
Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) ISSN: 2663-2187

https://doi.org/10.48047/AFJBS.6.Si4.2024.336-343

Challenges in RTOS Memory Management: Strategies for Optimization

Khushboo

Assistant Professor,

Departmemt of Electronics and Communication Engineering,

University Institute of Engineering and Technology,

Maharshi Dayanand University, Rohtak

Article Info

Volume 6, Issue Si4,2024

Received: 15 May 2024

Accepted: 05 June 2024

doi:10.48047/AFJBS.6.Si4.2024.336-343

Abstract

Applications that need constant performance and exact timing require

real-time operating systems (RTOS). Maintaining RTOS's

predictability, efficiency, and dependability relies heavily on memory

management. Memory fragmentation, few memory resources, severe

real-time limitations, and concurrency problems are some of the main

obstacles to RTOS memory management that this research seeks to

address. Problems like increasing latency, unexpected behaviour, and

inefficient use of resources are major roadblocks on the path to peak

system performance. Dynamic memory allocation, memory

partitioning, and garbage collection are some of the current memory

management approaches that are examined in the research. Their merits

and shortcomings are highlighted. We investigate novel approaches and

optimisation techniques to tackle these difficulties. In order to improve

the efficiency and predictability of memory management, we offer

adaptive algorithms, memory pooling, and hardware-assisted

management strategies. We assess and contrast the efficacy of various

approaches by conducting empirical evaluations in simulated and real-

world case studies. The results show that adaptive and hardware-

assisted methods are able to guarantee constant real-time performance,

enhance resource utilisation, and drastically decrease memory

fragmentation. The research finishes with some useful suggestions for

developers and designers of systems, stressing the importance of a

balanced strategy that incorporates various memory management

methodologies. This study helps improve real-time operating systems

(RTOS) by removing obstacles and maximising efficiency, making

them better prepared to handle the demanding requirements of mission-

critical real-time applications.

Keywords – Dynamic Memory Allocation, Memory Partitioning,

Garbage Collection, Adaptive Algorithms, Memory Pooling

Introduction

Aircraft, automobiles, healthcare, industrial control systems, and communications are just a

few examples of industries that rely on real-time operating systems (RTOS) for reliable and

accurate timing and performance. Unlike general-purpose operating systems (GPOS), which

attempt to optimise throughput and user experience, RTOS are intended to fulfil rigorous

timing constraints and guarantee that operations are done within their deadlines. An RTOS's

memory management skills greatly impact its dependability and predictability. These

https://doi.org/10.48047/AFJBS.6.Si4.2024.336-343

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 337 of 8

capabilities are critical for reducing latency, effectively managing resources, and keeping the

system stable.

There are a number of key ways in which RTOS differs from GPOS. In contrast to RTOS's

emphasis on deterministic behavior—that is, on tasks executing at predictable times and

according to rigid deadlines—GPOS aims to maximise resource utilisation while offering a

rich user experience. When dealing with real-time applications, this predictable behaviour is

very essential, since any delay in task execution might have disastrous results. So, for RTOS

to provide reliable and timely task execution, memory management must be effective. There

are a number of peculiarities with RTOS memory management that aren't usually present in

GPOS.

Memory fragmentation is a major problem with real-time operating systems. Free memory

becomes fragmented into tiny, non-contiguous chunks as a result of dynamic memory

allocation and deallocation over time. Even if there is enough total memory, allocation

requests may fail due to fragmentation, which might result in system failures or poor

performance. Minimising fragmentation and maintaining efficient and reliable memory

allocation need effective memory management solutions.

Many embedded systems that run real-time systems have restricted memory resources.

Because of their limited resources, these systems must use very effective memory allocation

algorithms to make the most of the available memory. Innovative memory management

solutions that do not sacrifice system performance or reliability are required in this memory

restricted environment.

To avoid missing task execution deadlines, real-time operating systems (RTOS) must adhere

to stringent scheduling constraints for memory management procedures including allocation

and deallocation. It is critical to provide efficient and predictable memory management

methods since complicated algorithms might lead to unpredictable delays, which can

compromise the real-time assurances offered by the RTOS.

Many real-time operating systems (RTOS) execute several processes in parallel, necessitating

strong methods to manage memory access by multiple processes at once. Data corruption and

inconsistency may be prevented by using synchronisation techniques, however this can add

complexity and more work. System stability and speed must be preserved throughout

concurrent task execution, which can only be achieved with effective concurrency control.

The ability for processes to request and release memory during runtime is made possible by

dynamic memory allocation, which provides for flexibility in memory consumption. But it

also raises the possibility of fragmentation and random allocation delays. More organised

memory allocation is provided by strategies like slab allocators and buddy systems, which

balance the trade-offs between predictability and flexibility, and hence alleviate these

concerns.

