢1}, |𝑉(𝐺)| = 𝑙 =  3𝑛 and |𝐸(𝐺)| = 𝑘 =  4𝑛. The 

Alternate Triangular Cycle graph 𝐴(𝐶2𝑛) is shown in the following fig 2.1 (a). 
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Fig 2.1 (a). Alternate Triangular Cycle graph 𝐴(𝐶2𝑛) 

 

Define 𝑓 ∶  𝑉(𝐺) → {0, 1, 2} as follows: 

Case (i): 𝒏 ≡ 𝟎(𝒎𝒐𝒅 𝟑)  

𝑓(𝑢𝑖) = {
1,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

2,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 

 

𝑓(𝑣𝑖) = {
0,     𝑖 ≡ 1,0 (𝑚𝑜𝑑 3)

2,      𝑖 ≡ 2 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 

 

𝑓(𝑤𝑖) = {

0, 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 
1, 𝑖 ≡ 2 (𝑚𝑜𝑑 3) 
 2, 𝑖 ≡ 0 (𝑚𝑜𝑑 3)  

    for all 1 ≤ 𝑖 ≤ 𝑛 

 

Here 𝑙 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑘 = 3𝑠, 

so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠. 

  

Case (ii): 𝒏 ≡ 𝟏(𝒎𝒐𝒅 𝟑)  

𝑓(𝑢𝑖) = {
1,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

2,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 − 1   and 𝑓(𝑢𝑛) = 0 

 

𝑓(𝑣𝑖) = {
0,     𝑖 ≡ 1,0 (𝑚𝑜𝑑 3)

2,      𝑖 ≡ 2 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 − 2 and 𝑓(𝑣𝑛−1) = 1, 𝑓(𝑣𝑛) = 0 

 

𝑓(𝑤𝑖) = {

0, 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 
1, 𝑖 ≡ 2 (𝑚𝑜𝑑 3) 
 2, 𝑖 ≡ 0 (𝑚𝑜𝑑 3)  

    for all 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑓(𝑤𝑛) = 2 

 

Here 𝑙 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 1(𝑚𝑜𝑑 3) i.e. 𝑘 = 3𝑠 +

1, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑠, 𝑒𝑔(2) = 𝑠 + 1. 
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Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠, (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠 + 1. 

 

Case (iii): 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟑)  

𝑓(𝑢𝑖) = {
1,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

2,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 − 2   and 𝑓(𝑢𝑛−1) = 0, 𝑓(𝑢𝑛) = 2 

 

𝑓(𝑣𝑖) = {
0,     𝑖 ≡ 1,0 (𝑚𝑜𝑑 3)

2,      𝑖 ≡ 2 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 − 2 and 𝑓(𝑣𝑛−1) = 1, 𝑓(𝑣𝑛) = 0 

 

𝑓(𝑤𝑖) = {

0, 𝑖 ≡ 1 (𝑚𝑜𝑑 3) 
1, 𝑖 ≡ 2 (𝑚𝑜𝑑 3) 
 2, 𝑖 ≡ 0 (𝑚𝑜𝑑 3)  

    for all 1 ≤ 𝑖 ≤ 𝑛 − 2 and 𝑓(𝑤𝑛−1) = 1, 𝑓(𝑤𝑛) = 2 

 

Here 𝑙 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 2(𝑚𝑜𝑑 3) i.e. 𝑘 = 3𝑠 +

2, so 𝑒𝑔(0) = 𝑒𝑔(2) = 𝑠 + 1, 𝑒𝑔(1) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠 + 1, (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠. 

 

In all the above cases, we see that |𝑣𝑓(𝑖)  −  𝑣𝑓(𝑗)| ≤ 1 and |𝑒𝑔(𝑖)  −  𝑒𝑔(𝑗)| ≤  1 for all 0 ≤

𝑖, 𝑗 ≤  2. Also |(𝑣𝑓 + 𝑒𝑔)(𝑖)  −  (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤ 1 for all 0 ≤ 𝑖, 𝑗 ≤  2. 

 

Hence Alternate Triangular Cycle graph 𝐴(𝐶2𝑛) is a Perfect SDGM 3-Equitable graph ∀ 𝑛. 

