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ABSTRACT 

Comprehending the intricate mechanisms at the core of heart failure, 

a widespread and intricate cardiovascular ailment, is imperative for 

the advancement of therapeutic approaches. Stress-induced 

cytokines have emerged as fundamental contributors to the 

pathophysiology of heart failure. This review delves into the existing 

knowledge base, underscoring the central role played by stress-

induced cytokines in the evolution of heart failure. Both empirical 

evidence and clinical studies underscore the substantial influence of 

these cytokines on adverse cardiac remodeling, dysfunction and 

fibrosis. Insights into the molecular pathways and signaling cascades 

activated by stress-induced cytokines furnish valuable information 

about their participation in myocardial injury and the progression of 

heart failure. Moreover, the abstract explores potential therapeutic 

interventions targeting stress-induced cytokines, aiming to alleviate 

cardiac damage and enhance heart failure outcomes. A thorough 

examination of this subject contributes to ongoing endeavors in 

unraveling the intricacies of heart failure, laying the foundation for 

the creation of focused and effective therapeutic strategies. 
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INTRODUCTION 

 

Heart failure (HF) represents a significant global public health challenge, affecting more than 23 million 

individuals [1]. When it comes to survival rates, Paulus and Tschope estimated that after an HF diagnosis, the 

prognosis is extremely poor (at 50% and 10% at 5 and 10 years, respectively), higher than those reported for a 

number of other cancer types [2]. Batlle et al., proved that despite advancements in its treatment, addressing HF 

still involves substantial challenges. Approximately four decades ago, HF was characterized as a "neuroendocrine 

disease" [3]. Heart failure, according to Pfeffer et al., is defined as the incapacity of the heart to effectively pump 

blood to meet the needs of various tissues, or as a result of having to deal with elevated filling pressures [4, 5]. 

According to Iaccarino et al., the utilization of ejection fraction as a widely adopted measure of 

systolic function allows the classification of individuals with heart failure into two categories [6]. People with 

reduced ejection fraction (HFrEF) usually have compromised systolic function. On the other hand, heart failure 

with preserved ejection fraction (HFpEF) is used to describe individuals who manifest heart failure symptoms 

without notable decreases in ejection fraction. In HFpEF, disturbances in diastolic function primarily contribute 

to heightened filling pressures. Epidemiological studies suggest that HFpEF constitutes nearly fifty percent of all 

recently reported cases of heart failure [6]. 

Heart failure, as a clinical syndrome, can originate from diverse pathophysiological alterations, 

myocardial infarction, ischemia, encompassing metabolic dysregulation, pressure or volume overload, genetic 

disturbances in sarcomeric protein function and responses to viral infections [7]. Dick and Epelman noted that 

inflammatory signaling cascades are activated at both the local and systemic levels, corresponding with the onset 

of heart failure, regardless of the specific underlying etiology [8]. 

Trachtenberg and Hare examined the role of inflammation in the initial stage of heart failure in 

individuals with inflammatory cardiomyopathies or myocarditis [9]. Moreover, Wilson and collaborators 

illustrated that acute stress-induced cardiomyopathy is marked by cytokine-mediated inflammation, as detailed 

by Scally and colleagues [10, 11]. This complex illness has been identified as an occasional factor contributing 

to cardiac injury in patients with coronavirus disease 2019 (COVID-19) [12, 13]. 

This review delves into potential therapeutic targets for heart failure, with a specific focus on extensively 

studied chemokines and pro-inflammatory cytokines. The research examines conventional inflammatory 

cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF)-α and the CC chemokine CCL2/monocyte 

chemoattractant protein (MCP), along with IL-6. The discourse provides a summary of the cellular effects of 

these agents in the context of a failing heart and explores their potential contributions to dysfunction and the 

progression of heart failure. This review explores the benefits and challenges of targeting cytokines and 

chemokines in heart failure [14,15,16]. Kurrelmeyer et al., conducted an investigation, revealing that myocardial 

injury triggers the upregulation of various members in the cytokine and chemokine families. This heightened 

expression holds the potential to provide crucial protective benefits to cardiomyocytes [17] and might 
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simultaneously activate reparative programs [18]. 

METHODS 

 

Identify pertinent databases for conducting a literature search, encompassing platforms such as PubMed 

and Google Scholar. Ensure the inclusion of a broad spectrum of both experimental and clinical studies related 

to stress-induced cytokines in heart failure. Obtain full texts of selected articles for a detailed assessment. Extract 

and summarize data on study design, methodologies, and key findings, focusing on stress- induced cytokines and 

their implications in heart failure. 

