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Sciences Sciences 

Abstract 

Type 2 Diabetes Mellitus (T2DM), a prevalent metabolic disorder 

characterized by insulin resistance and impaired secretion, is treated with 

five FDA-approved medications, namely sulfonylureas, meglitinides, 

biguanides, thiazolidinediones, α-glucosidase inhibitors, and dipeptidyl 

peptidase-4 (DPP-4) inhibitors. However, these drugs have adverse effects, 

prompting researchers to investigate DPP-4 inhibitors (gliptins) for their 

improved safety profiles. In this study, triazolopiperazine derivatives were 

developed as DPP-4 inhibitors using the Schrödinger Suite 2022-1, 

integrating field-based Quantitative Structure Activity Relationship 

(QSAR), molecular docking, and molecular dynamics (MD) simulations. 

Forty-five triazolopiperazine derivatives with IC50 values from 0.43 nM to 

455 nM were used to develop spatial characteristics via Gaussian field-

based QSAR, yielding promising statistical results. Contour maps revealed 

favorable and unfavorable interactions around the triazolopiperazine 

nucleus, leading to the design of 10 new compounds with improved 

predicted IC50 values, strong binding affinities, and docking scores. 

Compound G86 demonstrated superior binding affinity and inhibitory 

activity against DPP-4 compared with sitagliptin, suggesting its potential 

for further development. QikProp analysis predicted favorable 

pharmacokinetic and physicochemical properties and a better safety profile 

for G86, whereas MD simulations showed that the G86-1X70 complex was 

more stable than the sitagliptin-1X70 complex. This study highlights the 

effectiveness of computational methods in accelerating anti-diabetic drug 

discovery and facilitates future research and therapeutic advancements in 

T2DM management. 

Keywords: DPP-4 Inhibitors, Type 2 Diabetes Mellitus, Docking, Field-

based QSAR, Molecular Dynamics, Triazolopiperazine. 
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1. Introduction 

Diabetes Mellitus (DM) is a group of metabolic disorders characterized by abnormal plasma glucose 

levels. There are two primary types of DM: Type 1 Diabetes Mellitus (T1DM), also known as insulin-

dependent Diabetes Mellitus and T2DM, also known as non-insulin-dependent diabetes mellitus 

(NIDDM)(1,2). T2DM, or NIDDM, is the most prevalent form, and is characterized by impaired insulin 

sensitivity or insulin resistance, decreased insulin production, and hyperglycemia(3,4). It is anticipated 

that the number of people with diabetes will increase dramatically to 643 million worldwide by 2030. 

Moreover, estimates suggest that by 2045, this figure will rise even further, impacting almost 783 million 

individuals globally(5). Individuals diagnosed with T2DM are at a heightened risk for both 

macrovascular and microvascular complications, including peripheral vascular and renal disorders, 

hypertension, cardiovascular diseases, neurological conditions, and retinopathy. The U.S. The Food and 

Drug Administration has approved five main groups of medications to address glucose imbalance and 

reduce the risk associated with type 2 diabetes: sulfonylureas, non-SU secretagogues 

(meglitinides), thiazolidinediones,  biguanides, α-glucosidase inhibitors, and recently approved 

dipeptidyl peptidase-4 (DPP-4) inhibitors(6). Traditional medications often show diminished efficacy 

over time, leading to inadequate glycemic control. Furthermore, a few of these medications have side 

effects such as weight gain, hypoglycemia, and gastrointestinal irritation. Therefore, there is a need for 

alternative therapies that can address the limitations of conventional antihyperglycemic medications (7). 