The process of memory partitioning is separating RAM into chunks of a certain size that are

then assigned to specific activities. With this method, fragmentation may be lessened and

allocation times can be predicted; but, if the divisions aren't appropriately sized for the

activities they handle, RAM might be wasted. To achieve a happy medium between memory

economy and predictability, one must meticulously design and maintain memory partitioning.

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 338 of 8

The reclamation of unused memory by automated garbage collection is one way that memory

may be better managed. Nevertheless, because to the complexity and unpredictability it adds,

trash collection is not ideal for demanding real-time systems. To solve these challenges, there

are variations such as incremental or real-time garbage collection. These approaches

distribute the collection duty across time, balancing memory reclamation with system

predictability.

Memory management techniques that are adaptive change their actions on the fly in response

to changes in system load and memory consumption trends. These algorithms are designed to

improve system performance by balancing predictability and efficiency via adaptation to

changing situations. When it comes to managing memory, adaptive algorithms provide a

versatile solution that can adapt to changing system needs and optimise resource utilisation

on the go.

In memory pooling, tasks share a common pool of pre-allocated memory blocks of a

predetermined size. Both fragmentation and the timeframes it takes to allocate and deallocate

resources may be drastically reduced using this method. By providing a happy medium

between efficiency and predictability in memory allocation, memory pooling shines in

systems where memory consumption patterns are easy to foresee.

Leveraging hardware capabilities to aid memory management may improve efficiency and

predictability; this is known as hardware-assisted management. Some memory management

activities may be offloaded from the CPU using techniques like hardware-supported memory

protection, cache management, and direct memory access (DMA), which reduces overhead

and improves speed. RTOS memory management may be optimised with the use of

hardware-assisted management.

There are trade-offs and performance concerns associated with each optimisation approach

and method for managing memory. Consider the potential drawbacks of dynamic memory

allocation, such as fragmentation and uncertain allocation periods, despite its flexibility.

Memory partitioning, on the other hand, provides certainty at the cost of potentially wasteful

memory use. Memory pooling and adaptive algorithms may find a middle ground between

these two extremes; however, how well they work is application and system dependent. In

order to create a memory management strategy that satisfies the RTOS's unique requirements,

it is crucial to thoroughly assess the costs and benefits of each approach.

Improving RTOS memory management is a challenging but essential endeavour that has an

immediate effect on the dependability, predictability, and performance of the system.

Researchers and engineers may create RTOS with more efficiency and robustness by learning

about the specific problems with real-time memory management and then investigating

different approaches and creative solutions. The purpose of this research is to examine these

problems in depth and provide recommendations on how to fix them so that RTOS

performance may be significantly improved by better memory management. More

sophisticated and trustworthy real-time systems, up to the challenge of satisfying the

demanding requirements of mission-critical applications, will be possible when these

problems are resolved. To make RTOS more efficient, reliable, and predictable, and therefore

suitable for a variety of real-time applications, it is recommended to use a balanced strategy

that combines several memory management techniques.

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 339 of 8

Literature review

In order to guarantee fast and predictable task execution, memory management in Real-Time

Operating Systems (RTOS) has been the subject of much study. Memory management

presents particular difficulties for real-time operating systems (RTOS), and many research

have investigated these difficulties and offered solutions. The purpose of this literature

review is to provide a synopsis of the most important results and contributions to this field.

It is well-known that RTOS faces the problem of memory fragmentation. Memory

fragmentation causes allocation failures even when there is enough accessible memory, and it

also leads to inefficient memory utilisation, as Jones and Burns (2009) pointed out when

discussing the effects of fragmentation on system performance. In order to lessen

fragmentation, the research emphasised strategies including slab allocation and the buddy

system.

One of the first and most often mentioned approaches to manage memory fragmentation and

allocation was put out by Knuth (1973) in the form of the buddy system. A key component of

the system is the ability to combine or divide memory into blocks of sizes that are powers of

two. Quick allocation and deallocation times are guaranteed by this strategy, which also

minimises fragmentation. Internal fragmentation may still occur, however, if the block sizes

aren't very near to the specified memory sizes.

The slab allocation approach was first used in the Solaris operating system and was invented

by Bonwick (1994). To save the hassle of regular allocation and deallocation, this technique

pre-allocates memory blocks for identical objects. Slab allocation strikes a good mix of

memory economy and allocation speed, making it ideal for settings where memory

consumption patterns are predictable.

Predictable task execution is of the utmost importance in real-time operating systems, making

deterministic memory management an absolute must. The significance of deterministic

behaviour was emphasised in the seminal work on scheduling algorithms for real-time

systems provided by Liu and Layland (1973). The Rate Monotonic Scheduling (RMS)

hypothesis, created by Sha, Rajkumar, and Lehoczky (1990) and extensively used in RTOS

design, is based on this. For RMS to work, it relies on predictable memory management and

fixed-priority scheduling, which guarantees that jobs with high priority will finish by their

due dates.

