
Ashish/Afr.J.Bio.Sc.6(Si4)(2024) ISSN: 2663-2187

https://doi.org/10.48047/AFJBS.6.Si4.2024.344-351

Enhancing Thermal Management in Real-Time Systems; Challenges and

Solutions

Ashish

Assistant Professor,

Departmemt of Mechanical Engineering,

University Institute of Engineering and Technology,

Maharshi Dayanand University,

Rohtak

dallaashish@gmail.com

Article Info

Volume 6, Issue Si4,2024
Received: 15 May 2024

Accepted: 05 June 2024

doi:10.48047/AFJBS.6.Si4.2024.344-351

Abstract

When dependability and exact timing are paramount, real-time

operating systems (RTOS) are an absolute must. System speed, latency

mitigation, and predictability are all greatly improved with well-

managed RTOS memory. In this work, we look at the main problems

with real-time operating systems' memory management, such as

fragmentation, insufficient memory resources, and time limitations. To

determine how different memory management strategies affect overall

system performance, we investigate methods including dynamic

allocation, memory partitioning, and garbage collection. We also

provide novel optimisation methodologies and solutions to these

problems, such as adaptive algorithms, memory pooling, and hardware-

assisted management. Various techniques' benefits, drawbacks, and

performance consequences are shown by this study's thorough

examination and comparison of current methodologies. Our research

shows that better memory management has the ability to greatly

enhance RTOS performance, leading to more efficient and reliable real-

time systems.

Keywords – Memory Management, System Performance, Latency

Reduction, Fragmentation, Dynamic Allocation

Introduction

Operating systems that are tailored to handle applications that need constant and accurate

timing are known as Real-Time Operating Systems (RTOS). Wherever real-time performance

is vital, they play a critical role, such as in aircraft, automobile systems, healthcare, industrial

control systems, and communications. When compared to general-purpose operating systems,

real-time operating systems (RTOSs) provide more predictability and dependability by

ensuring that activities are done within their time limitations. Since memory management in

RTOS has an effect on system latency, predictability, and performance, it is crucial to these

ends.

Real-time operating systems (RTOS) are distinct from GPOS in several essential respects.

The goal of GPOS is to maximise throughput and user experience, while the goal of RTOS is

https://doi.org/10.48047/AFJBS.6.Si4.2024.344-351

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 345 of 8

to guarantee the timely completion of key activities. This calls for predictable, deterministic

behaviour in terms of when tasks are executed. Thus, RTOS memory management should be

built to minimise latency and guarantee consistent performance, which entails addressing

specific issues that are not often encountered in GPOS.

The need to strike a balance between efficiency, predictability, and resource limits makes

memory management in real-time operating systems quite difficult. Important obstacles

consist of:

Memory fragmentation is a major problem with real-time operating systems. Memory

fragmentation, in which available memory is fragmented into tiny, non-contiguous pieces,

may develop over time as a result of dynamic memory allocation and deallocation. System

failures or performance drops might result from allocation requests failing due to

fragmentation, even if there is enough total memory. Many embedded systems that run real-

time systems have restricted memory resources. Because these systems do not have the

resources for vast memory, memory efficiency is of the utmost importance. Highly efficient

memory allocation algorithms are required to make the most of the limited memory space.

Limited Time: RTOS must adhere to stringent time constraints. Allocation and deallocation

are two examples of memory management procedures that need to be executed within

predictable time boundaries to avoid missing task execution deadlines. The real-time

assurances offered by the RTOS might be compromised by unpredictable delays produced by

complicated memory management techniques. Many real-time operating systems (RTOS)

execute several processes in parallel, necessitating strong methods to manage memory access

by multiple processes at once. Data corruption and inconsistency may be prevented by using

synchronisation techniques, however this can add complexity and more work.

The difficulties of RTOS memory management have prompted the development of a number

of solutions. In terms of complexity, predictability, and efficiency, each method has its own

set of costs and benefits: During execution, processes may make memory requests and

releases via dynamic memory allocation. There is a trade-off between the flexibility that

dynamic allocation offers with the potential for fragmentation and unexpected allocation

periods. To address these challenges and provide better organised memory allocation,

strategies like slab allocators and buddy systems are often used. Memory Partitioning: Tasks

are assigned certain portions of memory based on their size. This method offers predictable

allocation times while reducing fragmentation. On the other hand, if the divisions aren't

appropriately sized for the activities they handle, it might result in memory inefficiency. The

reclamation of unused memory by automated garbage collection is one way that memory may

be better managed. Nevertheless, because to the complexity and unpredictability it adds, trash

collection is not ideal for demanding real-time systems. To get around these problems, there

are variations that spread out the collection task across time, such as incremental or real-time

trash collection.

