Research Paper

On Square Difference Geometric Mean 3-Equitable Graphs

V Annamma ${ }^{\mathbf{1}}$, Jawahar Nisha M I ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics, L.N. Government College, Ponneri, 601204, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, Justice Basheer Ahmed Sayeed College for Women (Autonomous)
Teynampet, Chennai, 600018, Tamil Nadu, India

E-mail: ${ }^{2}$ nishabdulbasith@ gmail.com

Article Info

Volume 6, Issue Si3, June 2024
Received: 18 April 2024
Accepted: 26 May 2024
Published: 20 June 2024
doi: 10.48047/AFJBS.6.Si3.2024.2277-2287

Abstract

:

A Square Difference Geometric Mean (SDGM) 3Equitable labeling of a graph $G=(V, E)$ is a mapping $f: V(G) \rightarrow$ $\{0,1,2\}$ such that the induced mapping $g: E(G) \rightarrow\{0,1,2\}$ is defined by $\left\lceil\sqrt{\left|(f(u))^{2}-(f(v))^{2}\right|}\right\rceil, \forall u v \in E(G) \quad$ with the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ for all $0 \leq$ $i, j \leq 2$. Also, if $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq$ $i, j \leq 2$ then the labeling is called perfect square difference geometric mean 3 -equitable labeling. A graph is called a square difference geometric mean (SDGM) 3-Equitable graph if there exists a SDGM 3-equitable labeling and perfect square difference geometric mean 3-equitable graph if there exists a Perfect SDGM 3Equitable labeling. In this paper we investigate the SDGM 3Equitable labeling or Perfect SDGM 3-Equitable labeling of certain cycle related graphs such as alternate triangular cycle graph, flower graph and petersen graph.

Keywords: Alternate Triangular Cycle graph, Flower graph, Petersen graph, Square Difference Geometric Mean 3-Equitable Graph.
© 2024 V Annamma, This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Creative Commons license, and indicate if changes were made

1. Introduction

A non-trivial, simple, finite and undirected graphs are considered in this article. An assignment of integers to the vertices or edges, or both subject to certain conditions is called graph labeling [3]. Cahit introduced the concept of cordial and 3-equitable labeling [1]. Ponraj et al., introduced
the concept of mean cordial labeling [5]. Geometric mean cordial labeling was introduced by K. Chitra Lakshmi, K. Nagarajan [2].
Motivated by these definitions, we define the new notion called Square Difference Geometric Mean (SDGM) 3-Equitable labeling. We investigate the SDGM 3-Equitable labeling of certain cycle related graphs such as Alternate Triangular Cycle graph, Flower graph and Petersen graph.

Definition 1.1 [4]: An Alternate Triangular Cycle $A\left(C_{2 n}\right)$ is obtained from an even cycle $C_{2 n}=$ $\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{n}, v_{n}\right\}$ by joining u_{i} and v_{i} to a new vertex w_{i}. That is, every alternate edge of a cycle $C_{2 n}$ is replaced by C_{3}.
Definition 1.2 [6]: A Flower graph $F l_{n}$ is the graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Definition 1.3 [7]: The generalized Petersen graph $P(n, k),(n>2 k)$ is defined to be a graph on $2 n \quad$ vertices with $\quad V(P(n, k))=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $\quad E(P(n, k))=$ $\left\{v_{i} v_{i+1}, v_{i} u_{i}, u_{i} u_{i+k}: 1 \leq i \leq n\right.$, subscripts modulo $\left.n\right\}$.

2. Main Results

Definition 2.1:

A Square Difference Geometric Mean (SDGM) 3-Equitable labeling of a graph $G=$ (V, E) is a surjective mapping $f: V(G) \rightarrow\{0,1,2\}$ such that the induced mapping $g: E(G) \rightarrow$ $\{0,1,2\}$ is defined by $\left\lceil\sqrt{\left|(f(u))^{2}-(f(v))^{2}\right|}\right\rceil, \forall u v \in E(G)$ with the condition $\mid v_{f}(i)-$ $v_{f}(j) \mid \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$. Also, if $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq$ 1 for all $0 \leq i, j \leq 2$ then the labeling is called Perfect Square Difference Geometric Mean 3Equitable labeling. A graph is called a Square Difference Geometric Mean (SDGM) 3-Equitable graph if there exists a SDGM 3-Equitable labeling and Perfect Square Difference Geometric Mean 3-Equitable graph if there exists a Perfect SDGM 3-Equitable labeling.
Remarks 2.1: If we consider $f: V(G) \rightarrow\{0,1\}$, the definition 3.1 coincides with that of cordial labeling. Hence we consider $f: V(G) \rightarrow\{0,1,2\}$.