Maintaining the balance of glucose requires the action of hormones, such as glucose-dependent 

insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1). This is achieved by promoting 

insulin synthesis and release by supporting pancreatic β-cell activity. GLP-1 enhances glycemic control 

by reducing appetite and increasing the responsiveness of β-cells to glucose. GLP-1 and GIP enzymes 

are broken down by DPP-4, which is a multifunctional membrane-anchored serine ectopeptidase. By 

inhibiting DPP-4, their breakdown can be prevented, leading to increased insulin release in response to 

glucose. It should be noted that current anti-diabetic drugs are becoming less effective owing to adverse 

effects such as hypoglycemia, obesity, nausea, and gastric problems. As a result, researchers are working 
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to develop powerful drugs with fewer adverse effects, such as DPP-4 inhibitors or gliptins, which offer 

long-term glycemic control and reduce the risk of hypoglycemia. The most popular drugs for inhibiting 

DPP-4 are sitagliptin and vildagliptin, which are competitive and reversible. They exhibit delayed 

binding inhibition kinetics and are rapidly absorbed orally. The core nuclei of DPP-4 inhibitors mainly 

include cyanopyrrolidines, triazolopiperazine amides, and pyrrolidines. Piperazine analogs have potent 

anti-diabetic properties, so they are frequently utilized as DPP-4 inhibitors. In this study, the DPP-4 

inhibitory action of triazolopiperazine derivatives was investigated(1). A variety of triazolopiperazines 

with improved IC50 values have been described by replacing the nitrogen atom from positions 2 to 3 in 

sitagliptin molecules (Figure 1) (7).  
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Figure 1: Chemical structure of  (a) sitagliptin and (b) its derivative (8) 

2. Materials and methods 

2.1 Details about computers and software 

The study endeavors included docking, MD simulation, field-based QSAR, preparation of both 

the ligand and the protein, and ADME computation using Schrödinger (v. 2022-1) software(9,10).  

2.2 Field based 3D QSAR modelling  

Using a field-based technique, a library of 45 ligands was constructed to build 3D-QSAR models, which 

are three-dimensional quantitative structure-activity relationships. (11). Predictions were generated by 

randomly dividing the ligands into the training (70%) and testing (30%) sets. Partial least squares (PLS) 

factors were used to linearly fit the five Gaussian parameters (hydrogen bond acceptor, hydrogen bond 

donor, hydrophobic, steric, and electrostatic). These five indicators were used for the highest total of 

PLS factors in the linear regression statistics. The study of values for Pearson’s r, root mean squared 
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error (RMSE), cross-regression coefficient (Q2), standard deviation (SD), and regression coefficient 

(R2) led to the selection of the best QSAR model. The optimal model was analyzed using five different 

colored contour maps to show the intended spatial configurations of the functional moieties (10, 13, 14). 

Approximately 100 molecules (G1-G100) were designed based on the QSAR model by replacing the 

appropriate groups on the positive counters and avoiding groups that would lead to negative effects. Ten 

compounds were selected that yielded better predicted IC50 values. 

2.3 Ligand preparation  

A collection of 45 congeneric triazolopiperazine derivatives (A1-A45) with DPP-4 inhibitory activity 

and IC50 values ranging from 0.43 to 455 nM were compiled from journals and BindingDB. Ten 

compounds were predicted using QSAR, resulting in a total of 55 compounds being selected for further 

analysis. The ligand was prepared using the LigPrep feature of Maestro's Epik tool, and the OPLS4 force 

field was used to generate the lowest energy conformer per ligand. The pH was then neutralized. LigPrep 

is an advanced tool designed to generate high-resolution three-dimensional structures with all atoms for 

a variety of compounds with drug-like properties. Beginning with either 2D or 3D structures, it may 

produce structures in the SD or Maestro format. For each correctly processed input structure, LigPrep 

generated an exclusive low-energy three-dimensional representation with exact chiralities. It may also 

consider various ring conformations, stereochemistry, tautomers, and ionization states to produce 

numerous structures from each input. Additionally, it allows for the removal of molecules based on 

parameters such as molecular weight or specific functional groups.(9,12) 

2.4 Protein preparation  

In scientific research, the process of preparing polypeptides for molecular docking is referred to as the 

polypeptide setup. This procedure involves several processes such as optimization, hydrogen bond 

addition, atomic collision removal, and water molecule deletion from the crystal structure of the protein. 

The Protein Data Bank (<https://www.rcsb.org/>) provides the 3D crystal structure of the human DPP-

4 protein (1X70)(13,14) in association with triazolopiperazine (the comparative medication, sitagliptin). 