Several novel approaches and optimisation techniques have been suggested by engineers and

academics to address the difficulties of RTOS memory management: Memory management

techniques that are adaptive change their actions on the fly in response to changes in system

load and memory consumption trends. These algorithms are designed to improve system

performance by balancing predictability and efficiency via adaptation to changing situations.

In memory pooling, tasks share a common pool of pre-allocated memory blocks of a

predetermined size. Both fragmentation and the timeframes it takes to allocate and deallocate

resources may be drastically reduced using this method. When it comes to systems that have

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 346 of 8

predictable memory consumption patterns, memory pooling really shines. Leveraging

hardware capabilities to aid memory management may improve efficiency and predictability;

this is known as hardware-assisted management. Some memory management activities may

be offloaded from the CPU using techniques like hardware-supported memory protection,

cache management, and direct memory access (DMA), which reduces overhead and improves

speed.

There are trade-offs and performance concerns associated with each optimisation approach

and method for managing memory. Consider the potential drawbacks of dynamic memory

allocation, such as fragmentation and uncertain allocation periods, despite its flexibility.

Memory partitioning, on the other hand, provides certainty at the cost of potentially wasteful

memory use. Memory pooling and adaptive algorithms may find a middle ground between

these two extremes; however, how well they work is application and system dependent.

Literature review

The execution of programmes in any kind of high-level programming generates tasks, and

one of the major operations in modern engineering is to perform these jobs. The focus is on

managing memory blocks, whether they are allocated or unallocated, with a shorter lifespan

than their parent tasks, jobs, or processes. Satisfying the requirements of time constraints in

real-time applications is very difficult. In dynamic memory management, predicting the

worst-case execution time (WCET) is essential for any real-time programme. The author of

the sentence is Boutekkouk (2019). In addition, if specific memory blocks have already been

allocated, finding the optimal location to allocate a new block becomes an NP-hard problem

(Chandy, D. A., 2019). If a memory management algorithm is unable to accomplish this,

fragmentation will occur, even though the total amount of available memory exceeds the

requested block size.

In a multiprocessor architecture, using dynamic memory management introduces additional

challenges, such as thread synchronisation and false sharing. Prabhu et al. (2021) explains

that this is due to the fact that different architectures have different requirements for real-time

applications.

The field of memory management has its own set of specialised words, defined by Wilson

and colleagues in 1995. Strategy, policy, and mechanism are some of the jargons that are

defined and discussed in the following text. Any algorithm for allocating memory makes use

of strategies, which are basic methodologies. Various programme setups are taken into

account, and a variety of relevant procedures for dynamically allocating memory blocks are

defined. For instance, "reducing lock contentions,""increasing data locality," etc., are

examples of objectives that match in importance to the strategy of an allocation method.

Policies can make all of these solutions a reality. One way to dynamically allocate memory

blocks is via a policy. To delete an allocated block or insert an unallocated block into

memory, it determines exactly where to do so. Some policies may specify things like "each

time discover the minimum block of memory which is large enough to fulfil the memory

request" as an example. Various methods make use of these chosen policies. There are many

policies available, including Best-Fit, Exact-Fit, First-Fit, Next-Fit, Good-Fit, and Worst-Fit.

A mechanism is only a means to an end—the implementation of policy. A variety of

algorithms and data structures make up this set. As an example, "use a singly linked-list and

find the location of unallocated memory block list from where the previous request was

fulfilled; the unallocated blocks are inserted at the end of the singly linked-list" would work.

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 347 of 8

Common methods for describing this process include Sequential Fit, Segregated Fit, Buddy

Systems, Indexed Fit, and Bitmapped Fit. Three authors (Venkataramani, Chan, and Mitra,

2019).

A dynamic memory management algorithm's acceptance and planning depend on your

familiarity with these terms and their meanings. For example, different policies might have

different impacts on a certain approach. An application designer is compelled to choose an

alternate policy within the same approach that can provide low fragmentation if a policy

produces better locality with large fragmentation. A wide range of techniques may be used to

implement any policy. In the event that one policy produces desirable results but is poorly

organised in its execution, designers have the option to use a different policy by choosing a

different mechanism. In theory, a strong allocation strategy should allow any dynamic

memory allocator to achieve minimal fragmentation. Choosing a memory block from a list of

available but unallocated blocks is the allocation policy. Two ways exist for this to be

achieved. In 2019, Zhou published a work.

For each memory block request, this allocation strategy will utilise one of the smaller

memory blocks created by dividing larger memory blocks into many larger ones. As a rule,

future requests for memory blocks will make use of the leftover blocks, which are known as

unallocated memory blocks. Presented by Shen, Z., Dharsee, K., and Criswell, J. in 2020.

When processes, programmes, or applications free up memory blocks, merging is employed.