 

INFLAMMATORY CYTOKINES AND HEART FAILURE 

 

Levine et al., proposed that a substantial amount of data from clinical and experimental research 

emphasizes the important role that inflammatory cytokines and chemokines play in the development of 

unfavourable cardiac remodelling and myocardial dysfunction [19]. Sanders-van et al. found elevated pro- 

inflammatory cytokines in the blood of people with heart failure, including HFrEF and HFpEF subgroups [20]. 

Abernethy et al., presented evidence suggesting an elevation in cytokine levels among patients experiencing acute 

decompensation [21], and these levels seem to have a connection with clinical outcomes [22]. The idea that 

myocardial remodelling and dysfunction can be triggered by the activation of cytokines and chemokines is 

supported by multiple lines of evidence, regardless of the underlying cause of heart failure. At first, pro- 

inflammatory cytokines show negative inotropic effects [23]. Additionally, these cytokines might contribute to 

cardiomyocyte apoptosis [24]. 
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Table 1: Role of cytokines in heart failure 

 

 

TNF-α 

 

Considerable investigation has centered around TNF-α, a versatile cytokine acknowledged as a pivotal 

inflammatory mediator in heart failure [19]. The significant increase in TNF-α levels circulating among HFrEF 
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patients in the early 1990s prompted in-depth experimental inquiries into its potential consequences for 

thefailing heart. Kapadia et al., proposed a persistent elevation in TNF-α expression within the myocardium, 

evident in both experimental models of heart failure [51, 52] and individuals with cardiomyopathic conditions 

[53]. Different cell types, including cardiomyocytes [25], macrophages [54], vascular cells and mast cells [55], 

play a role in the heightened TNF-α expression observed in hearts experiencing damage and failure. 

Dunlay et al., highlighted an association between elevated mortality rates in both HFrEF and HFpEF 

subgroups among individuals with human heart failure and increased levels of circulating TNF-α [56, 57, 58, 59]. 

Asgeri et al. found that removing TNF receptors in a non-reperfused myocardial infarction model was linked to 

larger infarct sizes, suggesting TNF-α's role in cellular protection signaling [60]. Papathanasiou et al. found that 

TNF-α protected against cardiac decline in a desmin-loss cardiomyopathy model by helping form an alternative 

cytoskeletal network. [61]. Lacerda et al., reported that TNF-α maintained mitochondrial respiratory function 

after anoxia/reoxygenation injury, likely through the modulation of reactive oxygen species (ROS) and 

sphingolipids [62]. 

 
Promotes hypertrophy, fibrosis 
and myocyte apoptosis, leading 
to impaired cardiac function. 

 

 

 

TNF-α 
Interferes with calcium 
handling and induces oxidative 
stress, contributing to 
contractile dysfunction. 

 
 
 

 
Contributes to adverse cardiac 
remodeling, a process characterized 
by structural and functional changes 
in the heart. 

 

 

 

Fig 1: Role of TNF-α in heart failure 

 

IL-1 

 

Dinarello's study highlighted that the IL-1 family comprises 10 receptors and 11 cytokines [63]. IL-18, 

IL-1α/IL-1β, and the IL-33/ST2 axis have been extensively studied in the cardiovascular system [63, 64, 65, 66]. 

Bujak and Frangogiannis highlighted that evidence suggests IL-1 family members are crucial in heart failure and 

systolic dysfunction [67,68]. Dewald et al., noted a persistent increase in IL-1 expression across diverse 

experimental models of heart failure, including situations like cardiac infarction [69], transgenic calcineurin 

overexpression [70], left ventricular hypertrophy [71, 72] and diabetic cardiomyopathy [73]. Furthermore, Francis 

et al., suggested that IL-1β has been found in those with cardiomyopathic diseases [74]. Suetomi et al., 

assessed the correlation between inflammasome activation and heart failure [75]. This complex molecular 
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structure, consisting of various components, which are involved in the caspase-1-mediated transformation of pro-

IL-1β into its active form. Kawakuchi et al., came to the conclusion that a variety of cell types, including immune 

cells, fibroblasts, vascular cells and cardiomyocytes, are involved in the synthesis and activation of IL- 1 in hearts 

that are suffering damage and failure [76, 77]. 

 

 

 

 

Fig 2: IL-1's role in heart failure 

IL-6 

 

IL-6 serves as the prototype within the gp130 cytokine family, which comprises several other cytokines 

associated with the progression of cardiovascular diseases [78]. Rose-John studied that notable members in this 

family encompass IL-11cardiotrophin-1, oncostatin-M and leukemia inhibitory factor (LIF). These cytokines 

transmit signals through the common signaling receptor subunit, gp130 [79], resulting in the activation of Janus 

kinases and subsequent induction of STAT3 phosphorylation. Baumgarten et al., observed a sustained rise in IL-

