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INTRODUCTION:

The concept of a fuzzy subset of a set was first presented by Zadeh [14] in 1965. Fuzzy sets are a
helpful mathematical structure that may be used to describe a group of objects whose boundaries
are not clearly defined. Since then, there have been many generalisations of this basic idea, including
intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets, etc. It has also become a
burgeoning field of study in other disciplines. The concept of bipolar valued fuzzy sets was
suggested by Lee [6]. Fuzzy sets that have their membership degree range expanded from [0, 1] to
[-1, 1] are called bipolar valued fuzzy sets. When elements in a bipolar valued fuzzy set have a
membership degree of 0, it signifies that they are not relevant to the corresponding property. When
an element has a membership degree of (0, 1] it means that they partially satisfy the property, and
when an element has a membership degree of [-1, 0), it means that they partially satisfy the implicit
counter property. Intuitionistic fuzzy sets and bipolar valued fuzzy sets have a similar appearance.
They are distinct from one another, [6, 7]. Azriel Rosenfeld introduced the fuzzy subgroup[4]. Bipolar
valued fuzzy subgroups of a group, as well as homomorphism and anti-homomorphism, are defined
by Anitha M. S. et al. [1, 2]. Subsequently, K. Murugalingam and K. Arjunan[8] talked about interval
valued fuzzy subsemirings of a semiring, while Yasodara.B and KE. Sathappan[12]
presented bipolar valued multi fuzzy subsemirings of a semiring. The many kinds of translations in
bipolar valued multifuzzy subnearrings of a nearing were defined by Muthukumaran, S. & B. Anandh
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[9]. The bipolar valued I-fuzzy subsemirings of a semiring were defined by Sunita Kuppayya Poojari
et al. [11]. Here the concept of translations in bipolar valued |-fuzzy subsemiring of a semiring are
given.

1.PRELIMINARIES.
Definition 1.1. [14] A fuzzy subset D of the set I is a function D : I" —[0, 1].

Definition 1.2. [14] An interval valued fuzzy subset D of the set I" is a function D:T
—D[O0, 1]. Here D[0, 1] denotes the family of all closed subintervals of [0, 1].
Definition 1.3. [6] The ordered structure T = {(3,T7(), X~ (3)):3 € W} is called a bipolar valued

fuzzy subset(BVFS) of w,where T*:w - [0,1] is a positive membership map and T :w - [-1,0] is a
negative membership map.

Example 1.4. Let I’ = {w, o, v} be a set. Then ¥ = {(w, 0.7, -0.6), (0, 0.4, -0.5), (v, 0.2, -0.3)} is a
bipolar valued fuzzy subset of T.

Definition 1.5. [11] The ordered structure ¥ = {(3,X7(3),T7(3)):3 € W} is called a bipolar valued
I-fuzzy subset or bipolar interval valued fuzzy subset (BVIFS) of w,where T*:w — D[0,1] is a positive
membership map and I":w - D[-1,0] is a negative membership map. Here DI[O, 1]
denotes the family of all closed subintervals of [0, 1] and D[—1,0] denotes the family of all closed
subintervals of [-1, 0].

Example 1.6. Let I" = {®, o, v} be a set. Then ¥ = {(w, [0.7, 0.8], [-0.6, -0.5]), (w, [0.4, 0.7], [-0.5,
-0.3]), (v, [0.2, 0.7], [-0.3, -0.1])} is a bipolar valued I-fuzzy subset of I".

Definition 1.7. [9] Let B = (P, B~) be BVIFS of the set N,. Then the following transformation are
defined as,

() 8 (PB) = (3(PH), 8(P7) ), where §(PB*)(e) = rmin {[¥, 2], B ()} and 3(B7)(e) = rmax {[-Y%, —%], B~ (o)},
for all p € N;.

(i) > (B) = ( }(P*), x(P7) ), where (PB)(o) = rmax {[¥%, Y], BT (0)} and x(P7)(e) = rmax {[—%, —¥],
B~ ()}, for all p € N;.

(iii) Qw,e(B) = ( D(w,g)($+)’ Q(m’,g)(g‘B_) ), wWhere Q(m,g)($+)(0) = rmin {w, P*(e)} and D(m,g)($_)(0) =
rmax {¢, B~ (0)}, for all o € R, w € D[0,1] and ¢ € D[-1,0].