The results for the protein structure 1X70 were good, showing an observed R-value of 0.193, a free R-
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value of 0.228, and a resolution of 2.10 Å. Using Maestro's Protein Preparation Wizard (Schrödinger, 

LLC, New York, NY, USA), the protein was constructed by removing water molecules, adding lacking 

hydrogen atoms, and modifying the bond ordering and charges. The ProtAssign algorithm was employed 

to maximize the hydrogen-bonding (H-bond) network by investigating the neutral and protonated states 

and flipping terminal chi angles for specific amino acids. The H-bond network can operate in either a 

"standard" mode, which takes seconds to complete, or an "exhaustive" mode, which takes minutes to 

hours depending on the complexity of the network. During protein preparation, the entire structure was 

relaxed using the force field OPLS4 and the Impref tool was used for H-bond optimization(9,15).  

2.5 Receptor grid generation  

Schrödinger's Maestro receptor grid-generating module was used to create a grid around a protein 

binding site. To appropriately score the ligand postures, a grid is necessary. Upon contact, receptors may 

undergo conformational alterations, including modifications of side chain or loop conformations. The 

chosen region is recognized as the receptor that determines its structure and characteristics. Atoms from 

sites where ligands were present  were selected using the input mode. The van der Waals radius of the 

atoms of the receptor was manipulated, and an enclosed box created a grid centered on the designated 

residue within a ligand length of ≤20 Å(16,17). 

2.6 Molecular docking 

Molecular docking, a widely employed technique in molecular modelling, is used to investigate the 

interactions between ligands and receptors and determine how best to align a ligand with a target 

receptor(18). Researchers have employed a thorough examination of the ligand torsion-angle region 

within the ligand-receptor interaction environment to select ligand conformations, which are 

subsequently represented in a concise combinatorial form. Initial screens involve exploration of the 

entire phase space of the ligand. Notably, the Glide approach employs truncations and approximations 

to enhance the computational efficiency while maintaining systematic search methods. Then, using the 

OPLS-4 force field and a distance-dependent dielectric approach, the ligand was minimized inside the 

receptor field. The three to six lowest-energy positions underwent a Monte Carlo process to identify the 
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local torsional minima. The GlideScore scoring function, which is a refined ChemScore algorithm, ranks 

ligands for screening and predicts binding affinity. When choosing the proper docked pose, Emodel, an 

integrated ranking algorithm that combines GlideScore, ligand-receptor molecular mechanics contact 

energy, and ligand strain energy, performs better than GlideScore and molecular mechanics energy 

alone(19). The GLIDE tool was used to evaluate the ligand versatility and protein-ligand binding power 

(kcal/mol) in a molecular docking investigation of 55 compounds using Maestro software(9). Glide XP 

docking calculations used a prepared protein grid file, and the XP Glide scoring function ranked the top 

compounds. The XP visualizer analyzed specific interactions such as π-cation and π-π stacking(16). Hit 

molecules have been identified through the examination of hydrophobic, π-π stacking, and H-bonding 

interactions(9). The performance of the technique was evaluated in molecular docking studies involving 

ten ligands with superior predicted IC50 values compared to the forty-five triazolopiperazine derivatives. 

2.7 ADME and toxicity prediction 

In the realm of drug research and discovery, predicting bioavailability is a critical aspect, as it often leads 

to the failure of potential drugs in the early stages of clinical trials owing to inadequate pharmacokinetic 

properties. The Absorption, Distribution, Metabolism, and Excretion (ADME) characteristics of eight 

compounds with high docking scores were assessed using the Maestro program, especially the QikProp 

tool. Pharmacokinetic features such as aqueous solubility, hydrophobicity, oral absorption by humans, 

permeability of the blood-brain barrier, and gastrointestinal permeability are all determined by these 

characteristics(9). Prior to using QikProp in the normal mode, each molecule must be neutralized 

because the tool does not neutralize molecules and produces descriptors in this manner. Approximately 

44 features were predicted by QikProp, comprising fundamental descriptors and physiochemical 

variables necessary for logical drug design, including the log P value (octanol/water), QP%, log HERG, 

permeability of Caco-2 cell membranes, permeability of MDCK cells, and Lipinski's rule of five(20). 