When programmes free up memory, a virtual component known as the memory manager

checks to see whether any nearby memory blocks have been freed, unallocated, or released as

well. According to Bendaña and Mandelbaum (2021), releasing them causes the memory

blocks to merge into one larger block. A big memory block is preferable than two smaller

ones, hence this is necessary.

There are two broad categories into which the merging process falls. First and foremost, once

a block is freed, immediate merging attempts to combine the unallocated memory blocks

instantaneously. Immediate merging, on the other hand, is expensive as it merges each freed

memory block by frequently and continuously coalescing the nearby unallocated memory

blocks. A memory block that has been released is merely marked as "unallocated" or

"released" in secondary, postponed merging, rather than being combined. This memory

management approach keeps memory blocks of a certain size on an unallocated list and

reclaims them without merging or splitting, as most programmes often create memory blocks

of comparable size with a limited life span. This means that if an application needs a memory

block of the same size just after one is released, it can be easily accommodated with some

basic modification; this might be even better if a certain size of memory blocks is regularly

allocated and unallocated. However, the different merging technique's infinite reaction time

leads to fragmentation, which is a negative.

Objectives of the study

 To comprehensively identify and analyze the key challenges associated with memory

management in RTOS.

 To understand the impact of these challenges on system performance, reliability, and

predictability.

 To review and evaluate existing memory management techniques employed in RTOS.

Research methodology

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 348 of 8

Optimising memory management in Real-Time Operating Systems (RTOS) is the focus of

this work, which employs a multi-phase technique to thoroughly meet its goals. First, we will

scour academic journals, technical studies, and industry publications for any information that

might shed light on the present state of memory management in RTOS, as well as any

problems or solutions that may already exist. After that, we will do a theoretical study to

assess the merits and shortcomings of current memory management approaches such garbage

collection, dynamic allocation, and partitioning. In the empirical assessment phase, we will

measure performance indicators like latency, throughput, and memory utilisation, and we will

benchmark these strategies under different circumstances using tools like QEMU or RTEMS.

We will investigate and test out novel approaches, such as adaptive algorithms and hardware-

assisted techniques, and then compare their efficacy to more conventional approaches. To

validate the usefulness of these solutions in realistic applications, they will be tested and

implemented using real-world case studies from areas including aerospace and automotive

systems.

Discussion

Fig. 1. Play models used RTOS.

Several factors pertaining to alternative programmes, usability, availability, interface, and

portability are examined in the bar chart. The blue bars reflect the various criteria, and the

percentages show how well they were rated. According to the results, alternative programmes

were rated the lowest at 18.75%, suggesting that there may be some restrictions or difficulties

in this domain. With scores of 50% for usability and 56.25% for availability, it's clear that

there's space for improvement in making the systems more accessible and easy to use. The

interface's improved user experience was reflected in its higher rating of 62.50%, which is

still below ideal. With scores of 81.25% and 93.75%, respectively, for portability and

interface, we can see that these are effectively handled criteria and that the systems work as

intended. Although there are some excellent points, such as the UI and portability, our

research shows that there are plenty of room to improve the system's overall performance by

making alternative programmes more user-friendly and increasing their availability.

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 349 of 8

Fig. 2. RTOS used in other application

Several factors are assessed in the bar chart, such as clustering and performance, usability,

security, and alternative programmes. The blue bars reflect the various criteria, and the

percentages show how well they were rated. Among the categories that may need some work,

"Alternate Programmes" came in last with a grade of 18.75%, according to the data. Values

of 36% and 45% for security ratings are low, suggesting possible weaknesses and the need

for improved protective measures. With a score of 56%, usability indicates a passable but

room for improvement user experience. The greatest grades were given to clustering and

performance, with 72% and 89% respectively. These aspects demonstrate excellent efficiency

and performance when it comes to handling workloads and guaranteeing good operational

performance. In order to build a balanced and successful system, this research highlights the

need to strengthen security measures and create more resilient alternative programmes. It also

emphasises the need of preserving and enhancing the high standards in clustering and overall

performance.

Conclusion

This research delves deeply into the topic of memory management in RTOS, illuminating the

obstacles that affect system performance and dependability, including fragmentation,

restricted memory resources, real-time limitations, and concurrency concerns. The paper

demonstrates the advantages and disadvantages of current methods by analysing them,

exposing important trade-offs. These methods include dynamic memory allocation, memory

partitioning, and garbage collection. Exploring novel approaches, such as memory pooling,

adaptive algorithms, and hardware-assisted management strategies, yielded significant gains

in efficiency and predictability. To improve RTOS performance as a whole, the results

highlight the need of taking a balanced approach when choosing and optimising memory

management algorithms. The research provides helpful information and suggestions for

creating better real-time systems by tackling these problems and using the suggested

solutions.

References

 Boutekkouk, F. (2019). Embedded systems codesign under artificial intelligence

perspective: a review. International Journal of Ad Hoc and Ubiquitous Computing,

32(4), 257-269.