(V) R0y B) = ( RaoB), ReoB7) ), where R o (BH)(e) =rmax {w, B*(0)} and R, (B)e) =
rmin {¢, B~ (o)}, for all p € R, w € D[0,1] and ¢ € D[-1,0].

V) B(m,0)(B) = ( S0)(BH), S50 (B7) ), Where S5 oy (B*)(0) = @P*(0) and Sy, (B7)(@) = —¢B~(0), for
all p e Ry, w € D[0,1] and ¢ € D[-1,0].

Definition 1.8. [11] ABVIFS M =(M*, M~) of a semi-ring S issaidto be abipolar valuedI —

fuzzy subsemi — ring of S (BVIFSSR) if I has the
following condition,

() M + w) = rmin{M* (y), M* (w)},

(i) M* (yw) = rmin{IN* (y), M* (w)},

(iii) M~y + w) < rmax{M (), M~ (w)},

(iv) M~ (yw) < rmax{M~ (), M~ (w)}, for all y,w € S.

Example 1.9. Let N = z; ={0,1,2} be a semi — ring with ®; and ®;. Then M is defined as M=
{(0,[0.072, 0.81], [-0.91,-0.081]), (1,[0.051,0.61], [~ 0.61, —0.051]), (2, [0.051,0.61], [-0.61, —0.051])} is a
BVIFSSR of N.

2. SOME THEOREMS.
Theorem 2.1. [11] If & = (&*, &) and W = (W*, W™) are two BVIFSSRs of the
semi — ring Sy, then their intersection & N W is also a BVIFSSR of S;.
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Theorem 2.2. If B, = ( BF, BI), B, =( B3I, B3), ... and B, = B}, B;,) are BVIFSSRSs of the semi —
ring S;, then their intersection B; N P, N...N B, is also a BVMFSNR of N;.

Proof. The Proof follows from the Theorem 2.1.

Theorem 2.3. IfB, = ( PBf, B, Bpy=( B, BW3), ... areBVIFSSRs ofthe semi —
ring S;, then their intersection P, N P, N... is also a BVIFSSR of S;.

Proof. The Proof follows from the Theorem 2.2.

Theorem 2.4. If B =( B*, B~) is a BVIFSSR of the semi — ring S;, then 3(B) = ¥BH),
%(P)) is a BVIFSSR of S;.

Proof. Let g,v be in S1. Then

9P (e+v) = rmin{[}2,)2], B* (o +v)}

> rmin{[}2,%2], rmin{B*(e), BT (v)}}

= rmin{rmin{[l2,)2], B* (o)}, rmin{[\2,2], BT (v)}}

= rmin{d(BP*) (o), 1(B*)(v)}, for all g, v in S1.

And 3(B)(ev) = rmin{[l2,}2], (B (ov)}

> rmin{[}2,%2], rmin{B*(e), BT (v)}}

= rmin{rmin{[}2,}2], B* ()}, rmin{[}2,)2], B* ()}

= rmin{d(B*) (o), 1(B*)(v)}, for all g, v in S1.

Also 3(B7)(e +v) = rmax{[-V2,~2], B~ (o + v)}

< rmax{[-}2,-2], rmax{P~(e¢), B~()}}

= rmax{rmax{[-}2,—2], B~ (o)}, rmax{[-V2,-V2], B~ (W)}

= rmax{3(P) (o), P )W)}, for all g, v in Si.

And §(B7)(ov) = rmax{[-}2,-Y2], B~ (ov)}}

< rmax{[-}2,-2], rmax{P~(e¢), B~()}}

= rmax{rmax{[-}2,—2], B~ (o)}, rmax{[-V2,-V2], B~ (W)}

= rmax{3(P) (o), (P )W)}, for all g, v in Si.

Hence §(B) is a BVIFSSR of Si.

Corollary 2.5. If B =(B*, B~) and W = W*, W~) are BVIFSSRs of the semi —ring S;, then (B N W) is
a BVIFSSR of S;.

Proof. From the Theorem 2.1 and 2.4, it is trivial.

