
Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288 ISSN: 2663-2187

https://doi.org/ 10.33472/AFJBS.6.9.2024.281-288

CODE SCENTS' EFFECTS ON VARIOUS PROJECT

VERSIONS
1Mr. Amandeep Singh Arora

1Associate Professor, Don Bosco Institute of Technology
2Dr. Shalu Tondon

2Associate Professor, Don Bosco Institute of Technology
3Ms. Charanpreet Kaur

3Associate Professor, Don Bosco Institute of Technology
4Ms. Prabhjot Kaur

4Assistant Professor, SGTBIMIT
5Ms. Harleen Kaur

5Assistant Professor, SGTBIMIT
6Dr. Vikas Rao Vadi

6Professor, Don Bosco Institute of Technology

Article History

Volume 6,Issue 9, 2024

Received:14Mar 2024

Accepted : 09 Apr 2024

 doi: 10.33472/AFJBS.6.9.2024.281-288

I. INTRODUCTION

Nowadays, with the growth of software practice, the main challenge to deal with, is to deliver a

quality software [1], [2]. Thus to improve and deliver a quality software, different useful solutions like

code review, refactoring and testing are practiced by the people in the industry [3].

During this phase, the software may encounter some design flaws, that are referred to as “code

smells” or can also be termed as “bad smells” [3].Although these code smells are not considered as a

fault, they may introduce some kind of bug in the system, which causes declining of the software quality

ABSTRACT

This work aims to investigate the effects of code smells on several

iterations of three projects: ant, oryx, and mct. The projects and their

many iterations are included in the data collection that we have

utilized. Robusta is the technique used to identify code smells. This

program was used to record the values of the various sorts of code

smell that were found in every project version. The Jhawk tool is used

to obtain various design metrics' values. Ultimately, we were able to

determine the relative criticality of code smells on each project

version by comparing the values of the detected smells with metrics.

Index Terms— Code Smells, Detection, Types, Tools,

Maintainability

Page 282 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288

[4].

But these bad smells can be handled using a suitable software refactoring approach [5], [6].

But another difficulty is faced, that is the tool support which is critical for software refactoring [7],[8].

The existing smell detection and refactoring tools that are available are human- driven. They do not take

effect until the developers realize, that they should refactor. But the developers can fail to invoke, the

tools as frequently as they should [9].

Thus the result is that human-driven refactoring and smell detection tools, fail to drive the

developer to first detect and then resolve code smells [10].

In the research performed, a code smell tool Robusta is used, to detect code smells in three

versions of three projects that are ant [14], oryx [15] and mct [16] respectively. Then a tool jhawk is

used to determine the metrics of those three versions of the projects. With help of these tools and project

versions, the relative weights of every metrics for a given code smell is calculated. Thus, in the end it is

shown that the relative criticality of a code smell and the contribution by the metrics is same for all

the software versions released. Thus through this research, it is shown that in every version of the

projects, the changes were done to improve the design flaws in the project that affect its maintenance

very minimal. Weights are assigned to every code smell and metrics, and with the help of making a

pairwise comparison, the impact of code smells on the projects is determined [3]. The code smells are

produced due to the presence of design flaws, therefore mapping the code smells to the design metrics

help the software developer to measure the impact of code smells on the software in a better way [3].

II. LITERATURE REVIEW

Code smell is a design flaw which one of the main reasons which cause the software system to

lose its quality traits. Code smells were discovered and introduced by Fowler and Beck [5].

Thus the presence of a code smell makes the software system difficult to change. Therefore, proper

refactoring techniques are used to resolve the flaws produced by code smells. But if the refactoring

techniques are not appropriate they may also introduce some more faults into the system [3].

Also, some of the studies have established a relationship between code smells and design metrics [3] [7].

In our study we focus on mainly three code smells which are the following:-

1. Empty Catch Block:

Empty catch blocks are referred to as a type of a code smell in most languages. The main

idea here is that one uses exceptions for exceptional situations and not to use them for any type of

logical control. All exceptions must be handled somewhere [12].

For example: try {

}

Some Object.something();

The approach that is used to express the opinion is pairwise comparison [8]. In the research performed

different code smells namely, empty catch block, unprotected main program and nested try

statement are used as criteria.

catch(Exception e) {

// should never happen

}

Thus the case should be, that either code can handle the exception, then the catch clause

Page 283 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288

shouldn't be empty, or the code cannot handle the exception, then there should not be a

catch block at all [11].

2. Unprotected Main Program:

Checked exceptions need to be declared in a method or constructor's throws clause if,

they can be thrown by the execution of the method or constructor and they propagate

outside the method or constructor boundary. For example:

public static void main(String[] args) throws Exception {

// this should be avoided

3. Nested try statement:

Now, this practice that is followed by most of the software developers does, reduces the code-

readability and thus, should be avoided. A developer must find an easier and cleaner way to deal

with this kinda code smell by adding a finally construct.

For example:

Try{

…code} Catch(FirstException e){

….. do something} Catch(SecodException e){

…..do something else}

A programmer should always look for a chance for combining nested try statements [13].

