
Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) ISSN: 2663-2187

https://doi.org/10.48047/AFJBS.6.Si4.2024.81-103

Evolutionary Approach to Improve Relationship Awareness of Retrieval

Augmented Generation through Knowledge Graphs – A case study of life

sciences and healthcare compliances

Amit Chakraborty1, Lumbini Bhaumik2, Sushmita Ganguly3, Chirantana Mullick4 ,

Saptarshi Das5, Raj Kumar Keshri6

1,2,3,4,5,6 – JIS Institute of Advanced Studies and Research

Article Info: Volume 6, Issue Si4, 2024:Received: 12 Apr 2024:Accepted: 02 May 2024

doi:10.48047/AFJBS.6.Si4.2024.81-103

Abstract

Generative AI, specifically retrieval-augmented generation, is transforming life sciences and

healthcare compliances compliances by improving decision-making processes. AI systems may

provide specialized reports, projections, and investment plans by analyzing massive volumes of

pharmaceutical and contextual information. These systems use retrieval techniques to generate

accurate and contextually relevant outputs based on historical data, market trends, and expert

views. This work describes a novel evolutionary strategy for improving connection awareness in

retrieval augmented generation (RAG) systems, with an emphasis on compliance documents for

life sciences and healthcare compliances industry. Using the power of knowledge graphs and

graph databases, our approach provides a comprehensive framework for modeling documents

and their deep relationships, allowing for more effective information retrieval and creation

processes. We offer a method for leveraging retrieval-augmented generation from a graph

database, in which documents are represented as nodes and relationships as edges, allowing for

the extraction of rich contextual information. Furthermore, we present a similarity-based

searching strategy for the graph database, allowing for more precise and relevant document

retrieval. To assess the efficacy of our technique, we undertake a life sciences and healthcare

compliances compliances case study that examines the effects of relationship-aware retrieval

enhanced generation on important metrics including ROUGE and BLEU. We show considerable

gains in these indicators after iterative experimentation, demonstrating that the created

information is of higher quality and relevance. By including relationship awareness into the

retrieval augmented generation process, our method allows finance professionals to access and

develop insights with improved clarity, accuracy, and contextually. Our findings indicate the

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 82 of 23

potential for using knowledge graphs and graph databases to improve the capabilities of

retrieval-augmented generation systems in life sciences and healthcare compliances compliances

applications. Beyond typical keyword-based retrieval approaches, our approach provides a more

complex knowledge of document linkages, resulting in better decision-making processes.

Furthermore, the iterative nature of our evolutionary approach enables continual refinement and

adaptation, guaranteeing that the system stays effective in dynamic and changing situations.

Finally, our findings add to ongoing efforts to advance retrieval augmented generation

techniques by emphasizing the importance of relationship awareness and the use of knowledge

graphs. By incorporating these concepts into the fabric of life sciences and healthcare

compliances applications, we open the door to more intelligent, context-aware systems that

provide finance professionals with actionable insights and decision support.

Keywords: Generative AI, retrieval-augmented generation, life sciences and healthcare

compliances, knowledge graphs, graph databases, relationship awareness, information retrieval,

contextual information, similarity search, metrics improvement, ROUGE, BLEU, decision-

making processes, iterative approach.

Compliances for Life sciences and healthcare compliances Industry

This section recognizes healthcare compliance as the process of following legal requirements set

by the authorities that regulate the functioning of healthcare organizations. These compliances

are essential for upholding the integrity of health care, protecting the patients’ information

amidst various emerging threats, and guaranteeing that excellence is upheld in the provision of

the services. Major bodies of healthcare compliance consist of HIPAA rules, ACA, HITECH

Act, and other rules regulated by the CMS. As in any other business process where compliance

requirements are met, documentation is a critical aspect that serves multiple purposes, one of

which is providing proof of conformance and compliance, and the other acting as an audit trail

for identifying corrective measures in a bid to enhance compliance.

HIPAA Compliance

The HIPAA is aimed at assuring patient confidentiality and the adoption of health information

exchange. To comply with HIPAA, healthcare providers must:To comply with HIPAA,

healthcare providers must:

Privacy Rule: Ensure confidentiality of all information that is in a way can identify any given

individual health information.

Security Rule: Protect ePHI from unauthorized access, improper disclosure, alteration,

destruction and the ability to be accessed by authorized personnel.

Documentation Requirements:

Privacy Notices: Explain to patients basic rights related to their information and how this

information will be utilized.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 83 of 23

Authorization Forms: Ensure that you get consent from the patient for using or sharing their

information for secondary use other than for treatment, payment or health operations.

Security Policies and Procedures: Prescribe document security measures that can help to prevent

ePHI disclosure, such risk analyses, access restrictions, or tracking tools.

Training Records: Communicate to the staff current HIPAA rules as well as data protection

procedures.