Corollary 2.6. If B =(B*, B7) and W = ( W*, W~) are BVIFSSRs of the semi — rings S;and S,, then § PN
§ W is a BVIFSSR of S; N'S,.

Proof. From the Theorem 2.1 and 2.4, it is trivial.

Corollary 2.7. If  =(B*, B~) and W = ( W, W~) are BVIFSSRs of the semi — rings S;, then § PNy W is
a BVIFSSR of S;.

Proof. From the Corollary 2.6, it is trivial.

Theorem 2.8. If B, = (BF, B, By = (B, B3), ... , B = (B, Br) are BVIFSSRs of the semi —
rings Sy, S,, ..., S respectively, then § (B, NP, N ...N B,,,) is a BVIFSSR of the semi — ringS; NS, N ...N Spy,.
Proof. From the Theorem 2.2 and 2.4, the proof is trivial.

Corollary 2.9. If B, = (B, BD), By = (BL, B3), ... , B = (B, V) are BVIFSSRs of the semi —
rings S4, S,, ..., Sy, respectively, then § B; NG B, N ...NJ B,,, is @ BVIFSSR of the semi — ring S; NS, N ...N Sp,,.
Proof. From the Theorem 2.2 and 2.4, the proof is trivial.

Corollary 2.10. If B, = (B}, B, By = (BL, B3), ... , B = (B, B;y,) are BVIFSSRs of the semi —
ring Sy, then § (B, NP, N ...N B,,,) is a BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.4, the proof is trivial.

Corollary 2.11. If B; = (B, B), Vo= (BI, B3, ... , B = (B, B;,) are BVIFSSRSs of the semi —
ring S;,then § B; N B, N ...NJ P, is a BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.4, the proof is trivial.
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Theorem 2.12. If B =( B*, B~) is a BVIFSSR of the semi — ring S,, then X(P) = ( }(P1),
M(P)) is a BVIFSSR of S, .

Proof. Let g,v be in S1.Then,

x(PBH)(e+v) = rmax{[lz,Vz], B (o+v)}

> rmax{[2,}2], rmin{$* (o), B+ ()}}

= rmin{rmax{[\2,%2], B* (o)}, rmax{[\2,/2], BT (v)}}

= rmin{x(P) (o), x(PH) (W)}, for all g, v in S1.

And = (BH)(ov) = rmax{[}2,)2], (B (ov)}

> rmax{[l2,)2], rmin{B* (o), B*(v)}}

= rmin{rmax{[}2,%2], B* ()}, rmax{[’2,)2], B* ()}

= rmin{x(P) (o), x(PH) (W)}, for all g, v in S1.

Also x(PB7)(e + v) = rmin{[-12,-12], B~ (0 + v)}

< rmin{[-}2,-Y2], rmax{B~ (o), B~ (W)}}

= rmax{rmin{[-}2,-)2], B~ ()}, rmin{[-}2,-2], B~ ()}}

= rmax{=(B) (o), (B )W)}, for all g, v in S1.

And x(B7)(ev) = rmin{[-)2,-2], B~ (ov)}}

< rmin{[-Y2,-Y2], rmax{$B~(e), B~W)}}

= rmax{rmin{[-}2,-12], B~ (0)}, rmin{[-}2,—)2], B~ W)}}

= rmax{=(B) (o), (B )W)}, for all g, v in S1.

Hence x($P) is a BVIFSSR of Si.

Corollary 2.13. If B =( B*, B~) and W =( W+, W~) are BVIFSSRs of the semi — ring S;, then x(P N W)
is a BVIFSSR of S;.

Proof. From the Theorem 2.1 and 2.12, it is trivial.

Corollary 2.14. If B =( B, B~) and W =( W*, W~) are BVIFSSRs of the semi — rings S;and S,, then x
PN W is a BVIFSSR of S; N S,.

Proof. From the Theorem 2.1 and 2.12, it is trivial.

Corollary 2.15. If B =( PB*, PB~) and W =( W, W~) are BVIFSSRs of the semi — rings S;, then x P Nx
W is a BVIFSSR of S;.

Proof. From the Corollary 2.14, it is trivial.