6 expression in models of heart failure, irrespective of the root cause. This heightened expression is apparent 

across diverse cell types, including infiltrating mononuclear cells, cardiomyocytes and fibroblasts [80]. Omiya et 

al. proposed using RNAse regnase-1 to break down IL-6 mRNA and reduce its pro- inflammatory effects in 

pressure-overloaded myocardium [81]. 
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Kubota et al. found that clinical studies suggest increased IL-6 expression in failing myocardial tissues 

compared to non-failing ones [82]. In contrast, some studies found no increase in IL-6 production in heart failure 

[83]. Rather, these investigations noted heightened levels of downstream components in the IL-6 signaling 

pathway, such as gp130 [84]. According to findings from Zhao et al., within the myocardium subjected to pressure 

overload, the genetic deficiency of IL6 was observed to improve cardiac function and reduce hypertrophy. These 

effects were connected with the removal of CaMKII-dependent actions on cardiomyocytes [85]. 

 

 

 

 

Fig 3: Role of IL-6 in heart failure 

 

CCL2 

 

As per the discoveries by Sokol and Luster, Chemokines, ranging in size from 8 to 12 kDa, are small 

cytokines characterized by chemotactic qualities. They play a crucial role in coordinating cell migration and 

spatial organization throughout developmental processes, maintaining homeostasis and influencing inflammatory 

responses [86]. Lafuse et al., have documented a consistent and significant increase in the expression of CCL2 

within experimental models designed to replicate cardiac remodelling, injury and heart failure [87]. In hearts 

afflicted by infarction or failure, CCL2 is detected in multiple cell types, including vascular smooth muscle cells, 

cardiomyocytes and endothelial cells [88] and mononuclear cells [89]. As per Chen and Frangogiannis, the 

increase in CCL2 levels might be linked to the activation of Toll-like receptor (TLR) signaling and neurohumoral 

cascades, or pathways influenced by pro-inflammatory cytokines [90,91]. Frangogiannis et al., have also reported 

that research involving human patients demonstrates an upregulation of CCL2 in failing hearts, with increased 

expression observed in myocardial specimens obtained from individuals with dilated [93], ischemic [92], or 

hypertrophic cardiomyopathy [94]. 

The findings of Hayashidani et al., suggest that CCL2 is involved in adverse dysfunction, 

remodelling and fibrosis in both non-infarctive and infarctive heart failure models. In myocardial infarction 

Inflammatory 
Response 

IL-6 Stimulation of Acute 
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Anti-inflammatory 
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models, the improvement of adverse remodelling was noted when CCL2 was eliminated, along with the 

application of anti-CCL2 gene therapy [95]. However, this improvement came with the drawback of delayed dead 

cardiomyocyte phagocytosis, leading to granulation tissue formation [19]. In a model simulating ischemic fibrotic 

cardiomyopathy, CCL2 contributed to fibrotic remodeling, macrophage recruitment, and systolic dysfunction 

[96, 97, 98, 99]. Moreover, within a left ventricular pressure overload model, the neutralization of CCL2 

alleviated diastolic dysfunction, leading to a reduction in fibrosis. Substantiating these experimental findings, 

clinical studies highlighted by Stumpf et al., associate elevated circulating CCL2 levels with more severe 

symptoms and worsened systolic dysfunction in patients experiencing heart failure with reduced ejection fraction 

(HFrEF) [100]. Moreover, Hohensinner et al., also conveyed that elevated circulating CCL2 levels in advanced 

heart failure patients were associated with higher mortality rates [101]. 

 

 

 

 

Fig 4: Role of CCL2 in heart failure 

CONCLUSION 

 

Stress-induced cytokines are crucial in heart failure, driving cardiac remodeling, dysfunction, and 

fibrosis. Both experimental evidence and clinical studies have shed light on the substantial impact of stress- 

induced cytokines, offering valuable insights into the molecular mechanisms and signaling pathways implicated 

in myocardial injury. 

 

As our comprehension deepens regarding the involvement of these cytokines in the intricate landscape 

of heart failure, a promising opportunity emerges for targeted therapeutic interventions. Strategies directed at 

mitigating the effects of stress-induced cytokines not only hold the potential to ameliorate cardiac damage but 

also to enhance overall heart failure outcomes. The exploration of effective therapeutic modalities 



     Sinha Mathew/Afr.J.Bio.Sc. 6(15) (2024)                                                                      Page 10171 to 16 

 
 

targeting these cytokines opens new avenues for personalized and precise treatments, advancing the 

management of heart failure. 

 

Looking ahead, continued research into the specific roles, regulation and interactions of stress-induced 

cytokines will be of utmost importance. This research will deepen our understanding of heart failure and guide 

new therapies. Ultimately, deciphering the complexities of stress-induced cytokines in heart failure lays the 

groundwork for transformative breakthroughs that have the potential to revolutionize the approach to treating this 

prevalent cardiovascular condition. 
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