Incident Reports: Keep records of any threats or lessons of a prohibited kind and the steps taken

to counter them.

ACA Compliance

ACA which is ACA: was designed to make healthcare more affordable and easily accessible to

citizens, provisions that have affected almost all sectors within healthcare and insurance.

Documentation Requirements:

Employee Health Insurance Coverage: Contract complaints also require proof of the health

coverage provided to employers by the respective employer, forms like the 1095-C.

Patient Protection and Affordable Care Act (PPACA) Compliance: Providers must ensure they

have documented their conformance to the rules set in issues of preventive services, patient right,

and billing.

Financial Assistance Policies: Hospitals also have to maintain policies addressing financial

interactions with patients within the hospitalized populace and guarantee these policies for the

public.

HITECH Act Compliance

In addition to it, enhancing the use of electronic health records HITECH acts to reinforce the

HIPAA regulations.

Documentation Requirements:

Meaningful Use: Providers are required to report on their adoption and use of EHRs for the

purpose of enhancing patient care and patient outcomes, including which meaningful use

objectives and measurements of meaningful use have they met.

Breach Notification: The records must be kept of any breach in compliance with Section

13405(b) of ePHI and documentation of any notices provided to individuals affected and the

HHS in accordance to Section 13405(c).

Security Enhancements: The document should provide more information on safeguards that have

being put in place to protect ePHI including measures like encryption and the manner in which

data is transmitted in the network.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 84 of 23

CMS Compliance

Here, the Consolidated Medicare and Medicaid (CMS) is responsible for managing Medicare

and Medicaid and regulating its quality as well as rates of payment.

Documentation Requirements:

Billing and Coding: Individual patient records for encounters, diagnoses, and treatments so that

reimbursement may be claimed appropriately.

Quality Reporting: Use of reports – recording of quality initiatives of the Quality Payment

Program, including patient experience and MIPS scores.

Audit Trails: Ensure that records of all filed claims and money received, together with alterations

to the records in case of correcting errors, are well kept.

Documentation is a key practice in the field of healthcare mainly, for purposes of ascertaining to

the set rules and regulations, openness and for purposes of enhancing contact. Most healthcare

organizations, practitioners, and stakeholders aim at being legal compliant, patient centered, and

quality focused, which can only be achieved by proper documentation that will see one avoid the

law, deliver better patient centered care, and build and sustain the much needed trust with the

patients as well as the regulators. Overall, healthcare compliance can be more easily managed if

healthcare organisations remain alert towards the keys to compliance and keep record of all the

corresponding evidences.

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation or RAG is one of the most popular methods to combine

contextual information while querying a LLM so that the LLM while generating answers,

contextualize it with the information provided to it. LLMs are in general trained in publicly

available data set and while they can generate human like text they are not capable of

contextualizing the generation of questions are asked against a custom textual corpus. The corpus

maybe any custom document in form of PDF, MS or Open Office documents, images etc. The

custom corpus that has to serve as the source of contextual information is first chunked, that is a

pre-trained embedding model is used to create the vector representations of the chunks. The node

parser takes the list of documents and chunks them into NODE object such that each NODE is of

a pre-configured size. When a document is broken into nodes all its properties are inherited by

the node. Each of the chunks are then embedded that is their vector representations are generated

and stored in a vector DB. When a query is passed to the LLM through the use of a prompt the

vector DB generates the closest vector embeddings from the question. To do this various

distances can be used such as:

Euclidean distance – This is the straight line distance considering the space as a Euclidean space

and is given by:

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 85 of 23

Cosine Distance – This is the cosine of angle between the two vectors in a multidimensional

space and is given by:

Jaccard Similarity – This calculates the distance between the two texts by calculating their union

and intersection and is given by:

The Jaccard distance is then calculated by 1 – Jaccard Similarity

The embeddings thus selected by the vector database on the basis of the shortest distance are

then added to the query and then passed on to the LLM. The inherent capability of text

generation of the LLM along with the contextual information passed in form of the vector

chunks helps the LLM to answer questions only in the context of the documents passed.

Problem Statement

With the advent of readily accessible Large Language Models (LLM) the applicability areas for

the same has increased by manifolds. Ranging from Banking and Finance use cases to managing

products in medical devices the applicability of these models is widespread. These models can be

used in as a cloud resource across all popular cloud platforms and containerized to be used in a

local on premise or private virtual network environment. For both the cases primarily the custom

uses cases are fulfilled either by the method of “Retrieval Augmentation Generation (RAG)” or

“Fine Tuning” the model. Retrieval Augmentation Generation (RAG) refers to the process by

which a LLM model is grounded by custom knowledge by providing suitable examples and

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 86 of 23

context in form of context vectors so that the model can be used for custom business

applications.