Theorem 2.16. If B, = (BF, B, By = (BL, B3, ... , B, = (BL, Bo) are BVIFSSRs of the semi —
rings Sy, S,, ..., Sy, respectively, then ™ (B; NP, N ...N B,,,) is a BVIFSSR of the semi — ringS; NS, N...NSp,.
Proof. From the Theorem 2.2 and 2.12, the proof is trivial.

Corollary 2.17. If B, = (B, B), By = (BL, B3, ... , B, = (B, B;) are BVIFSSRs of the semi —
rings Sy, S,, ..., Sy, respectively, then > By Nt B, N ...Nx P, is a BVIFSSR of the semi —ringS; NS, N ...NS,,.
Proof. From the Theorem 2.2 and 2.12, the proof is trivial.

Corollary 2.18. If B, = (BF, B7), By = (BL, B, ... , By = (B, B;,) are BVIFSSRs of the semi —
ring S;,then > (B; N B, N ...N B,,) is a BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.12, the proof is trivial.

Corollary 2.19. If B, = (B, B, By = (BL, B3)y ... , B = (B}, By are BVIFSSRs of the semi —
ring S;,then > PB; N P, N ...Nx P, is a BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.12, the proof is trivial.

Theorem 2.20. If B =( B*, B~) is a BVIFSSR of the semi — ring S;, then Qw0 (PB) = (
Qw,e)BY), Q) (B7)) is @ BVIFSSR of S;, where @ € D[0,1] and ¢ € D[-1,0].

Proof. Let g,v be in S1, w € D[0,1] and ¢ € D[—1,0]. Then,

Q) (B (e+v) = rmin{w, B*(o+v)}

> rmin{w, rmin{P$* (o), B* ()}

= rmin{rmin{w, B* ()}, rmin{w, B* (W)}
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= rmMin{Q 4,6y (B (0), Qw,o)(BH )}, for all g, v in Si.

And Q4,6 (B (ev) = rmin{w, (B+)(ev)}

> rmin{w, rmin{B* (o), B* ()}

= rmin{rmin{w, B+ ()}, rmin{w, P* (W)}

= rmMin{Q(,¢)(B*)(0), Q) (BT (W)}, for all g, v in Si.

Also Qo) (B0 +v) = rmax{s, B~(o + v)}

< rmax{g, rmax{$~(e), B~ W)}}

= rmax{rmax{¢, B~ (o)}, rmaxi¢, BP~)}

= rmax{Q 4 ,(P7)(©), Qo) (B)@)}, for all g, v in S1.

And Qg (B (ev) = rmax{s, B~ (ov)}}

< rmax{g, rmax{$~(e), B~ W)}}

= rmax{rmax{¢, B~ (o)}, rmaxi¢, BP~)}

= rmax{Q g, (B7)(0), Q) (B}, for all o, v in S1.

Hence Qg (P) is a BVIFSSR of Si.

Corollary 2.21. If B =(PB*, P~) and W = ( W+, W~) are BVIFSSRs of the semi —ring S;, then Q4 (P N
M) is a BVIFSSR of S;.

Proof. From the Theorem 2.1 and 2.20, it is trivial.

Corollary 2.22. If B=( B*, B~) and W =( W', W) are BVIFSSRs of the semi — rings S;and S,, then
Qi) (B) N Q) (W) is @ BVIFSSR of S; NS,

Proof. From the Theorem 2.1 and 2.20, it is trivial.

Corollary 2.23. If B=( B, B7) and W =( W+, W) are BVIFSSRs of the semi — rings S;, then
Qew)(B) N Q) (W) is @ BVIFSSR of ;.

Proof. From the Corollary 2.22, it is trivial.

Theorem 2.24. If B, = (B, B, B = (BI, B3, ... , B, = (B, B;) are BVIFSSRs of the semi —
rings S;, Sy, ..., Sm respectively, then Qg (B, N B, N ...NPB,,,) is a BVIFSSR of the semi —ringS; NS, N ...N
Sm-

Proof. From the Theorem 2.2 and 2.20, the proof is trivial.

Corollary 2.25. If B; = (B, Bi), Vo= (BI, B3, ... , B = (B, B;) are BVIFSSRSs of the semi —
rings Sy, S,, ..., Sy, respectively, then Qg o) (PB1) N Qo) (B2) N . N Q) (Brn) Is @ BVIFSSR of the semi —
ring S; NS, N ..NSp,.