 

Illustration 2.1: Perfect SDGM 3-Equitable Labeling of Alternate Triangular Cycle graph 

𝐴(𝐶12) is shown in fig 2.1 (b). 

 
Fig 2.1 (b). Perfect SDGM 3-Equitable Labeling of Alternate Triangular Cycle graph 𝐴(𝐶12) 

 

Here 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 6 and 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 8.  

Also (𝑣𝑓 + 𝑒𝑔)(0) =  (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 14. 
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Therefore |𝑣𝑓(𝑖) −  𝑣𝑓(𝑗)| ≤ 1, |𝑒𝑔(𝑖) −  𝑒𝑔(𝑗)| ≤  1 and |(𝑣𝑓 + 𝑒𝑔)(𝑖) −  (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤ 1 

for all 0 ≤ 𝑖,  𝑗 ≤  2.  

 

Theorem 2.2: The Flower graph  𝐹𝑙𝑛 is a Perfect SDGM 3-Equitable graph when 𝑛 ≡
0,1(𝑚𝑜𝑑 3) and SDGM 3-Equitable graph when 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

 

Proof: Let 𝐹𝑙𝑛 be a Flower graph with vertex set 𝑉(𝐹𝑙𝑛) = {𝑢, 𝑢𝑖 , 𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} and edge set 

𝐸(𝐹𝑙𝑛) = {𝑢𝑢𝑖 , 𝑢𝑣𝑖 , 𝑢𝑖𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑖𝑢𝑖+1 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑛𝑢1}. Let |𝑉(𝐹𝑛)| = 𝑙 
and |𝐸(𝐹𝑛)| = 𝑘. Then 𝑙 = 2𝑛 + 1 and 𝑘 = 4𝑛. Flower graph 𝐹𝑙𝑛 is shown in the following fig 

2.2 (a). 

 
Fig 2.2 (a). Flower graph 𝐹𝑙𝑛 

 

Define 𝑓 ∶  𝑉(𝐺) → {0, 1, 2} as follows: 

Case (i): 𝒏 ≡ 𝟎, 𝟏(𝒎𝒐𝒅 𝟑)  

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = {
1,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

0,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 

 

𝑓(𝑣𝑖) = {
2,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

0,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 

 

Sub Case (i): 𝒏 ≡ 𝟎(𝒎𝒐𝒅 𝟑)  

 

Here ≡ 1(𝑚𝑜𝑑 3) 𝑙 = 3𝑡 + 1, so 𝑣𝑓(0) = 𝑡 + 1, 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑘 =

3𝑠, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = 𝑡 + 𝑠 + 1, (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠. 
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Sub Case (ii): 𝒏 ≡ 𝟏(𝒎𝒐𝒅 𝟑)  

 

Here ≡ 0(𝑚𝑜𝑑 3) 𝑙 = 3𝑡, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 1(𝑚𝑜𝑑 3) i.e. 𝑘 = 3𝑠 + 1, so 

𝑒𝑔(0) = 𝑒𝑔(1) = 𝑠, 𝑒𝑔(2) = 𝑠 + 1. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠, (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠 + 1. 

 

Case (ii): 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟑)  

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = {
1,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

0,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 

 

𝑓(𝑣𝑖) = {
2,     𝑖 ≡ 1,2 (𝑚𝑜𝑑 3)

0,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
   for all 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑓(𝑣𝑛) = 0 

 

Here ≡ 2(𝑚𝑜𝑑 3) 𝑙 = 3𝑡 + 2, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑡 + 1, 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 2(𝑚𝑜𝑑 3) i.e. 𝑘 =

3𝑠 + 2, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑠 + 1, 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠 + 2, (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠. 

 

In case (i), we see that |𝑣𝑓(𝑖)  −  𝑣𝑓(𝑗)| ≤ 1 and |𝑒𝑔(𝑖)  −  𝑒𝑔(𝑗)| ≤  1 for all 0 ≤ 𝑖, 𝑗 ≤ 2. Also 

|(𝑣𝑓 + 𝑒𝑔)(𝑖)  − (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤ 1 for all 0 ≤ 𝑖, 𝑗 ≤  2 and in case (ii) we see that |𝑣𝑓(𝑖)  −

 𝑣𝑓(𝑗)| ≤ 1, |𝑒𝑔(𝑖)  −  𝑒𝑔(𝑗)| ≤  1 and |(𝑣𝑓 + 𝑒𝑔)(𝑖)  −  (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≰ 1  for all 0 ≤ 𝑖, 𝑗 ≤  2. 