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 350 of 8

 Chandy, D. A. (2019). Smart resource usage prediction using cloud computing for

massive data processing systems. Journal of Information Technology and Digital

World, 1(2), 108-118.

 Nestor, T., De Dieu, N. J., Jacques, K., Yves, E. J., Iliyasu, A. M., & Abd El-Latif, A.

A. (2019). A multidimensional hyperjerk oscillator: Dynamics analysis, analogue and

embedded systems implementation, and its application as a cryptosystem. Sensors,

20(1), 83.

 Sakr, F., Bellotti, F., Berta, R., & De Gloria, A. (2020). Machine learning on

mainstream microcontrollers. Sensors, 20(9), 2638.

 Crocioni, G., Pau, D., Delorme, J. M., &Gruosso, G. (2020). Li-ion batteries

parameter estimation with tiny neural networks embedded on intelligent IoT

microcontrollers. IEEE Access, 8, 122135- 122146.

 Reverter, F., &Gasulla, M. (2019, May). Experimental characterization of the energy

consumption of ADC embedded into microcontrollers operating in low power. In

2019 IEEE International Instrumentation and Measurement Technology Conference

(I2MTC) (pp. 1-5). IEEE.

 Koulamas, C., &Lazarescu, M. T. (2018). Real-time embedded systems: Present and

future. Electronics, 7(9), 205.

 Bruneo, D., Distefano, S., Giacobbe, M., Minnolo, A. L., Longo, F., Merlino, G., &

Tapas, N. (2019). An iot service ecosystem for smart cities: The# smartme project.

Internet of Things, 5, 12- 33.

 Kim, H., Choi, H., Kang, H., An, J., Yeom, S., & Hong, T. (2021). A systematic

review of the smart energy conservation system: From smart homes to sustainable

smart cities. Renewable and sustainable energy reviews, 140, 110755.

 Laaki, H., Miche, Y., & Tammi, K. (2019). Prototyping a digital twin for real time

remote control over mobile networks: Application of remote surgery. Ieee Access, 7,

20325-20336.

 Park, Y., Cho, K., & Bahn, H. (2019, December). Challenges and implications of

memory management systems under fast SCM storage. In 2019 6th International

Conference on Information Science and Control Engineering (ICISCE) (pp. 190-194).

IEEE.

 Bukkapatnam, K., Rekha, C. K., Kumaraswamy, E., &Vatti, R. (2020, December).

Smart memory management (SaMM) for embedded systems without MMU. In IOP

Conference Series: Materials Science and Engineering (Vol. 981, No. 3, p. 032010).

IOP Publishing.

 Prabhu, V. S., Singh, M., Ray, I., Ray, I., & Ghosh, S. (2021, May). Detecting Secure

Memory Deallocation Violations with CBMC. In Proceedings of the 8th ACM on

Cyber-Physical System Security Workshop (pp. 27-38).

 Bendaña, J., & Mandelbaum, E. (2021). The fragmentation of belief.

 Oladunjoye, J. A., Timothy, M., James, O., & Raphael, B. A. (2021). Performance

study of the memory utilization of an improved pattern matching algorithm using bit-

parallelism. Journal of Computer Science and Engineering (JCSE), 3(1), 49-59.

 Wittig, R., Hasler, M., Matus, E., &Fettweis, G. (2019, March). Queue based memory

management unit for heterogeneous MPSoCs. In 2019 Design, Automation & Test in

Europe Conference & Exhibition (DATE) (pp. 1297-1300). IEEE.

 Zhou, Z. (2019, June). Research on Embedded Operating System Manage Function to

Improve Memory Consumption Issues. In 2019 International Conference on Wireless

Communication, Network and Multimedia Engineering (WCNME 2019) (pp. 133-

135). Atlantis Press.

Ashish/Afr.J.Bio.Sc.6(Si4)(2024) Page 351 of 8

 Shen, Z., Dharsee, K., & Criswell, J. (2020, September). Fast execute-only memory

for embedded systems. In 2020 IEEE Secure Development (SecDev) (pp. 7-14).

IEEE.

 Ma, Z., & Zhong, L. (2020, February). Bringing Segmented Stacks to Embedded

Systems. In Proceedings of the 24th International Workshop on Mobile Computing

Systems and Applications (pp. 117-123).

 Venkataramani, V., Chan, M. C., & Mitra, T. (2019). Scratchpad-memory

management for multi- threaded applications on many-core architectures. ACM

Transactions on Embedded Computing Systems (TECS), 18(1), 1-28.

 Walls, R. J., Brown, N. F., Le Baron, T., Shue, C. A., Okhravi, H., & Ward, B. C.

(2019). Control-flow integrity for real-time embedded systems. In 31st Euromicro

Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-

ZentrumfuerInformatik.