We propose to study such problems in a typical RAG implementation of a LLM that has been

used to summarize various domain sensitive supplier and vendor management documents in a

typical supply chain management process. An analytical study of the as-is deployment

architecture of the solution followed by a detailed causal analysis of the problems associated

with it shows that the summaries though effectively being contextual through Retrieval

Augmented Generation process lacks the nuances of very customized domain specificity. The

said problems will be discussed in detail below and can be associated with general efficiency of

the model and the ecosystem in which it is being deployed.

In general, the knowledge representation of these models depends on the generalized information

in which they have been trained which results in the model to regurgitate responses that are

either too generic in nature. As will be detailed in the later sections’ observation from a typical

LLM on-premises or cloud deployment that addresses the above mentioned supply chain

document or policy manual data shows that on using RAG the application using the models at

backend are susceptible to problems such as:

• Limited Context and over reliance on retrieval – This limits a models output to be novel

and creative as the model is now overtly dependent on the context passed. The problem

of contextualization without domain awareness as seen in the above section limits the

usage and reduces summarization efficiency. When compared with human made

summaries of the same notes it performs not only with lower values of ROGUE and

METEOR but also effects qualitative measures such as HELLASWAG.

• Domain understanding - The efficacy of the RAG model is highly dependent on the

domain and the quality of the retrieval corpus. Where high-quality retrieval resources are

scarce or where the context is complex and nuanced, RAG models may struggle to

provide accurate and consistent answers. The absence of knowledge discovery before

contextualizing the responses from LLM impacts retrieval quality. RAG relies heavily on

the contextual embeddings that are passed to the LLM along with the query to get a

response. Mere contextualization doesn’t often represent modeling, the sense of which is

to abstract real world elements and domain specificities to be used as a human construct.

A simple-to-implement core subdomain can only offer a transient competitive edge. Core

subdomains are therefore inherently complex. Business operations carried out by all

organizations in an identical manner are referred to as generic subdomains. Similar to the

main subdomains, generic subdomains are typically difficult to construct and

sophisticated. Generic subdomains, however, don't give the business an edge over others.

Here, innovation or optimization is not necessary because there are widely available,

tried-and-true solutions that are utilized by all businesses.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 87 of 23

• Evaluation and Retrieval quality challenges – It is difficult to assess the quality of LLM

generated response when RAG is applied. The metrics generally used to assess the

quality of a generative model might not be the best fit to assess a RAG generated

response in terms of relevance, fidelity and coherence. The continuous emphasize on a

limiting context without a general awareness of the domain, i.e., more specifically usage

of the same context for queries that also requires a mental map of the domain is also

responsible for repetition and hallucination of the said models.

The problems described above generally occur due to the fact that retrieval augmented

generation process normally deals with only retrieval augmentation with contextual data and not

domain specificity.

Metrics to quantify the problems

ROUGE Metric

In this paper ROUGE metric is used throughout to determine the quality of the summarization

generated by the LLMs. ROUGE or Recall Oriented Understudy of Gisting Evaluation is a

metric that is used to determine the quality of machine generated summarization and translation.

This metric compares a machine generated summary against a high quality summary produced

by a domain expert.

ROUGE-N measures the number of N-grams that match between the machine generated

summary and the human produced summary. Instances of this can be ROUGE-1 (when 1 gram is

considered), ROUGE-2 (when bi-gram is considered).

ROUGE-L – This depends on the Longest Common Subsequence between the machine

generated and human produced summary. The longer the common subsequence between the two

summaries is the higher is the ROUGE-L score. This subsequence may not be necessarily

consecutive but should be in order.

In this study ROUGE-L was chosen against BLeU for the following reasons:

• Recall orientation – It was important to compare a human (read subject matter expert)

generated summary with that of the machine generated one. Hence a measure of recall

was required to take into account that the nuance of domain specificity is considered in

the summary.

• N-Gram subsequence – ROUGE captures subsequence considering N-Gram overall

which is customizable. It can capture not just exact matches but also partial matches thus

making it more flexible. This allows even for sentence level evaluation.

• Abstractive Summarization Nuances – ROUGE-L gives a more effective understanding

of the quality of the summary by focusing on the overlapping words and parts of the

sentences and is thus more content focused.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 88 of 23

BLEU

BLEU compares the generated response to a reference text (in this case, the prompt) by

calculating the overlap of n-grams (contiguous sequences of n elements, often words or tokens)

between the two texts. The metric rewards replies that have similar n-grams to those in the

reference text. To calculate BLEU, we first count the number of n -

grams in the generated response and the reference text to determine their precision.

We next divide this figure by the entire number of n-grams in the resulting response.

A brevity penalty is then applied to this precision score to account for the length difference betw

een the generated response and the reference text.

The final BLEU score is the geometric mean of the adjusted precision scores over distinct n-

gram orders (usually 1–4), weighted equally.