Theorem 2.1: The Alternate Triangular Cycle graph $A\left(C_{2 n}\right)$ is a Perfect SDGM 3-Equitable graph $\forall n$.
Proof: Let G be a Alternate Triangular Cycle graph $A\left(C_{2 n}\right)$ with the vertex set $V(G)=$ $\left\{u_{i}, v_{i}, w_{i} / 1 \leq i \leq n\right\}$ and the edge set $E(G)=\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i} / 1 \leq i \leq n\right\} \cup$ $\left\{v_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{n} u_{1}\right\}, \quad|V(G)|=l=3 n \quad$ and $\quad|E(G)|=k=4 n$. The Alternate Triangular Cycle graph $A\left(C_{2 n}\right)$ is shown in the following fig 2.1 (a).

Fig 2.1 (a). Alternate Triangular Cycle graph $A\left(C_{2 n}\right)$
Define $f: V(G) \rightarrow\{0,1,2\}$ as follows:
Case $(i): n \equiv 0(\bmod 3)$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1, & i \equiv 1,2(\bmod 3) \\ 2, & i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n$
$f\left(v_{i}\right)=\left\{\begin{array}{l}0, \quad i \equiv 1,0(\bmod 3) \\ 2, \quad i \equiv 2(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n$
$f\left(w_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1(\bmod 3) \\ 1, i \equiv 2(\bmod 3) \\ 2, i \equiv 0(\bmod 3)\end{array} \quad\right.$ for all $1 \leq i \leq n$
Here $l \equiv 0(\bmod 3)$ i.e. $l=3 t$, so $v_{f}(0)=v_{f}(1)=v_{f}(2)=t$ and $k \equiv 0(\bmod 3)$ i.e. $k=3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=t+s$.
Case (ii): $\boldsymbol{n} \equiv \mathbf{1}(\bmod 3)$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1, & i \equiv 1,2(\bmod 3) \\ 2, & i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n-1 \quad$ and $f\left(u_{n}\right)=0$
$f\left(v_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1,0(\bmod 3) \\ 2, & i \equiv 2(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n-2$ and $f\left(v_{n-1}\right)=1, f\left(v_{n}\right)=0$
$f\left(w_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1(\bmod 3) \\ 1, i \equiv 2(\bmod 3) \\ 2, i \equiv 0(\bmod 3)\end{array} \quad\right.$ for all $1 \leq i \leq n-1$ and $f\left(w_{n}\right)=2$
Here $l \equiv 0(\bmod 3)$ i.e. $l=3 t$, so $v_{f}(0)=v_{f}(1)=v_{f}(2)=t$ and $k \equiv 1(\bmod 3)$ i.e. $k=3 s+$ 1 , so $e_{g}(0)=e_{g}(1)=s, e_{g}(2)=s+1$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=t+s,\left(v_{f}+e_{g}\right)(2)=t+s+1$.
Case (iii): $n \equiv 2(\bmod 3)$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1, & i \equiv 1,2(\bmod 3) \\ 2, & i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n-2$ and $f\left(u_{n-1}\right)=0, f\left(u_{n}\right)=2$
$f\left(v_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1,0(\bmod 3) \\ 2, & i \equiv 2(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n-2$ and $f\left(v_{n-1}\right)=1, f\left(v_{n}\right)=0$
$f\left(w_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1(\bmod 3) \\ 1, i \equiv 2(\bmod 3) \\ 2, i \equiv 0(\bmod 3)\end{array} \quad\right.$ for all $1 \leq i \leq n-2$ and $f\left(w_{n-1}\right)=1, f\left(w_{n}\right)=2$
Here $l \equiv 0(\bmod 3)$ i.e. $l=3 t$, so $v_{f}(0)=v_{f}(1)=v_{f}(2)=t$ and $k \equiv 2(\bmod 3)$ i.e. $k=3 s+$ 2 , so $e_{g}(0)=e_{g}(2)=s+1, e_{g}(1)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(2)=t+s+1,\left(v_{f}+e_{g}\right)(1)=t+s$.
In all the above cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ for all $0 \leq$ $i, j \leq 2$. Also $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$.

Hence Alternate Triangular Cycle graph $A\left(C_{2 n}\right)$ is a Perfect SDGM 3-Equitable graph $\forall n$.
Illustration 2.1: Perfect SDGM 3-Equitable Labeling of Alternate Triangular Cycle graph $A\left(C_{12}\right)$ is shown in fig 2.1 (b).