 

Hence Flower graph  𝐹𝑙𝑛 is a Perfect SDGM 3-Equitable graph when 𝑛 ≡ 0,1(𝑚𝑜𝑑 3) and 

SDGM 3-Equitable graph when 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

 

Illustration 2.2: Perfect SDGM 3-Equitable Labeling of Flower graph  𝐹𝑙12 is shown in fig 2.2 

(b). 

 
Fig 2.2 (b). Perfect SDGM 3-Equitable Labeling of Flower graph  𝐹𝑙12 
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Here 𝑣𝑓(0) = 9, 𝑣𝑓(1) = 𝑣𝑓(2) = 8 and 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 16.  

Also (𝑣𝑓 + 𝑒𝑔)(0) = 25,  (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 24. 

Therefore |𝑣𝑓(𝑖) −  𝑣𝑓(𝑗)| ≤ 1, |𝑒𝑔(𝑖) −  𝑒𝑔(𝑗)| ≤  1 and |(𝑣𝑓 + 𝑒𝑔)(𝑖) −  (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤ 1 

for all 0 ≤ 𝑖,  𝑗 ≤  2.  

 

Theorem 2.3: Petersen graph 𝑃 (𝑛, 2) with 𝑛 ≥ 5 is a Perfect SDGM 3-Equitable graph when 

𝑛 ≡ 0,1,2,4,5(𝑚𝑜𝑑 6). 

  

Proof: Let G be a Petersen graph 𝑃(𝑛, 2) with the vertex set 𝑉(𝐺) = {𝑣𝑖, 𝑢𝑖  / 1 ≤  𝑖 ≤  𝑛}, 
where 𝑣𝑖 be  the outer  vertices  and  𝑢𝑖 be  the  inner  vertices  and  the  edge  set 𝐸(𝐺) =
{𝑣𝑖𝑣𝑖+1 / 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑣𝑛𝑣1} ∪ {𝑣𝑖𝑢𝑖  / 1 ≤ 𝑖 ≤ 𝑛}  ∪ {𝑢𝑖𝑢𝑖+2 / 1 ≤ 𝑖 ≤ 𝑛 − 2} ∪
{𝑢𝑛−1𝑢1, 𝑢𝑛𝑢2 }, |𝑉(𝐺)|  =  2𝑛 and |𝐸(𝐺)|  =  3𝑛. The Petersen graph 𝑃(𝑛, 2) is shown in the 

following fig 2.3 (a). 

 
Fig 2.3 (a). Petersen Graph 𝑃(𝑛, 2) 

 

Define 𝑓 ∶  𝑉(𝐺) → {0, 1, 2} as follows: 

Case (i): 𝒏 ≡ 𝟎(𝒎𝒐𝒅 𝟔)  

𝑓(𝑣𝑖) = {

0, 𝑖 ≡ 1, 4 (𝑚𝑜𝑑 6) 
1, 𝑖 ≡ 2, 3 (𝑚𝑜𝑑 6) 
 2, 𝑖 ≡ 0, 5 (𝑚𝑜𝑑 6)  

  for all 1 ≤ 𝑖 ≤ 𝑛 

 

𝑓(𝑢𝑖) = {

0, 𝑖 ≡ 1, 2 (𝑚𝑜𝑑 6) 
1, 𝑖 ≡ 3, 4 (𝑚𝑜𝑑 6) 
 2, 𝑖 ≡ 0, 5 (𝑚𝑜𝑑 6)  

  for all 1 ≤ 𝑖 ≤ 𝑛 
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Here 𝑙 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) i.e. 𝑘 = 3𝑠, 

so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠. 