Proof. From the Theorem 2.2 and 2.20, the proof is trivial.

Corollary 2.26. If B; = (B, Bi), Vo= (BI, B3, ... , B = (B, B;) are BVIFSSRSs of the semi —
ring S;, then Qg o, (B N B, N ...N B,,) is @ BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.20, the proof is trivial.

Corollary 2.27. If B; = (B, Bi), Vo= (BI, B3, ... , B = (B, B;,) are BVIFSSRs of the semi —
ring S, then Q5,oy(B1) N Q) (B2) N .. N Q0 (Br) is @ BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.20, the proof is trivial.

Theorem 2.28 If B = ( P*, P~) is a BVIFSSR of the semi — ring S;, then Riw,)(B) = R (B,
R (B7)) is a BVIFSSR of S;, where @ € D[0,1] and ¢ € D[-1,0].

Proof. Let g,v be in S1,@ € D[0,1] and ¢ € D[—1,0]. Then,

R(w0)(B) (0 +v) = rmax{w, B*(o+v)}

> rmax{w, rmin{$PB* (o), B+ (W)}

= rmin{rmax{w, B* ()}, rmax{w, B+ W)}}

= rmin{R 5 (B (0), Rwo(BH@)}, for all o, v in S1.

And R, (B (ov) = rmax{m, (B+)(ev)}

> rmax{w, rmin{PB* (o), B+ (W)}

= rmin{rmax{w, B* (o)}, rmax{w, B* (W)}
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= rmin{R 5 (B (0), R(w,o)(BH @)}, for all g, v in Si.

Also R (B )(e +v) = rmin{g, B~ (o + v)}

< rmin{¢, rmax{B~ (o), B~ W)}

= rmax{rmin{g, $~(0)}, rmin{s, B~ ()}

= rmax{R ¢ (B)(0), R, (B)W)}, for all g, vin Si.

And R 5 (B (ev) = rmin{c, B~ (ov)}}

< rmin{g, rmax{$~(e), B~ W)}

= rmax{rmin{g, B~ ()}, rmin{s, B~ )}

= rmax{R (B (0), R, (B}, for all g, vin Si.

Hence R (P) is a BVIFSSR of Si.

Corollary 2.29. If p =( B*, B~) and W = ( W*, W~) are BVIFSSRs of the semi —ring S;, then R, (BN
IB) is a BVIFSSR of S;.

Proof. From the Theorem 2.1 and 2.28, it is trivial.

Corollary 2.30. If B=( B*, B~) and W =( W', W~) are BVIFSSRs of the semi — rings S;and S,, then
Ry (B) N Rz, (W) is a BVIFSSR of S; NS,

Proof. From the Theorem 2.1 and 2.28, it is trivial.

Corollary 2.31. If p = (P*, P~) and W = (W*, W~) are BVIFSSRs of the semi — rings S;, then R o (B) N
Rw,e) (W) is a BVIFSSR of S,.

Proof. From the Corollary 2.30, it is trivial.

Theorem 2.32. If B, = (B, B, BV = (BI, B3, ... , B, = (B, B;) are BVIFSSRs of the semi —
rings Sy, Sy, ..., Sy, respectively, then R (B NP, N ...N B,,) is a BVIFSSR of the semi —ringS; NS, N ...N
S

Proof. From the Theorem 2.1.11 and 3.1.36, the proof is trivial.

Corollary 2.33. If B; = (B, V), Vo= (BI, B, ... , B = (B, B;,) are BVIFSSRs of the semi —
rings S, S,, ..., Sy, respectively, then R o) (B1) N R0y (P2) N . N Ry (B) is @  BVIFSSR of the semi —
ring S; NS, N ..NSp,.

Proof. From the Theorem 2.2 and 2.28, the proof is trivial.

Corollary 2.34. If B; = (B, Bi), Vo= (BI, B3, ... , B = (B, B;) are BVIFSSRs of the semi —
ring S;, then R ) (B N B, N ...NPB,,) is a BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.28, the proof is trivial.