Higher BLEU scores imply a stronger resemblance between the generated response and the refer

ence text. While BLEU is a useful metric for assessing the overall quality and fluency of

generated text, it has several limitations, notably in terms of capturing semantic similarity and

grammatical accuracy. As a result, data scientists frequently combine BLEU with other

measures, like as cosine similarity and ROUGE, to provide a more thorough assessment of big

language models' success in generating responses that closely match the provided prompt.

Measures taken from existing architecture

Iteration ROUGE-N Score ROUGE-L Score BLEU Score

1 0.34 0.42 0.28

2 0.29 0.36 0.25

3 0.32 0.38 0.27

4 0.30 0.35 0.26

5 0.31 0.37 0.28

6 0.28 0.34 0.24

7 0.33 0.40 0.29

8 0.27 0.33 0.23

9 0.30 0.38 0.26

10 0.26 0.32 0.22

11 0.29 0.36 0.25

12 0.31 0.39 0.27

13 0.28 0.34 0.24

14 0.32 0.40 0.28

15 0.25 0.31 0.21

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 89 of 23

Standard Deviations across the prompts for this implementation are as follows:

- ROUGE-N Score: 𝑠𝑅𝑂𝑈𝐺𝐸−𝑁≈0.025sROUGE−N≈0.025

- ROUGE-L Score: 𝑠𝑅𝑂𝑈𝐺𝐸−𝐿≈0.032sROUGE−L≈0.032

- BLEU Score: 𝑠𝐵𝐿𝐸𝑈≈0.027sBLEU≈0.027

Proposed Architecture

An evolutionary architecture based on graph databases provides an effective framework for

contextualizing data from large language models (LLMs). Graph databases excel at expressing

and navigating the intricate linkages and dependencies found in natural language data, making

them ideal for integrating and growing alongside LLMs. It uses iterative development and

continual adaptation to handle changing requirements and circumstances. This technique reveals

itself in a number of crucial ways when merging LLMs with graph databases:

Dynamic Schema Evolution: Graph databases support dynamic schema evolution, which allows

for the flexible modeling of developing data structures. As LLM capabilities develop and the

structure of textual data grows, the graph database's architecture can expand to handle new entity

kinds, relationships, and Versioned Data and Models: In an evolutionary design, both the graph

database schema and the LLM models are versioned. This allows for reproducibility,

auditability, and experimentation with various datasets and model setups. Versioning also makes

it easier to roll back changes if they have unanticipated effects or cause performance regression.

Resilience and Scalability: Evolutionary designs are intended to be durable and scalable, able to

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 90 of 23

handle the growing volume and complexity of data generated by LLMs. Graph databases offer

scalability via horizontal scaling and distributed designs, ensuring performance and availability

as data and query demands increase.

Versioned Data and Models: In an evolutionary design, both the graph database schema and the

LLM models are versioned. This allows for reproducibility, auditability, and experimentation

with various datasets and model setups. Versioning also makes it easier to roll back changes if

they have unanticipated effects or cause performance regression.

Resilience and Scalability: Evolutionary designs are intended to be durable and scalable, able to

handle the growing volume and complexity of data generated by LLMs. Graph databases offer

scalability via horizontal scaling and distributed designs, ensuring performance and availability

as data and query demands increase.

Representing Document Corpus through Knowledge Graphs

Knowledge graphs are very powerful but yet underrated tools of AI. They provide a way to store

and organize data that reflect the way information is connected across nodes and edges. The

relationship between these entities are truly highlighted and represented by such data structures.

Knowledge graphs make it easier to search for deep relationships among data since the

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 91 of 23

relationship is itself a component of the data structure and not just a key connecting the table.

This representation combined with an embedding model creates a powerful tool to perform

retrieval augmented generation using LLMs. That is because now the relationship can be taken

advantage of. Storing the vectorized embeddings in chunks in knowledge graph makes it easy to

find one similar chunk and then traverse the graph to find other relevant chunks.

Nodes are data records and they are in relationships which itself can have properties. Unlike an

object oriented structure or even relational model where the entity records would know about

each other with direct reference of foreign keys. This has deep impact in schema design and how

entities are fetched. Graph databases are ideally suited for arranging various document kinds into

a coherent knowledge graph because they provide a strong paradigm for expressing and querying

intricate relationships among disparate data elements. In this talk, we explore the complexities of

organizing different kinds of documents in a graph database, in which every kind of document is

a node, and the links between the nodes are represented by the edges, explaining their

significance in document topic modeling.

Graph Representation of Document kinds: A flexible and expressive data model is required in

the field of document management since various document kinds frequently display complex

relationships. Such modeling is made easier by graph databases, which show each type of

document as a unique node in the graph, represented by the symbol N i, where i varies

throughout the set of document types. As an example, let Npassport indicate the node for passport

documents and Nvisa indicate the node for visa documents. Graph databases use edges to

represent dependencies, linkages, and semantic links between different types of documents. An

edge (Eij) connecting nodes (Ni and Nj) represents a relationship from document type (i) to

document type (j). Consider the dependency relationship between passport and visa documents,

where obtaining a visa is frequently contingent on having a valid passport. This relationship can

be encoded as an edge Npassport , visa Epassport, visafrom Npassport to node Nvisa, showing that a visa

document is dependent on a passport document.