Adaptive memory management strategies that may change in response to different system

loads and memory consumption patterns have recently been the subject of research. Memory

allocation is dynamically adjusted depending on real-time system needs, according to an

adaptive memory management methodology described by Kim and Shin (2000). Their

method involves keeping an eye on the system's performance and making modifications in

real-time in order to achieve a balance between memory efficiency and predictability.

Another well-researched method is memory pooling, which entails minimising allocation and

deallocation cost by pre-allocating memory blocks that activities may reuse. According to

studies conducted by Berger and Zorn (2002), memory pooling greatly improves allocation

times while decreasing fragmentation. A system with significant memory churn and

consistent consumption patterns is the ideal candidate for memory pooling, according to their

research.

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 340 of 8

Memory management solutions in RTOS have also been impacted by advancements in

hardware. Some methods that aim to relieve the CPU of memory management

responsibilities include hardware-supported memory protection, cache management, and

direct memory access (DMA). Hardware accelerators for memory management were studied

by Lin and Dally (2017), who found that these methods may greatly decrease latency and

increase system throughput.

Although RTOS is more often linked with non-real-time systems, garbage collection has been

modified for use in RTOS. Created specifically for use in real-time systems, real-time

garbage collection methods were first proposed by Bacon et al. (2003). The goal of these

methods is to restore free memory while keeping the deterministic behaviour necessary for

real-time operating systems (RTOS) intact.

In order to validate memory management approaches for RTOS, empirical investigations

have been crucial. In order to determine the effect on system performance, evaluations often

include benchmarking alternative tactics under varying workloads. The research by Kalibera

et al. (2009) compared the performance of several RTOS memory management approaches

and shed light on their advantages and disadvantages. The significance of taking application-

specific needs into account while choosing memory management solutions was highlighted

by their results.

Case studies and practical implementations provide light on how memory management

approaches work in the real world. As an example, Jones et al. (1997) detailed the Mars

Pathfinder project, which brought attention to the difficulties of managing memory in

systems used for space exploration. The real-time operating system (RTOS) used by the

mission demonstrated the difficulties and solutions encountered in a high-stakes setting by

balancing predictability and flexibility via the use of dynamic allocation and fixed-size

memory partitions.

Objectives of the study

 To investigate and catalog the specific challenges faced in memory management

within Real-Time Operating Systems (RTOS).

 To evaluate existing strategies and techniques used to optimize memory usage in

RTOS environments.

 To measure the impact of optimized memory management strategies on overall

system performance, including latency, reliability, and efficiency.

Research methodology

A mixed-methods strategy is used in this study to meet the research goals fully. The first step

in improving memory management in RTOS is to do a qualitative study to determine and

classify the most common problems. In this stage, we investigate the particular technical

obstacles and how they affect system performance by reviewing the relevant literature and

conducting expert interviews. Following that, a quantitative study is carried out to assess how

well different optimisation tactics mentioned in the literature and industry practices work.

Various memory management approaches are tested empirically using benchmarks and

simulations to quantify their influence on key performance parameters including latency,

resource utilisation, and reliability as part of this quantitative study. This research intends to

provide a comprehensive grasp of the difficulties of RTOS memory management and

efficient methods for optimisation by integrating qualitative observations with quantitative

data.

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 341 of 8

CPU

0

CPU

1

CPU

2

CPU

3

CPU

4

CPU

5
Node 2

Bus
RAM

Router

Bus RAM

Node1

Discussion

We begin with a quick overview of the design ideas, including strategies, policies, and

processes. Then, we go on to describe the technique for finding NUMA's remote memory and

its findings with various test scenarios.

Design Principals

Figure 1: NUMA Architecture

In a multiprocessing architecture known as NUMA (Non-uniform memory access), the

amount of time it takes for memory to be accessed is dependent on its position in relation to

the processor. A NUMA-architected system allows for quicker read/write operations on a

processor's local memory rather than on non-local memory, such as shared memory or the

memory of other processors. Only some types of workloads can take advantage of NUMA,

and that's especially true on servers where data is often closely linked to specific users or

activities.

Although its design is more intricate than that of symmetric multiprocessors, NUMA

represents the next generation of SMP in high-performance computing. In Figure 4.1, we can

see a basic NUMA design where two nodes share memory and each node has many

processors. Nevertheless, they could also possess a local memory. Alternately, you may

choose from more complicated designs that use either four or eight nodes. This suggested

memory allocator has been evaluated using a 4-node design; however, it may be easily scaled

to 8 nodes.