ProTox 3.0 was also used  to predict the toxicity class as well as LD50. Toxicity studies were primarily 

conducted on the ligands with the best predicted IC50 and docking scores. 

2.8 Molecular dynamic simulation  
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Through the application of virtual screening assessments, we had the opportunity explored the stability 

of the conformations and the temporal binding potential of the ligands inside the DPP-4 binding pocket. 

The approximate spatial orientation of the ligand was determined using virtual screening. However, a 

thorough assessment of its binding power and conformational durability is necessary to determine the 

inhibitory potency of ligands that target DPP-4. To comprehensively scrutinize the conformational 

landscape of protein-ligand assemblies under physiological circumstances, we utilized MD simulations. 

Each ligand was subjected to separate MD simulations with the designated target protein using 

Schrödinger (v. 2022-1) Desmond module. The ensuing MD trajectory served as a tool for examining 

dynamic balance over a period. By considering the mean simulated configuration of all MD trajectory 

frames and the root mean square deviation (RMSD) measure of the initial structure, we acquired insights 

into the convergence of the simulated protein-ligand assemblies. The docked ligands that scored the 

highest were subjected to MD simulations in 100 ns time segments. 

The Protein Preparation Wizard, a part of the Schrödinger suite, was used for the preparation of ligand-

receptor assemblies. Wizard carried out various operations, such as recasting of hydrogens and bonds, 

supplementing missing atoms in the side chain, and optimizing loop amino acid sequences using 

standard configurations. The System Builder component of Wizard was used to establish a periodic 

simulation box, which was solvated at pH 7.4, using the TIP3P water model. Opposition ions are 

introduced to neutralize the environment. The OPLS all-atom force field was applied, along with 1000 

iterations of the most severe fall approach, to reduce the energy to its minimum. The primary stage of 

equilibrium was achieved by simulation of the NPT ensemble (with constant atoms, pressure, and 

temperature) for a duration of 100 ns, conducted in an unregulated production simulation. The system 

was monitored using a Nosé–Hoover thermostat (300 K, relaxation time = 1 ps) and an isotropic 

Martyna-Tobias-Klein barostat (1.01325 bar, relaxation time = 2 ps). The smooth particle mesh Ewald 

(PME) method was employed to examine long-range Coulomb interactions and short-range interactions 

(cutoff = 9 Å) using the RESPA integrator. Frames that recorded dynamic movements were extracted at 
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10 ps intervals. The system’s stability was assessed using metrics such as the radius of gyration (Rg), 

hydrogen bond analysis, torsional bonds, RMSF, and RMSD histograms.(21) 

The Desmond program was used to perform computational MD studies to verify and assess the accuracy 

of the molecular docking. The system used the best force field for liquid simulations, OPLS4, to explore 

the interactions between the protein under study (PDB ID:1X70) and the G86 molecule, which is well 

known for its stability at the  active site of the receptor. A straightforward point-charged (TIP3P) water 

model was used for this purpose. The protein atoms and box sides were separated by a 10 Å buffer zone 

composed of an orthorhombic water box. To ensure neutrality, Na+ ions were added to the system after 

the removal of any overlapping water molecules. A force field with OPLS4 was used to calculate the 

energy. A pressure of one atmosphere and a temperature of 300 K were consistently maintained (18). A 

100ns duration was utilized for the simulation. Ten picoseconds were The recording interval, yielding 

approximately ten thousand frames. The radius of gyration (rGy), RMSF, and RMSD are among the 

metrics used to evaluate MD trajectory(9). MD simulations were performed for the reference sitagliptin 

(A44), the best-selected ligand (G86), and the ligand with the highest experimental IC50 reported in the 

literature (A45). 