Fig 2.1 (b). Perfect SDGM 3-Equitable Labeling of Alternate Triangular Cycle graph $A\left(C_{12}\right)$
Here $v_{f}(0)=v_{f}(1)=v_{f}(2)=6$ and $e_{g}(0)=e_{g}(1)=e_{g}(2)=8$.
Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=14$.

Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1,\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ and $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$.

Theorem 2.2: The Flower graph $F l_{n}$ is a Perfect SDGM 3-Equitable graph when $n \equiv$ $0,1(\bmod 3)$ and SDGM 3 -Equitable graph when $n \equiv 2(\bmod 3)$.

Proof: Let $F l_{n}$ be a Flower graph with vertex set $V\left(F l_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(F l_{n}\right)=\left\{u u_{i}, u v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$. Let $\left|V\left(F_{n}\right)\right|=l$ and $\left|E\left(F_{n}\right)\right|=k$. Then $l=2 n+1$ and $k=4 n$. Flower graph $F l_{n}$ is shown in the following fig 2.2 (a).

Fig 2.2 (a). Flower graph $F l_{n}$
Define $f: V(G) \rightarrow\{0,1,2\}$ as follows:
Case $(\mathbf{i}): \boldsymbol{n} \equiv \mathbf{0}, \mathbf{1}(\bmod 3)$
$f(u)=0$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1, & i \equiv 1,2(\bmod 3) \\ 0, & i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n$
$f\left(v_{i}\right)=\left\{\begin{array}{ll}2, & i \equiv 1,2(\bmod 3) \\ 0, & i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n$
Sub Case $(\mathbf{i}): \boldsymbol{n} \equiv \mathbf{0}(\bmod 3)$
Here $\equiv 1(\bmod 3) l=3 t+1$, so $v_{f}(0)=t+1, v_{f}(1)=v_{f}(2)=t$ and $k \equiv 0(\bmod 3)$ i.e. $k=$ $3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=t+s+1,\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=t+s$.

Sub Case (ii): $\boldsymbol{n} \equiv \mathbf{1}(\bmod 3)$

Here $\equiv 0(\bmod 3) l=3 t$, so $v_{f}(0)=v_{f}(1)=v_{f}(2)=t$ and $k \equiv 1(\bmod 3)$ i.e. $k=3 s+1$, so $e_{g}(0)=e_{g}(1)=s, e_{g}(2)=s+1$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=t+s,\left(v_{f}+e_{g}\right)(2)=t+s+1$.
Case (ii): $n \equiv 2(\bmod 3)$
$f(u)=0$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1, & i \equiv 1,2(\bmod 3) \\ 0, & i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n$
$f\left(v_{i}\right)=\left\{\begin{array}{l}2, \quad i \equiv 1,2(\bmod 3) \\ 0, \quad i \equiv 0(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n-1$ and $f\left(v_{n}\right)=0$
Here $\equiv 2(\bmod 3) l=3 t+2$, so $v_{f}(0)=v_{f}(1)=t+1, v_{f}(2)=t$ and $k \equiv 2(\bmod 3)$ i.e. $k=$ $3 s+2$, so $e_{g}(0)=e_{g}(1)=s+1, e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=t+s+2,\left(v_{f}+e_{g}\right)(2)=t+s$.
In case (i), we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$. Also $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$ and in case (ii) we see that $\mid v_{f}(i)-$ $v_{f}(j)\left|\leq 1,\left|e_{g}(i)-e_{g}(j)\right| \leq 1\right.$ and $|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j) \mid \nsubseteq 1$ for all $0 \leq i, j \leq 2$.

Hence Flower graph $F l_{n}$ is a Perfect SDGM 3-Equitable graph when $n \equiv 0,1(\bmod 3)$ and SDGM 3-Equitable graph when $n \equiv 2(\bmod 3)$.

Illustration 2.2: Perfect SDGM 3-Equitable Labeling of Flower graph $F l_{12}$ is shown in fig 2.2 (b).

Fig 2.2 (b). Perfect SDGM 3-Equitable Labeling of Flower graph $F l_{12}$

Here $v_{f}(0)=9, v_{f}(1)=v_{f}(2)=8$ and $e_{g}(0)=e_{g}(1)=e_{g}(2)=16$.
Also $\left(v_{f}+e_{g}\right)(0)=25,\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=24$.
Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1,\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ and $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$.

Theorem 2.3: Petersen graph $P(n, 2)$ with $n \geq 5$ is a Perfect SDGM 3-Equitable graph when $n \equiv 0,1,2,4,5(\bmod 6)$.