  

Case (ii): 𝒏 ≡ 𝟏(𝒎𝒐𝒅 𝟔)  

𝑓(𝑣𝑖) = {

0, 𝑖 ≡ 1, 4 (𝑚𝑜𝑑 6) 
1, 𝑖 ≡ 2, 3 (𝑚𝑜𝑑 6) 
 2, 𝑖 ≡ 0,5 (𝑚𝑜𝑑 6)  

  for all 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

𝑓(𝑣𝑛) = 2 

 

𝑓(𝑢𝑖) = {

0, 𝑖 ≡ 1, 2 (𝑚𝑜𝑑 6) 
1, 𝑖 ≡ 3, 4 (𝑚𝑜𝑑 6) 
 2, 𝑖 ≡ 0, 5 (𝑚𝑜𝑑 6)  

  for all 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

𝑓(𝑢𝑛) = 1 

 

Here 𝑙 ≡ 2(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡 + 2, so 𝑣𝑓(0) = 𝑡, 𝑣𝑓(1) = 𝑣𝑓(2) = 𝑡 + 1 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) 

i.e. 𝑘 = 3𝑠, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = 𝑡 + 𝑠, (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠 + 1. 

 

Case (iii): 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟔)  

𝑓(𝑣𝑖) = {
0,     𝑖 ≡ 1 (𝑚𝑜𝑑 3)       
1,     𝑖 ≡ 0, 2 (𝑚𝑜𝑑 3)   

 for all 1 ≤ 𝑖 ≤
𝑛

2
 

 

𝑓(𝑣𝑖) = {
0,     𝑖 ≡ 1 (𝑚𝑜𝑑 3)      
2,     𝑖 ≡ 0, 2 (𝑚𝑜𝑑 3)   

 for all 
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛 − 2 

 

𝑓(𝑣𝑛−1) = 𝑓(𝑣𝑛) = 2 

 

𝑓(𝑢𝑖) = {
0,     𝑖 ≡ 2 (𝑚𝑜𝑑 3)       
1,     𝑖 ≡ 0, 1 (𝑚𝑜𝑑 3)   

 for all 2 ≤ 𝑖 ≤
𝑛

2
+ 1 

 

𝑓(𝑢𝑖) = {
0,     𝑖 ≡ 1 (𝑚𝑜𝑑 3)      
2,     𝑖 ≡ 0, 2 (𝑚𝑜𝑑 3)   

 for all 
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛 − 1 

 

𝑓(𝑢1) = 0, 𝑓(𝑢𝑛) = 1 

 

Here 𝑙 ≡ 1(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡 + 1, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑡, 𝑣𝑓(2) = 𝑡 + 1 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) 

i.e. 𝑘 = 3𝑠, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠, (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠 + 1. 
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Case (iv): 𝒏 ≡ 𝟒(𝒎𝒐𝒅 𝟔)  

𝑓(𝑣𝑖) = {
0,      𝑖 ≡ 0,5 (𝑚𝑜𝑑 6)         
2,     𝑖 ≡ 1, 2,3,4 (𝑚𝑜𝑑 6)   

 for all 1 ≤ 𝑖 ≤ 𝑛 − 6 

 

𝑓(𝑣𝑛−5) = 1, 𝑓(𝑣𝑛−4) = 𝑓(𝑣𝑛−3) = 𝑓(𝑣𝑛) = 0, 𝑓(𝑣𝑛−1) = 𝑓(𝑣𝑛−2) = 2 

 

𝑓(𝑢𝑖) = {
0,     𝑖 ≡ 1 (𝑚𝑜𝑑 3)      
1,     𝑖 ≡ 0, 2 (𝑚𝑜𝑑 3)   

 for all 1 ≤ 𝑖 ≤ 𝑛 

 

Here 𝑙 ≡ 2(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡 + 2, so 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑡 + 1, 𝑣𝑓(2) = 𝑡 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) 

i.e. 𝑘 = 3𝑠, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠 + 1, (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠. 