 

3. Results and discussion 

3.1.  Field based QSAR 

The 3D QSAR method, based on Gaussian fields, facilitated the forecasting of DPP-4 inhibitory activity 

and identification of three key spatial attributes for 45 properly aligned triazolopiperazine derivatives 

(A1-A45). The test and training set statistics included a standard deviation of 0.2005, R² value of 0.9166, 

R² with cross-validation  of 0.7939, R² scramble value of 0.4391, stability of 0.922, F value of 102.6, P 

value of 3.27e-15, RMSE of 0.37, Q² of 0.5912, and Pearson’s r of 0.7919 (Table 1). The PLS factor 

was determined as 3. The model's near-zero SD and RMSE results demonstrated a low error probability 

at PLS 3. While the Q² value in the test set indicated a strong connection, the high R² value in the training 

set indicated a significant relationship between anticipated and actual actions. The significant variance 
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ratio (F) and minimal error probability (P) of the chosen model demonstrated good predictability. The 

external validation of the best model was validated by the Pearson r value, which showed a significant 

relationship between the observed and expected activities in the test set. 

PLS 

Fact

or 

SD R² R²CV R² 

Scramble 

stabili

ty 

F P RMS

E 

Q² Pearson

-r 

1 0.4110 0.624

6 

0.4961 0.1445 0.975 49.9 7.455e-

08 

0.54 0.152

3 

0.4127 

2 0.2982 0.809

0 

0.6902 0.2508 0.97 61.4 3.76e-11 0.45 0.408

8 

0.7670 

3 0.2005 0.916

6 

0.7939 0.4391 0.922 102.

6 

3.27e-15 037 0.591

2 

0.7919 

Table 1 : Field-based parameters for 3D-QSAR modeling 

Based on the information gathered from the contour maps, many substituent groups were changed, 

including the hydrophobic, steric, electrostatic, H-bond donor, and H-bond acceptor groups (Figures 2 

and 3). For steric contour illustrations, the yellow contour shows locations that are less conducive to 

activity for bulky groupings, whereas the green contour shows the reverse. In the context of electrostatic 

fields, the red contours indicate increased activity from electron-withdrawing groups and the areas with 

increased activity from electron-donating groups. The favorable position for the hydrogen bond donors 

is denoted by the blue-violet color, whereas the cyan color signifies a negative interaction. In the case 

of hydrogen bond acceptors and hydrophobic contours, increased activity is denoted by red and yellow 

colors, and negative interactions are indicated by magenta and white colors, respectively. Table 2 lists 

the expected effects of these compounds. 
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Figure 2: Contour Maps of compound A39 A) Steric B) H-bond donor C) H-bond acceptor D) 

Electrostatic  E) Hydrophobic 

 

 

Figure 3 : Contour Maps of compound A45 A) Steric B) H-bond donor C) H-bond acceptor D) 

Electrostatic  E) Hydrophobic 
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Sl No Title 

Experimental 

pIC50/ 

Predicted pIC50 

1 A44 7.744727 

2 A45 9.366532 

3 G1 7.92359 

4 G9 8.073709 

5 G21 7.939924 

6 G55 7.831294 

7 G80 7.916484 

8 G81 7.920243 

9 G82 8.025752 

10 G83 8.044069 

11 G84 8.045406 

12 G86 7.923713 

Table 2: Experimental pIC50/Predicted pIC50 of various ligands 

 

3.2 Molecular Docking 

In the field of virtual screening, drug design, and lead optimization, molecular docking is a valuable 

computational approach for identifying new bioactive compounds by analyzing protein-ligand binding 

interactions. Using Glide Dock XP, triazolopiperazine derivatives were ranked and sorted based on 

docking scores that were higher than or equal to sitagliptin (9). A total of 55 molecules, including the 

reference molecule sitagliptin and 10 newly designed molecules, were subjected to molecular docking 

studies with the 1X70 receptor. The docking scores of compounds G86, G9, and A44 revealed that 

compound G86 exhibited a strong binding affinity (-10.9 kcal/mol) for the 1X70 receptor, forming 



Shahin Muhammed TK/Afr.J.Bio.Sc.6(15)(2024)                            Page 1480 to 10 

hydrogen bonds with TYR 662, GLU 205, GLU 206, VAL 207, ARG 358, and engaging in pi-pi contacts 

with PHE 357 as well as TYR 666 (Figure 4). Compound G9, which was moderately active (-9.5 

kcal/mol), had a lower docking score than compound G86 and formed hydrogen bonds with ARG 125, 