Proof: Let G be a Petersen graph $P(n, 2)$ with the vertex set $V(G)=\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$, where v_{i} be the outer vertices and u_{i} be the inner vertices and the edge set $E(G)=$ $\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{v_{i} u_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+2} / 1 \leq i \leq n-2\right\} \cup$ $\left\{u_{n-1} u_{1}, u_{n} u_{2}\right\},|V(G)|=2 n$ and $|E(G)|=3 n$. The Petersen graph $P(n, 2)$ is shown in the following fig 2.3 (a).

Fig 2.3 (a). Petersen Graph $P(n, 2)$
Define $f: V(G) \rightarrow\{0,1,2\}$ as follows:
Case (i): $\boldsymbol{n} \equiv \mathbf{0}(\bmod 6)$
$f\left(v_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1,4(\bmod 6) \\ 1, i \equiv 2,3(\bmod 6) \\ 2, i \equiv 0,5(\bmod 6)\end{array} \quad\right.$ for all $1 \leq i \leq n$
$f\left(u_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1,2(\bmod 6) \\ 1, i \equiv 3,4(\bmod 6) \\ 2, i \equiv 0,5(\bmod 6)\end{array} \quad\right.$ for all $1 \leq i \leq n$

Here $l \equiv 0(\bmod 3)$ i.e. $l=3 t$, so $v_{f}(0)=v_{f}(1)=v_{f}(2)=t$ and $k \equiv 0(\bmod 3)$ i.e. $k=3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=t+s$.

Case (ii): $n \equiv 1(\bmod 6)$

$f\left(v_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1,4(\bmod 6) \\ 1, i \equiv 2,3(\bmod 6) \\ 2, i \equiv 0,5(\bmod 6)\end{array}\right.$ for all $1 \leq i \leq n-1$
$f\left(v_{n}\right)=2$
$f\left(u_{i}\right)=\left\{\begin{array}{l}0, i \equiv 1,2(\bmod 6) \\ 1, i \equiv 3,4(\bmod 6) \\ 2, i \equiv 0,5(\bmod 6)\end{array} \quad\right.$ for all $1 \leq i \leq n-1$
$f\left(u_{n}\right)=1$
Here $l \equiv 2(\bmod 3)$ i.e. $l=3 t+2$, so $v_{f}(0)=t, v_{f}(1)=v_{f}(2)=t+1$ and $k \equiv 0(\bmod 3)$ i.e. $k=3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=t+s,\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=t+s+1$.

Case (iii): $\boldsymbol{n} \equiv \mathbf{2}(\bmod 6)$

$f\left(v_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1(\bmod 3) \\ 1, & i \equiv 0,2(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq \frac{n}{2}$
$f\left(v_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1(\bmod 3) \\ 2, & i \equiv 0,2(\bmod 3)\end{array}\right.$ for all $\frac{n}{2}+1 \leq i \leq n-2$
$f\left(v_{n-1}\right)=f\left(v_{n}\right)=2$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 2(\bmod 3) \\ 1, & i \equiv 0,1(\bmod 3)\end{array} \quad\right.$ for all $2 \leq i \leq \frac{n}{2}+1$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1(\bmod 3) \\ 2, & i \equiv 0,2(\bmod 3)\end{array}\right.$ for all $\frac{n}{2}+2 \leq i \leq n-1$
$f\left(u_{1}\right)=0, f\left(u_{n}\right)=1$
Here $l \equiv 1(\bmod 3)$ i.e. $l=3 t+1$, so $v_{f}(0)=v_{f}(1)=t, v_{f}(2)=t+1$ and $k \equiv 0(\bmod 3)$ i.e. $k=3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=t+s,\left(v_{f}+e_{g}\right)(2)=t+s+1$.