Corollary 2.35. If B; = (B, Bi), Vo= (BI, B3, ... , B = (B, B;) are BVIFSSRSs of the semi —
ring S, then R (5 ) (B1) N Rz,e)(B2) N ... N R(z,6)(Byr) is @ BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.28, the proof is trivial.

Theorem 2.36. If B =(P*, P~) is a BVIFSSR of the semi — ring S;, then CS(w,e)(B) = ( S,y (BT,
Sw,e(B7)) is a BVIFSSR of S;, where @ € D[0,1] and ¢ € D[-1,0].

Proof. Let g,v be in S1,@ € D[0,1] and ¢ € D[—1,0]. Then,

S B (e+v) = @ P (e+v)

> w rmin{P* (o), B* ()}

= rmin{@ $*(0), @ P*(v)}

= rmin{€ 4 ,(B)(0), S (BT}, for all g, v in Si.

And G(W,g)(;B-'-)(QU) =@ (P*)(ov)

> @ rmin{P* (o), P*(v)}

= rmin{@ $*(0), @ P*(v)}

= rmin{€ 4 ,(B)(0), S (BT}, for all g, v in Si.

Also S, (B0 +v) = (—¢) B (e +v)

< (=¢) rmax{P~(e), B~ ()}

= rmax{(—=¢)B~ (), (—c)B~ )}
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= rmax{S 4, (B7)(0), S(m,q)(BIW)}, for all g, vin Si.

And &4 o (B7)(ev) = (—¢) B~ (ov)

< (=¢) rmax{P~(e), P~ ()}

= rmax{(—=¢)B~ (), (—c)B~ W)}

= rMax{S 4 ¢ (B7)(0), S(w,e(P)W)}, for all o, v in Si.

Hence S (P) is a BVIFSSR of S.

Corollary 2.37. If p =(B*, B~) and W = ( W*, W) are BVIFSSRs of the semi — ring Sy, then S, (P N
IB) is a BVIFSSR of S;.

Proof. From the Theorem 2.1 and 2.36, it is trivial.

Corollary 2.38. If B=( B*, B~) and W =( W*, W~) are BVIFSSRs of the semi — rings S;and S,, then
S(m,e)(PB) N Sy (W) is a BVIFSSR of S; N S,.

Proof. From the Theorem 2.1 and 2.36, it is trivial.

Corollary 2.39. If p = (P*, P7) and W = ( W+, W~) are BVIFSSRs of the semi — rings S;, then S5 - (B) N
S(w,e) (W) is a BVIFSSR of ;.

Proof. From the Corollary 2.38, it is trivial.

Theorem 2.40. If B, = (B, B, B = (BI, B3, ... , B, = (B, B;) are BVIFSSRs of the semi —
rings S;, Sy, ..., Sm respectively, then €, o (B; N B, N ...NPB,,) is a BVIFSSR of the semi — ringS; NS, N ...N
Sm-

Proof. From the Theorem 2.2 and 2.36, the proof is trivial.

Corollary 2.41. If B, = (B, V1), Vo= (BI, B, ... , B = (B, B;,) are BVIFSSRs of the semi —
rings S, Sy, ..., Sy respectively, then G4 ) (B1) N S,y (B2) N ... N S5 )(B) IS a  BVIFSSR of the semi —
ring S; NS, N ..N Sp,.

Proof. From the Theorem 2.2 and 2.36, the proof is trivial.

Corollary 2.42. If B, = (B, V), Vo= (BI, B, ... , B = (B, B;,) are BVIFSSRs of the semi —
ring S, then &5 ¢y (B1 N B, N ...N PB,,) is a BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.36, the proof is trivial.

Corollary 2.43. If B; = (B, Bi), Vo= (BI, B, ... , B = (B, B;) are BVIFSSRs of the semi —
ring Sy, then &g,y (P1) N Sz, (B2) N ... N S(5,0)(Brn) is @ BVIFSSR of the semi — ring S;.

Proof. From the Theorem 2.2 and 2.36, the proof is trivial.

CONCLUSION

Properties of transformations of BVIFSSR of a semi-ring have been discussed. The above concepts
can be extended into bipolar interval valued multi fuzzy subsemi-ring of a semi-ring, bipolar interval
valued multi fuzzy subspace of a linear space and any other algebraic system.
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