GLU 205, and TYR 662, and pi-pi contacts with PHE 357 and TYR 666 (Figure 5). Compound A44 

(sitagliptin), the least active (-9.3 kcal/mol) of the three, formed hydrogen bonds with TYR 662 and 

GLU 205 and engaged in pi-pi interactions with TYR 666 and PHE 357 (Figure 6). Figures 4-6 show 

the specific 2D and 3D interactions with the binding of G86, G9, and A44 with the DPP-4 receptor 

crystal structure. Figure 7 shows the structures and docking scores of the developed compounds. 

 

Figure 4:2D & 3D interaction image of ligand G86 with DPP-4 receptor protein (PDBID:1X70) 

 

      

Figure 5:2D & 3D interaction image of ligand G9 with DPP-4 receptor protein (PDB ID:1X70) 
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Figure 6:2D & 3D interaction image of ligand A44 (reference) with DPP-4 receptor protein (PDB 

ID:1X70) 
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  G80  (Dock score: -9.3 Kcal/Mol)                         G81  (Dock score: -5.6 Kcal/Mol) 
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Figure 7 : Structures of designed lead compounds 

3.3 ADME calculation 

Using Schrödinger's QikProp module, which offers a comprehensive range for comparing the 

characteristics of a particular molecule to nearly 95% of known medications, the ADMET properties of 

the eight molecules were evaluated to determine their pharmacokinetic characteristics (Table 3). The 

coefficients were investigated according to "Lipinski's rule of five." Each compound exhibited a 

favorable toxicological profile and drug-like ADMET properties. Their molecular weights ranged 

between 407.318 and 686.699 Da, which fell within the accepted limit of 130–725 Da. The number of 

hydrogen bond acceptors (HBA) ranged from 5 to 8.7 (Range: 220). The majority of the properties, such 

as #stars (0-5), #amine (0-1), amidine (0), amide (0-1), donorHB (0-6), QlogPoct (8-35), and QlogPo/w 

(-2 to 6.5), were within acceptance limits(9). Comprehensive analysis of all pharmacokinetic parameters, 

such as H-bond acceptor and donor, polar surface area, aqueous solubility, lipophilicity, and permeation 

across the blood-brain barrier (BBB), identified compound G86 as a promising candidate and was 
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considered for an MD simulation study. This study involved the analysis of protein-ligand complex 

stability using reference compounds A44 and A45. The toxicity prediction and predicted LD50 values 

indicated that the designed compounds exhibited a superior safety profile (Figure 8). 

 

 

Table 3: ADME profile of the designed compound and the reference compound. 

 

 

                                                  

 

Figure 8: Prediction of G86 toxicity. 

3.4 Molecular dynamics  

To acquire a deeper understanding of the chemical stability and dynamic characteristics of ligand-protein 

assemblies, we conducted simulations using MD in an explicit solvent context. These simulations shed 

light on how ligand attachment influences the structure of proteins and offer a thorough understanding 

of how protein-ligand interactions contribute to maintaining stable conformations during movement. 

This is a complete original rephrasing of the content provided. Three protein-ligand complexes were 
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utilized for the simulations, including one predicted ligand with the highest docking score (G86), one 

reference compound (A44), and one compound with the highest activity among the congeneric series 

(A45). The long-term stability and binding affinity of the ligand-protein combination under computer-

generated physiological conditions were assessed using MD simulations. A pressure of 1 bar was applied 

in every simulation run conducted at 300 K. with a relaxation duration of 10 ps. For every simulation, 

the force field variables from the OPLS4 were used. The MD research results showed that, in contrast 

to the reference (A44) and the molecule with the greatest activity in the congeneric series (A45), the 

developed compound (G86) displayed stable interactions. 