III. METHODOLOGY

The goal of a software maintenance team is that it designs a good and effective refactoring

strategy, which will reduce the flaws that are caused because of the presence of code smells in a software

system. The strategy chosen should do this with minimum change in the source code and also maintain

the code’s consistency [3].

As mentioned, code smells present in the system are flaws in the source code that can affect the

development of a software and also make the system complex and inflexible. Now the question arises,

how to select an appropriate refactoring strategy. This can be achieved by measuring the presence of

code smells and the damage they can cause to the software.

The aim of the study is to first obtain the weight of code smells by measuring their presence with

the help of Robusta tool for three versions released for all three chosen projects that are, ant, oryx and

mct.

Since code smells do arise because of the presence of design flaws, therefore there exists a co-

relationship between code smells and design metrics. Thus when the hierarchy is extended one more

level towards the design metrics, it gives a better insight into the system.

Methodology adopted for the research is as follows:-

 STEP 1-

Code smells consider for this study are empty catch block, unprotected main program and nested

try statement. These code smells are taken as criteria and will help in determining the level of refactoring

i.e. required in the software. Code smells and metrics considered are shown in table 1.

Page 284 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288

S.NO. CODE SMELL AND

CRITERIA NAME

METRICS

NAME

METRICS

DESCRIPTION

1 EMPTY CATCH BLOCK M1 TOTAL NO.

COMMENT LINES

2 UNPROTECTED MAIN

PROGRAM

M2 TOTAL NO. OF JAVA

STATEMENTS

3 NESTED TRY

STATEMENT

M3 TOTAL LINES

OF CODE

Table 1: Code smells and metrics used

 STEP 2-

In this step, a hierarchy is shown to represent the code smells and their relationship with the

chosen metrics. The result is shown in Figure 1. By arranging the criteria and their criteria in a hierarchal

structure will give the decision maker an opportunity to focus better on criteria and their dependence on

sub-criteria [3].

STEP 3-

The weights of each code smell are calculated using comparison between the code smell values

measured by ROBUSTA and three versions released of Ant project. The normalized value is obtained

by taking each value and dividing it by the summation of its column values. The weights are computed

by taking the summation of row value and then dividing each it by total no. of criteria considered.[3]

The normalized value and weights of code smells are calculated and shown in table 2.

Input Normalized Value Weight
s

 C1 C2 C3
P1 2 4 8 0.33 0.17 0.42 0.307
P2 2 4 6 0.33 0.17 0.31 0.27
P3 2 16 5 0.33 0.17 0.26 0.25
su
m

6 24 19

Table 2: Pairwise comparison and normalized value of code smell for ant

STEP 4-

As shown in figure 1, each code smell is dependent of 3 design metrics. The weight of each metrics

is calculated by considering the pair wise comparison metrics as done in step 3. The Input values of

this matrix is calculated by JHAWK tool. Table 3 shows the weights calculated.

Page 285 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288

Table 3: Pair wise comparison and normalised weight of metrics for ant

STEP 5-

In this final step, relative weights of each metrics of a code smell is calculated by,

Rwi = Cwi * Mwi

where, Rwi= relative weight of each metrics of a code smell, Cwi= weight of code smell, Mwi= weight

of metrics The weights calculated are shown in table 4. The weights calculated are global weights that

reflect the relative criticality of a code smell on the ant software system.

Cod

e

Sme

ll

Weig

ht

(Cwi)

Metrics

Weig

ht

(Mwi

)

Relative

weight

(Rwi)

C1 0.307 M1 0.33 0.10131

 M2 0.33 0.10131

 M2 0.33 0.10131

C2 0.27 M1 0.33 0.0891

 M2 0.33 0.0891

 M3 0.33 0.0891

C3 0.25 M1 0.33 0.0825

 M2 0.33 0.0825

 M3 0.33 0.0825

Table 4: Relative Weights of metrics and relative impact of code smell for ant

The same steps, from step 1 to step 5 are performed for two more projects namely, oryx and mct

to validate the results. The code smell and metrics criteria chosen for all three projects are same. After

performing the steps for oryx and mct project the following results are obtained:

The normalized values and weights of code smell calculated for oryx project are shown in table 5.

Input Normalize Value
-d

Weight

s

 C1 C2 C
3

P1 20 21 16 0.33 0.32 0.3
2

0.32

P2 20 22 15 0.33 0.32 0.3
1

0.32

P3 20 22 18 0.33 0.32 0.3
6

0.34

sum 60 65 49

Page 286 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288

Table 5: Pairwise comparison and normalized value of code smell for oryx

Table 6 shows the normalized value and weights calculated of metrics for oryx :

Input Normali Valu

 -zed -e

Weights

 M1 M2 M3

P1 158 169 196 0.33 0.34 0.34 0.33

P2 158 168 195 0.33 0.34 0.34 0.33

P3 155 162 188 0.33 0.34 0.32 0.99

sum 471 499 834

Table 6: Pair wise comparison and normalized weight of metrics for oryx

The weights calculated are shown in table 7. The weights calculated are global weights that reflect the

relative criticality of a code smell on the oryx software system.