Case (iv): $n \equiv \mathbf{4}(\bmod 6)$
$f\left(v_{i}\right)=\left\{\begin{array}{l}0, \quad i \equiv 0,5(\bmod 6) \\ 2, \quad i \equiv 1,2,3,4(\bmod 6)\end{array} \quad\right.$ for all $1 \leq i \leq n-6$
$f\left(v_{n-5}\right)=1, \quad f\left(v_{n-4}\right)=f\left(v_{n-3}\right)=f\left(v_{n}\right)=0, \quad f\left(v_{n-1}\right)=f\left(v_{n-2}\right)=2$
$f\left(u_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1(\bmod 3) \\ 1, & i \equiv 0,2(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq n$
Here $l \equiv 2(\bmod 3)$ i.e. $l=3 t+2$, so $v_{f}(0)=v_{f}(1)=t+1, v_{f}(2)=t$ and $k \equiv 0(\bmod 3)$ i.e. $k=3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=t+s+1,\left(v_{f}+e_{g}\right)(2)=t+s$.
Case (v): $\boldsymbol{n} \equiv \mathbf{5}(\bmod 6)$
$f\left(v_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 1(\bmod 3) \\ 1, & i \equiv 0,2(\bmod 3)\end{array}\right.$ for all $1 \leq i \leq \frac{n+1}{2}$
$f\left(v_{i}\right)=\left\{\begin{array}{ll}0, & i \equiv 0(\bmod 3) \\ 2, & i \equiv 1,2(\bmod 3)\end{array}\right.$ for all $\frac{n+3}{2} \leq i \leq n$
$f\left(u_{1}\right)=0, f\left(u_{n}\right)=2$
$f\left(u_{i}\right)=\left\{\begin{array}{l}0, \quad i \equiv 2(\bmod 3) \\ 1, \quad i \equiv 0,1(\bmod 3)\end{array}\right.$ for all $2 \leq i \leq \frac{n+3}{2}$
$f\left(u_{i}\right)=\left\{\begin{array}{l}0, \quad i \equiv 2(\bmod 3) \\ 2, \quad i \equiv 0,1(\bmod 3)\end{array}\right.$ for all $\frac{n+5}{2} \leq i \leq n-1$
Here $l \equiv 1(\bmod 3)$ i.e. $l=3 t+1$, so $v_{f}(0)=v_{f}(2)=t, v_{f}(1)=t+1$ and $k \equiv 0(\bmod 3)$ i.e. $k=3 s$, so $e_{g}(0)=e_{g}(1)=e_{g}(2)=s$.

Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(2)=t+s,\left(v_{f}+e_{g}\right)(1)=t+s+1$.
In all the above cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ for all $0 \leq$ $i, j \leq 2$. Also $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$.

Hence Petersen graph $P(n, 2)$ with $n \geq 5$ is a Perfect SDGM 3-Equitable graph when $n \equiv$ $0,1,2,4,5(\bmod 6)$.

Illustration 2.3: Perfect SDGM 3-Equitable Labeling of Petersen graph $P(6,2)$ is shown in fig 2.3 (b).

Fig 2.3 (b). Perfect SDGM 3-Equitable Labeling of Petersen Graph $P(6,2)$
Here $v_{f}(0)=v_{f}(1)=v_{f}(2)=4$ and $e_{g}(0)=e_{g}(1)=e_{g}(2)=6$.
Also $\left(v_{f}+e_{g}\right)(0)=\left(v_{f}+e_{g}\right)(1)=\left(v_{f}+e_{g}\right)(2)=10$.
Therefore $\left|v_{f}(i)-v_{f}(j)\right| \leq 1,\left|e_{g}(i)-e_{g}(j)\right| \leq 1$ and $\left|\left(v_{f}+e_{g}\right)(i)-\left(v_{f}+e_{g}\right)(j)\right| \leq 1$ for all $0 \leq i, j \leq 2$.

3. Conclusion

In this paper we investigated the SDGM 3-Equitable labeling or Perfect SDGM 3Equitable labeling of certain cycle related graphs such as Alternate Triangular Cycle graph, Flower graph and Petersen graph. The future work includes SDGM 3-Equitable labeling or Perfect SDGM 3-Equitable labeling of ladder related graphs, tree related graphs and some interconnection networks such as honeycomb network and benes network.

4. References

1. Cahit I, "On cordial and 3-equitable labeling of graphs", Utilitas Math, Vol.37, pp. 189 198, 1990.
2. Chitra Lakshmi K and Nagarajan K, "Geometric Mean Cordial Labeling of Graphs", International Journal of Mathematics and Soft Computing, Vol.7, pp. 75-87, 2017.
3. Joseph. A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, 2023.
4. Mohamed R. Zeen El Deen, "Edge δ - Graceful Labeling for Some Cyclic-Related Graphs", Hindawi - Advances in Mathematical Physics, Vol. 2020, pp. 1-18, 2020.
5. Ponraj R, Sivakumar M and Sundaram M, "Mean cordial labeling of graphs", Open J. Discrete math., Vol.2, pp. 145 - 148, 2012.
6. Putra Yudha Pranata, Mariatul Kiftiah and Fransiskus Fran, "Star number of flower graphs", AIP Conference Proceedings, Vol.2268, No.1, 2020.
7. Sumiya Nasir, Nazeran Idrees, Afshan Sadiq, Fozia Bashir Farooq, Salma Kanwal and Muhammad Imran, "Strongly Multiplicative Labeling of Diamond Graph, Generalized

Petersen Graph, and Some Other Graphs", Journal of Mathematics (Hindawi), Vol. 2022, pp. 1-5, 2022.