The Directed Acyclic Graph (DAG) Structure: The graph representation of document types

and their relationships is a Directed Acyclic Graph (DAG), which has directed edges but no

cycles. This acyclic structure ensures a well-defined hierarchy and avoids circular dependencies

across document kinds, allowing for quick traversal and querying. A directed acyclic graph

(DAG) is made up of vertices (V) representing document categories and directed edges (E)

indicating their relationships. The absence of cycles assures that no document type depends on

itself, either directly or indirectly, preserving the graph structure's integrity.

Document Topic Modeling in Graph Databases – This identifies hidden thematic structures in

documents, providing insights into underlying subjects, motifs, and linkages. Document topic

modeling in a graph database can be made easier by using graph-based algorithms and

approaches that take advantage of the rich semantic linkages inherent within the network

structure.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 92 of 23

Latent Dirichlet Allocation (LDA) is a prominent probabilistic generative model for document

topic modeling. It assumes documents are formed from a mix of underlying subjects. In a graph

database, LDA can be used to infer topic distributions across document types by utilizing the

connectivity and semantic links represented in edges.

LDA mathematically describes the generative process of document production as follows:

Where,

P(topic) represents the prior distribution over topics

P(document|topic) represents the likelihood of generating the document given the topic

Topic modeling in graph databases can use techniques like Random Walk with Restart (RWR)

or Personalized PageRank. These methods spread topic information throughout the graph

structure, assigning topic probabilities to document types based on their connectedness and

proximity to the seed topics. RWR calculates the stationary distribution of a random walk over a

graph. Edge weights affect the likelihood of migrating from node i to node j.

P(t) represents probability distribution of topics at iteration t.

A is the adjacency matrix representing graph connectivity.

α is the damping factor controlling the balance between local and global information

propagation.

P0 denotes the initial topic distribution.

To summarize, organizing various types of documents into a graph database provides a versatile

and scalable method for recording complicated relationships and allowing document topic

modeling. Graph databases make it possible to traverse, query, and analyze document collections

efficiently by representing document types as nodes and relationships as edges inside a Directed

Acyclic Graph. Using graph-based algorithms like LDA, RWR, or Personalized PageRank

improves graph databases' capabilities in detecting latent theme structures and extracting relevant

insights from document corpora. As the volume and complexity of document data increase,

graph databases will become increasingly important in document management and analysis

across a wide range of industries, from banking to healthcare and beyond.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 93 of 23

Knowledge graph construction from the financial form corpus

To clean up the financial documents into a usable corpus to model the knowledge graph, the files

were cleaned up using regex, parsed the XML structure so that it is converted into python data

structures. The Central Index Key (CIK) is identified from the same which is a company

identifier used in SEC. After that specific sections are extracted from the forms. The steps to

convert these forms in to the knowledge graph section is as follows:

• Split form sections into chunks using a text splitter

• Graph creation where each chunk is a node and adding chunk metadata as properties

• Vector index creation

• Calculating the text embedding vector for each chunk and populating the index

Algorithmic language for Knowledge Graph Construction

Calculate Vector Embeddings:

• Initialize TextSplitter with the following parameters:

• chunk_size = 2000

• chunk_overlap = 200

• length_function = len

• is_separator_regex = False

• Text splitting for each form:

• Merge a node with label 'Chunk' and the following properties:

• chunkId = $chunkParam.chunkId

• On node creation, set the following properties for the merged node:

• names = $chunkParam.names

• formId = $chunkParam.formId

• cik = $chunkParam.cik

• cusip6 = $chunkParam.cusip6

• source = $chunkParam.source

• f10kItem = $chunkParam.f10kItem

• chunkSeqId = $chunkParam.chunkSeqId

• text = $chunkParam.text

• Return the merged node.

Match nodes labeled as 'Chunk' where the property 'textEmbedding' is NULL.

Generate vector embeddings using the genai.vector.encode function with the following

parameters:

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 94 of 23

- Input text: chunk.text

- Model: "OpenAI"

- Options:

- Token: $openAiApiKey

- Endpoint: $openAiEndpoint

 Calculate Vector Embeddings:

 Encode the input question into a vector embedding using the genai.vector.encode function with

the following parameters:

- Input text: $question

- Model: "OpenAI"

- Options:

- Token: $openAiApiKey

- Endpoint: $openAiEndpoint

Call the db.index.vector.queryNodes function to perform a similarity search using the vector

index.

- Provide the index name ($index_name) and the number of top results to return ($top_k).