Code

Smell

Weight

(Cwi)

Metrics Weight

(Mwi)

Relative weight

(Rwi)

C1 0.32 M1 0.33 0.1056

 M2 0.33 0.1056

 M2 0.99 0.3168

C2 0.32 M1 0.33 0.1056

 M2 0.33 0.1056

 M3 0.99 0.3168

C3 0.34 M1 0.33 0.112

 M2 0.33 0.112

Table 7: Relative Weights of metrics and relative impact of code smell for oryx The normalized value

and weights of code smells calculated for mct project are shown in table 8.

Input Normaliz- Val-
ed ue

Weight

s

 C1 C

2

C

3

P1 93 25 27 0.24 0.3

2

0.28 0.28

P2 143 25 34 0.34 0.3

3

0.36 0.35

P3 147 26 33 0.38 0.3

3

0.35 0.35

sum 383 77 94

Table 8: Pair wise comparison and normalized value of code smell for mct

Table 9 shows the normalised value and weights calculated of metrics for mct:

Input Normalize
d

Value Weights

 M1 M2 M3

Page 287 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288
P1 151 27

9
364 0.33 0.33 0.33 0.33

P2 151 27
9

364 0.33 0.33 0.33 0.33

P3 151 27
9

364 0.33 0.33 0.33 0.33

su
m

453 83
7

1092

Table 9: Pair wise comparison and normalised weight of metrics for mct

The weights calculated are shown in table 10. The weights calculated are global weights that reflect the

relative criticality of a code smell on the mct software system.

Code Smell Weight (Cwi) Metrics Weight

(Mwi)

Relative weight (Rwi)

C1 0.28 M1 0.33 0.0924

 M2 0.33 0.0924

 M2 0.33 0.0924

C2 0.35 M1 0.33 0.1155

 M2 0.33 0.1155

 M3 0.33 0.1155

C3 0.35 M1 0.33 0.1155

 M2 0.33 0.1155

 M3 0.33 0.1155

Table 10: Relative Weights of metrics and relative impact of code smell for mct

IV. RESULT

Three medium sized software is considered for the study and to understand the impact of code

smells on each version of the project. Its observed that three versions of the three software are released,

and for all the tree versions the relative critically of the code smell is same. Thus, in every release, there

was no improvement at the design level which, thus makes the project more complex, decreases its

maintainability and the development of software is affected.

V. CONCLUSION AND FUTURE SCOPE

Thus, as observed for every version of the software, the relative impact of code smell is same.

Thus, the development team for a software system, should focus on design flows of the system to increase

its shelf life. Less the number of code smells, less will be their impact on the system. Resulting in a more

maintainable system. Further, more software system can be analyzed. Thus, the development team should

make sure to also focus on the design of the system. Every release proposed for a software system should

also be improved at design level.

REFERENCES

1. Kapur PK, Singh VB, Anand S, Yadavalli VS “Software reliability growth model with change

point and effort control using a power function of the testing time” Int J Prod Res 46(3):771-787,

Page 288 of 8

Mr. Amandeep Singh Arora / Afr.J.Bio.Sc. 6(9) (2024) 281-288

2008.

2. Kapur PK, Nagpal S, Khatri SK, Basirzadeh M “Enhancing software reliability of a complex

software system architecture using artificial neural-networks ensemble” Int J Reliab Qual Saf Eng

18(03):271–284, 2011.

3. Rajni Sehgal, Deepti Mehrotra, Manju Bala “Analysis of code smell to quantify the refactoring” Int

J Syst Assur Eng Manag, 2017.

4. D’Ambros M, Bacchelli A, Lanza M “On the impact of design flaws on software defects” In 10th

International conference on quality software (QSIC), IEEE, pp 23–31, 2010.

5. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts “Refactoring: Improving the Design of

Existing Code” Addison Wesley Professional, 1999.

6. W.C. Wake, Refactoring Workbook. Addison Wesley, Aug. 2003.

7. T. Mens and T. Touwe, “A Survey of Software Refactoring,” IEEE Trans. Software Eng., vol.

30, no. 2, pp. 126-139, Feb. 2004.

8. E. Mealy and P. Strooper, “Evaluating Software Refactoring Tool Support,” Proc. Australian

Software Eng. Conf., p. 10, Apr. 2006.

9. E. Murphy-Hill, C. Parnin, and A.P. Black, “How We Refactor, and How We Know It” IEEE

Trans. Software Eng., vol. 38, no. 1 ,pp. 5-18, Jan./Feb. 2012.

10. Hui Liu, Xue Guo, and Weizhong Shao, “Monitor- Based Instant Software Refactoring” Ieee Trans.

Software Eng., vol. 39, no. 8, August 2013.

11. wiki.c2.com/?EmptyCatchClause

12. softwareengineering.stackexchange.com/questions/1680 7/is-it-ever-ok-to-have-an-empty-catch

statement

13. softwareengineering.stackexchange.com/questions/118788/is-using-nested-try-catch- blocks-an-

anti-pattern

14. https://github.com/apache/ant

15. https://github.com/OryxProject/oryx

16. https://github.com/nasa/mct

https://github.com/apache/ant
https://github.com/OryxProject/oryx
https://github.com/nasa/mct