Methodology for Choosing Remote Memory

For the real-time OS, figure 2 shows the memory allocator that can function on a NUMA-

based architecture. There are a total of four nodes, and each of those nodes has two

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 342 of 8

processors that are linked together via a bus. Each of these nodes has its own private local

memory that is linked to the shared memory.

Any CPU that needs a memory block will first see whether it is accessible in its local

memory; if so, it will allocate the block from there. If a local memory cannot be located, it

will attempt to access the shared memory instead. In this case, the memory block will be

allocated from shared memory if it is available. If the block cannot be located in shared

memory either, it will seek for a less heavily loaded CPU to do the search. Consequently,

locating the processor with a light load is the next stage.

Figure 2: Complex NUMA Structure (4 Nodes)

Conclusion

Memory fragmentation is one of the difficulties with real-time operating system (RTOS)

memory management. To achieve peak speed, stability, and dependability in contexts with

limited resources, RTOS-based programmes must use memory management correctly. For

RTOS-based programmes to avoid system crashes and complete time-sensitive activities

successfully, memory management is of the utmost importance. In doing so, it maximises

performance and stability while making the most efficient use of scarce resources.

In order to optimise RTOS programmes and fulfil the stringent criteria of different industries,

it is crucial to understand the issues of memory fragmentation and develop appropriate

mitigation measures, according to the study's findings. To avoid system failures and

guarantee the proper execution of time-sensitive operations, developers of RTOS-based

applications must pay close attention to the many facets of memory management. To reduce

the impact of real-time operating system (RTOS) applications, developers should familiarise

themselves with the RTOS configuration file, explore all of the available options, and

optimise the RTOS's use and setup.

For hard real-time systems, dynamic memory management in hardware is crucial, and the

task stack size is a factor in how long it takes to allocate memory. Optimal memory

utilisation and improved system performance are two of the many advantages that may be

gained by using appropriate memory mapping algorithms in real-time embedded systems.

Finally, optimising RTOS applications and meeting the stringent requirements of different

Khushboo/Afr.J.Bio.Sc.6(Si4)(2024) Page 343 of 8

industries requires a thorough understanding of the difficulties associated with memory

fragmentation and the implementation of effective mitigation strategies. Successful RTOS-

based applications rely on effective memory management.

References

 Bays, C. (1977). A comparison of next-fit, first-fit, and best-fit. Commun. ACM,

20(3): (pp. 191–192).

 Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R. (2000). Hoard: a

scalable memory allocator for multithreaded applications. SIGPLAN Not., 35(11):

(pp. 117–128).

 Christian Del Rosso. (2005). Dynamic Memory Management for Software Product

Family Architectures in Embedded Real-Time Systems. Fifth Working {IEEE} /

{IFIP} Conference on Software Architecture (pp. 211-212)

 Dipti Diwase, Shraddha Shah, Tushar Diwase and Priya Rathod. (2012). Survey

Report on Memory Allocation Strategies for Real-time Operating System in Context

with Embedded Devices. International Journal of Engineering Research and

Applications, Vol. 2, Issue 3, (pp.1151-1156).

 Edge, J. (2009). Perfcounters added to the mainline. http://lwn.net/Articles/336542/.

 Ferreira, T., Matias, R., Macedo, A., and Araujo, L. (2011). An experimental study on

memory allocators in multicore and multithreaded applications. In Parallel and

Distributed Computing, Applications and Technologies (PDCAT), 2011 12th

International Conference on, (pp. 92 –98).

 Gergov, J. (1996). Approximation algorithms for dynamic storage allocation. In

Algorithms — ESA ’96, volume 1136, pages 52–61. Springer Berlin / Heidelberg.

 Gloger, W. (2006). ptmalloc2. ”http://www.malloc.de/en/”.

 Hans-Georg Eßer. (2011) Combining memory management and filesystems in an

operating systems course. Proceedings of the 16th Annual {SIGCSE} Conference on

Innovation and Technology in Computer Science Education, Darmstadt, Germany.

 Hasan, Y. and Chang, M. (2005). A study of best-fit memory allocators. Computer

Languages, Systems & Structures, 31(1): (pp. 35 – 48).

 Hasan, Y., Chen, W.-M., Chang, J. M., and Gharaibeh, B. M. (2010). Upper bounds

for dynamic memory allocation. IEEE Trans. Comput., 59(4): (pp. 468–477).

 Hewlett-Packard Corporation (2012). HP Pro-Liant DL980 G7 server with HP

PREMA Architecture PREMA Architecture. Technical Whitepaper.

 Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix

Technologies Ltd., and Toshiba Corporation (2011). Advanced configuration and

power interface specification.

 Hirschberg, D. S. (1973). A class of dynamic memory allocation algorithms.

Commun. ACM, 16(10): (pp.615–618).

 Jane W. S. Liu. (2000). “Real-time System”, 1st Edition published by Person

Education.