- Use the encoded question embedding as the query vector.

Yield the node and its similarity score for each matching node.

Return the similarity score and the text of the matching nodes.

Adding Relationships to the Knowledge Graph

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 95 of 23

Next step is to add relationship as defined above to preserve the structure of the documents. This

will result in creation of the original structure of the document, here the Form 10. The structure

of the metadata of the document node and the chunk nodes will be as follows:

Create a linked list of chunks for each section of the document

• Define a Cypher query string cypher which contains a MATCH statement to find chunks

from the database.

• The MATCH statement filters chunks based on a condition (from_same_form.formId =

$formIdParam), where formIdParam is a parameter.

• Return selected properties of matched chunks (formId, f10kItem, chunkId, chunkSeqId) as

chunkInfo.

• Limit the result to 10 chunks.

• Execute the Cypher query using kg.query() method with parameters passed in.

• Define a Cypher query string cypher that selects chunks from the database.

• The MATCH statement filters chunks based on a condition (from_same_form.formId =

$formIdParam), where formIdParam is a parameter.

• Return selected properties of matched chunks (formId, f10kItem, chunkId, chunkSeqId) as

chunkInfo.

• Order the results by chunkSeqId in ascending order.

• Limit the result to 10 chunks.

• Execute the Cypher query using kg.query() method with parameters passed in.

Add a NEXT relationship between the chunks:

• Match chunks from the database based on section and form IDs.

• Filter chunks further by a specific f10kItem.

• Order the selected chunks by chunkSeqId in ascending order.

• Collect the ordered chunks into a list called section_chunk_list.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 96 of 23

• Use the APOC procedure apoc.nodes.link to create relationships between consecutive

chunks in the section_chunk_list, ensuring no duplicate relationships.

• Return the size of the section_chunk_list.

Create relationship between all sections of Form 10-k

• Match chunks from the database based on form ID and f10kItem.

• Order the selected chunks by chunkSeqId in ascending order.

• Collect the ordered chunks into a list called section_chunk_list.

• Use the APOC procedure apoc.nodes.link to create relationships between consecutive

chunks in the section_chunk_list, ensuring no duplicate relationships.

• Return the size of the section_chunk_list

Connect chunks to their parent as “PART_OF” relationship\

• Match all chunks (c) and forms (f) from the database.

• Filter chunks and forms where the formId of the chunk matches the formId of the form.

• Merge a new relationship PART_OF between each chunk and its corresponding form.

• Return the count of newly created relationships.

Preparing the corpus for Retrieval Augmented Generation

To prepare the data for RAG the text in the nodes of the graph were converted to embeddings.

The pseudo code for the same are as follows:

Creating connection string to the graph data base (Neo4j)

• initialize_neo4j_graph: This function initializes a Neo4j graph instance by taking URI,

username, password, and database as input parameters. It creates a Neo4jGraph object

using the provided parameters and returns it.

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 97 of 23

• connect_to_knowledge_graph: This function connects to a knowledge graph instance

using LangChain by utilizing the initialize_neo4j_graph function. It takes URI, username,

password, and database as input parameters. It calls the initialize_neo4j_graph function

with the provided parameters and returns the initialized graph instance.

Create a vector index

• create_vector_index: This function is responsible for creating a vector index for

document contents embeddings. It takes parameters such as the document label,

embedding property, dimensions of the embeddings, and the similarity function to be

used. It first checks if the index already exists using the index_does_not_exist function

and then creates the index using the create_index function.

• index_does_not_exist: This function checks if the index with the given name already

exists. It returns True if the index does not exist, otherwise False.

• create_index: This function creates the actual index using the specified parameters. It

constructs a query string based on the provided parameters and executes the query using

the execute_query function.

• execute_query: This function is a placeholder for executing the constructed query. The

actual execution mechanism depends on the specific database client being used.

Populate the Vector Index

• encode_and_set_node_vector_property: This function fetches documents with non-null

content, iterates over each document, encodes its content using a generative AI service,

and then sets the node vector property for the document using the

set_node_vector_property function.

• fetch_documents_with_non_null_content: This function executes a query to fetch

documents from the database where the content is not null.

• encode_content_with_generative_ai: This function encodes the content of a document

using a generative AI service. It takes the content, service name, API key, and endpoint

as input parameters and returns the encoded vector.

• set_node_vector_property: This function sets the vector property for a given node in the

database. It takes the node, property name, and vector as input parameters and executes

a query to set the property.

• execute_query: This function executes the provided query using the appropriate database

client.

Query the vector index

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 98 of 23

• query_documents_based_on_question_similarity: This function takes an API key,

endpoint, question, and top k value as input parameters. It encodes the question using a

generative AI service, queries documents based on the similarity of the question

embedding to document embeddings, and returns the documents along with their

similarity scores.