 

Case (v): 𝒏 ≡ 𝟓(𝒎𝒐𝒅 𝟔)  

𝑓(𝑣𝑖) = {
0,      𝑖 ≡ 1 (𝑚𝑜𝑑 3)   
1,     𝑖 ≡ 0, 2 (𝑚𝑜𝑑 3)

 for all 1 ≤ 𝑖 ≤
𝑛+1

2
 

 

𝑓(𝑣𝑖) = {
0,      𝑖 ≡ 0 (𝑚𝑜𝑑 3)   
2,     𝑖 ≡ 1, 2 (𝑚𝑜𝑑 3)

 for all 
𝑛+3

2
≤ 𝑖 ≤ 𝑛 

 

𝑓(𝑢1) = 0, 𝑓(𝑢𝑛) = 2 

 

𝑓(𝑢𝑖) = {
0,      𝑖 ≡ 2 (𝑚𝑜𝑑 3)   
1,     𝑖 ≡ 0, 1 (𝑚𝑜𝑑 3)

 for all 2 ≤ 𝑖 ≤
𝑛+3

2
 

 

𝑓(𝑢𝑖) = {
0,      𝑖 ≡ 2 (𝑚𝑜𝑑 3)   
2,     𝑖 ≡ 0, 1 (𝑚𝑜𝑑 3)

 for all 
𝑛+5

2
≤ 𝑖 ≤ 𝑛 − 1 

 

Here 𝑙 ≡ 1(𝑚𝑜𝑑 3) i.e. 𝑙 = 3𝑡 + 1, so 𝑣𝑓(0) = 𝑣𝑓(2) = 𝑡, 𝑣𝑓(1) = 𝑡 + 1 and 𝑘 ≡ 0(𝑚𝑜𝑑 3) 

i.e. 𝑘 = 3𝑠, so 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 𝑠. 

 

Also (𝑣𝑓 + 𝑒𝑔)(0)  = (𝑣𝑓 + 𝑒𝑔)(2) = 𝑡 + 𝑠, (𝑣𝑓 + 𝑒𝑔)(1) = 𝑡 + 𝑠 + 1. 

 

In all the above cases, we see that |𝑣𝑓(𝑖)  −  𝑣𝑓(𝑗)| ≤ 1 and |𝑒𝑔(𝑖)  −  𝑒𝑔(𝑗)| ≤  1 for all 0 ≤

𝑖, 𝑗 ≤  2. Also |(𝑣𝑓 + 𝑒𝑔)(𝑖)  −  (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤ 1 for all 0 ≤ 𝑖, 𝑗 ≤  2. 

 

Hence Petersen graph 𝑃 (𝑛, 2) with 𝑛 ≥ 5 is a Perfect SDGM 3-Equitable graph when 𝑛 ≡
0,1,2,4,5(𝑚𝑜𝑑 6). 

 

Illustration 2.3: Perfect SDGM 3-Equitable Labeling of Petersen graph 𝑃(6,2) is shown in      

fig 2.3 (b). 
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Fig 2.3 (b). Perfect SDGM 3-Equitable Labeling of Petersen Graph 𝑃(6,2) 

 

Here 𝑣𝑓(0) = 𝑣𝑓(1) = 𝑣𝑓(2) = 4 and 𝑒𝑔(0) = 𝑒𝑔(1) = 𝑒𝑔(2) = 6.  

Also (𝑣𝑓 + 𝑒𝑔)(0) =  (𝑣𝑓 + 𝑒𝑔)(1) = (𝑣𝑓 + 𝑒𝑔)(2) = 10. 

Therefore |𝑣𝑓(𝑖) −  𝑣𝑓(𝑗)| ≤ 1, |𝑒𝑔(𝑖) −  𝑒𝑔(𝑗)| ≤  1 and |(𝑣𝑓 + 𝑒𝑔)(𝑖) −  (𝑣𝑓 + 𝑒𝑔)(𝑗)| ≤ 1 

for all 0 ≤ 𝑖,  𝑗 ≤  2.  

 

3. Conclusion 

 

In this paper we investigated the SDGM 3-Equitable labeling or Perfect SDGM 3-

Equitable labeling of certain cycle related graphs such as Alternate Triangular Cycle graph, 

Flower graph and Petersen graph. The future work includes SDGM 3-Equitable labeling or 

Perfect SDGM 3-Equitable labeling of ladder related graphs, tree related graphs and some 

interconnection networks such as honeycomb network and benes network. 
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