 

                                Figure 9 : Protein –Ligand RMSD of G86-1X70 complex          

 

                            Figure 10: Protein- Ligand RMSD of A44 (Reference)-1X70 complex 
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Figure 11: Protein – Ligand RMSD of A45-1X70 complex 

The RMSD figure evaluates the difference between the starting locations of the ligand and  protein atoms 

in the binding cavity (0 ns) and at the last moment of the simulation session (100 ns). The degree of 

stability of the ligand-protein assemblies  was measured using this figure. The stability of each system 

throughout the simulation was evaluated by plotting the RMSD values of the protein backbone atoms 

over time. In particular, we computed the RMSD measurements versus the simulation duration (0-100 

ns) for the 1X70 framework with the ligand G86. The results are shown in Figure 9. Furthermore, we 

calculated RMSD measurements for the 1X70 backbone in conjunction with A44 (sitagliptin) and A45, 

benchmarked against a simulation scale ranging from 0 to 100 ns. The results of these calculations are 

shown in Figures 10 and 11, respectively. It is important to mention that all three paths displayed RMSD 

values between 1-3 Å throughout the 100 ns simulation, with G86 demonstrating superior stability 

compared to the benchmark compounds. Variations within the 1-3 Å range were deemed tolerable for 

small globular proteins. RMSF can be used to examine local alterations along the protein chain. The 

most variable regions of the protein were indicated by peaks in the RMSF graph. RMSF analysis of the 

protein with ligand G86 revealed less fluctuation compared to the other two proteins due to increased 

interactions in the G86-Protein complex (Figure 12). 

Protein RMSF  

  

 

    

                             A                                                                                    B 
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                      Figure 12: Protein RMSF of A) G86   B) A44-Reference C) A45 

Ligand RMSF  

 

                             A                                                                                        B    

 

                                  

                                                                         C 

                       Figure 13 :  Ligand RMSF of A) G86  B) A44-Reference C) A45              

 

 

The ligand RMSF serves as a useful instrument for scrutinizing changes in the positions of the ligand 

atoms. The peaks in the graph indicate significant deviations of the ligand from the reference positions. 

The L-RMSF for G86 was found to be on par with that of the benchmark medication A44, Sitagliptin, 

as depicted in Figure 13.  
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Protein-ligand contact 

The protein-ligand contacts provide information about the ligand-protein interactions that occur along 

the trajectory. Various interactions are possible between the ligand and protein, including water bridges, 

ionic bonds, hydrophobic interactions, and hydrogen bonds. More specialized subtypes exist within each 

interaction type. Figure 14 depicts the ligand-protein interactions. These results clearly indicate that the 

G86-1X70 complex has more contacts than the reference, suggesting its stability. 

            

                          A                                                                            B 

 

C 

                         Figure 14:  Protein ligand contact histogram of A) G86 , B) A44 , C)A45 

4. Conclusion                                  

This study aimed to evaluate novel gliptin derivatives as potential treatments for diabetes through 

inhibition of DPP-4. Using field-based QSAR and Schrödinger Maestro suite, the activities of the 

designed molecules were predicted and compared using docking scores. G86 (pIC50=7.8 nM), G9 

(pIC50=8.07 nM), and G82 (pIC50=7.81 nM) showed activity similar to that of the reference molecule 

A44-Sitagliptin (pIC50=7.74 nM). Molecular docking for ten highly active compounds ranked them 

based on binding free energy and affinity, revealing that G86 (Glide score = -10.9) had a higher binding 

affinity than A44-Sitagliptin (Glide score = -9.3). G86 formed hydrogen bonds with TYR 662 and NH₄⁺, 
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TYR 547 and the carbonyl group, and GLU 206 and VAL 207 with the NH₂ group, along with Pi-Pi 

stacking interactions with PHE 357 and TYR 666, similar to A44, but with more hydrogen-bond 

interactions. Qikprop predicts the pharmacokinetic and physicochemical (ADME) properties of these 

molecules. Toxicity prediction for G86 with Pro Tox 3.0 classified it as toxicity class 4 with a predicted 

LD₅₀ of >1000 mg/kg. MD simulations confirmed the stability of G86-1X70, A45-1X70, and A44-

Sitagliptin-1X70 complexes, with G86-1X70 showing greater stability than the reference compound. 

This study suggested that G86 may have higher activity than the existing molecule, warranting further 

synthesis and in vitro and in vivo studies. 
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