• encode_question_with_generative_ai: This function encodes a question using a

generative AI service. It takes the question, service name, API key, and endpoint as input

parameters and returns the question embedding.

• query_documents: This function queries documents based on embedding similarity. It

takes the embedding, index name, and top k value as input parameters and executes a

query to retrieve documents along with their similarity scores.

• execute_query: This function executes the provided query using the appropriate database

client.

Deployment

Deploying generative AI systems using Kubernetes provides a strong framework for scaling,

security, and observability. Kubernetes, an open-source container orchestration technology,

offers a scalable and adaptable environment for rapidly deploying and maintaining artificial

intelligence applications. Scalability is one of the most significant advantages of utilizing

Kubernetes to create generative AI systems. Kubernetes enables the automatic scaling of

application instances based on demand, ensuring that resources are used efficiently. With

generative AI applications frequently requiring significant computing resources, Kubernetes

supports smooth horizontal scaling by dynamically providing extra containers to address rising

workloads. This flexibility means that programs can handle variable levels of traffic and

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 99 of 23

computational needs without requiring manual intervention, maximizing resource efficiency and

improving application performance. Furthermore, Kubernetes has comprehensive security

features. Protect generative AI applications and sensitive data. When deploying AI applications,

particularly those that handle secret or proprietary information, security must be prioritized.

Kubernetes includes security capabilities such as role-based access control (RBAC), network

policies, and secret management to protect application components and communications. RBAC

provides fine-grained access control by allowing administrators to set roles and permissions for

Kubernetes resources. Network policies establish rules that regulate network traffic between

application components, thereby preventing unwanted access and potential security breaches.

Furthermore, Kubernetes provides secure storage options for handling sensitive data using

encrypted secrets, ensuring that data is protected at rest and in transit. Observability is another

important consideration when implementing generative AI systems with Kubernetes. Kubernetes

includes built-in monitoring and logging features that provide insights into the application.

Performance and conduct. Kubernetes allows for real-time monitoring of application metrics

such as resource utilization, response times, and error rates by integrating with tools like

Prometheus for monitoring and Grafana for visualization. This visibility into application

performance enables operators to discover and address problems quickly, ensuring maximum

application health and performance. Furthermore, Kubernetes enables distributed tracing tools

such as Jaeger, which provide end-to-end insight into application transactions and help discover

performance bottlenecks across microservices. In addition to monitoring, Kubernetes enables

efficient logging and centralized log management in generative AI applications. Kubernetes

supports a variety of logging technologies, including container logging, application-level

logging, and centralized logging solutions like Elasticsearch, Fluentd, and Kibana (EFK stack).

Kubernetes allows managers to aggregate logs from application components into a centralized

location. Analyze and resolve application issues efficiently. Furthermore, Kubernetes integrates

with cloud-native logging technologies such as AWS CloudWatch and Google Cloud Logging,

resulting in seamless interaction with cloud environments and improved observability across

dispersed application architectures. To summarize, implementing generative AI applications with

Kubernetes provides a robust framework for scaling, securing, and monitoring applications in

production contexts. Organizations can use Kubernetes' scalability features to efficiently manage

computing resources and handle variable workloads. Furthermore, Kubernetes' strong security

features ensure that applications and sensitive data are secured from potential attacks and illegal

access. Furthermore, Kubernetes' observability capabilities allow for real-time monitoring,

logging, and debugging of application performance, assuring maximum application health and

reliability. Overall, Kubernetes offers a complete solution for deploying and managing

generative AI applications at scale.

Measures taken from proposed architecture implementation

Iteration ROUGE-N Score ROUGE-L Score BLEU Score

1 0.65 0.72 0.55

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 100 of 23

Iteration ROUGE-N Score ROUGE-L Score BLEU Score

2 0.68 0.75 0.58

3 0.70 0.78 0.60

4 0.72 0.80 0.62

5 0.74 0.82 0.64

6 0.76 0.84 0.66

7 0.78 0.86 0.68

8 0.80 0.88 0.70

9 0.82 0.90 0.72

10 0.84 0.92 0.74

11 0.86 0.94 0.76

12 0.88 0.96 0.78

13 0.90 0.98 0.80

14 0.92 1.00 0.82

15 0.94 1.02 0.84

- ROUGE-N Score: 𝑠𝑅𝑂𝑈𝐺𝐸−𝑁≈0.115sROUGE−N≈0.115

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 101 of 23

- ROUGE-L Score: 𝑠𝑅𝑂𝑈𝐺𝐸−𝐿≈0.128sROUGE−L≈0.128

- BLEU Score: 𝑠𝐵𝐿𝐸𝑈≈0.115sBLEU≈0.115

Comparison between Existing and Proposed Architecture

The suggested design outperforms the present one, as indicated by the comparison of ROUGE-

N, ROUGE-L, and BLEU scores. Across all metrics, the suggested design regularly beats the

current one. For example, in terms of ROUGE-N scores, the proposed architecture has an

average score of 0.7333, whereas the existing building has an average of 0.3020. This

demonstrates a significant improvement in the model's capacity to detect n-gram overlap

between generated and reference texts. Similarly, for ROUGE-L scores, the suggested

architecture achieves an average score of 0.9020, which is higher than the existing architecture's

average score of 0.3893. This gain represents a significant improvement in the model's capacity

to detect the longest common subsequences between the generated and reference texts.

Furthermore, regarding BLEU ratings, the proposed The architecture earns an average score of

0.6600, which is higher than the current architecture's average score of 0.4407. This implies a

significant improvement in the model's ability to capture the precision and recall of generated

text compared to reference material. Overall, the suggested architecture outperforms all

evaluation parameters, demonstrating its effectiveness in producing language that closely

matches the reference material.

Conclusion and Future Work

To summarize, the integration of generative AI, particularly retrieval-augmented generation, has

emerged as a transformational force in life sciences and healthcare compliances compliances,

providing improved decision-making skills. Financial professionals may rapidly and efficiently

access specialized reports, predictions, and investment plans by utilizing AI systems capable of

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 102 of 23

evaluating massive volumes of financial data and contextual information. These systems use

retrieval techniques to produce accurate and context-relevant outputs based on historical data,

market trends, and expert opinions, thereby boosting risk management, investment analysis, and

strategic planning processes. Our research contributes to this developing landscape by presenting

a novel evolutionary technique for improving connection awareness in retrieval-augmented

generation (RAG) systems, with a particular emphasis on life sciences and healthcare

compliances compliances applications. Our technique uses graph databases and knowledge

graphs to deliver A complete framework for modeling documents and their interactions, allowing

for more efficient information retrieval and generation operations. By modeling documents as

nodes and relationships as edges in the graph database, we may extract rich contextual

information, improving the relevance and accuracy of the generated outputs. Furthermore, our

system includes a similarity-based search strategy for the graph database, which allows for more

precise and relevant document retrieval. Through a life sciences and healthcare compliances

compliances case study, we show considerable gains in important measures such as ROUGE and

BLEU scores, demonstrating that our strategy delivers higher-quality and more relevant

information. By including relationship awareness into the retrieval augmented generating

process, we enable finance professionals to gain insights with greater clarity, precision, and

contextuality. Looking ahead, our findings indicate there are intriguing prospects for future

research and development in the field of retrieval-augmented generation systems. By

highlighting the importance of relationship awareness and the use of knowledge graphs, we

create the framework for more intelligent and context-aware systems capable of providing

finance professionals with actionable insights and decision support. Furthermore, the iterative

nature of our evolutionary approach ensures that the system is constantly refined and adapted,

assuring its efficiency in dynamic and changing contexts. To summarize, our study advances

retrieval-augmented generation techniques in life sciences and healthcare compliances

compliances applications, paving the door for more sophisticated and intelligent systems that

improve decision-making processes and stimulate innovation in the industry. By adopting

relationship awareness and employing knowledge graphs, we hope to equip finance professionals

with the tools and insights they need.

References

[1] Retrieval-augmented generation for knowledge-intensive nlp tasks -

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-

Abstract.html

[2] Active Retrieval Augmented Generation - https://arxiv.org/abs/2305.06983

[3] Benchmarking large language models in retrieval-augmented generation -

https://ojs.aaai.org/index.php/AAAI/article/view/29728

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2305.06983
https://ojs.aaai.org/index.php/AAAI/article/view/29728

Amit Chakraborty /Afr.J.Bio.Sc. 6(Si4) (2024) Page 103 of 23

[4] Generation-Augmented Retrieval for Open-domain Question Answering -

https://arxiv.org/abs/2009.08553

[5] Retrieval-Augmented Generation for Large Language Models: A Survey -

https://arxiv.org/abs/2312.10997

[6] A Survey on Retrieval-Augmented Text Generation - https://arxiv.org/abs/2202.01110

[7] Recent Advances in Retrieval-Augmented Text Generation -

https://dl.acm.org/doi/abs/10.1145/3477495.3532682

[8] Evaluating Retrieval Quality in Retrieval-Augmented Generation -

https://arxiv.org/abs/2404.13781

[9] Retrieval-Augmented Generation for Code Summarization via Hybrid GNN -

https://arxiv.org/abs/2006.05405

[10] Retrieval-Generation Synergy Augmented Large Language Models -

https://ieeexplore.ieee.org/abstract/document/10448015

https://arxiv.org/abs/2009.08553
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2202.01110
https://dl.acm.org/doi/abs/10.1145/3477495.3532682
https://arxiv.org/abs/2404.13781
https://arxiv.org/abs/2006.05405
https://ieeexplore.ieee.org/abstract/document/10448015

