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Abstract 
This study presents an innovative approach for enhancing the 

accuracy and efficiency of plant disease detection through a feature 
selection-based deep learning mechanism. The proposed methodology 
consists of several key stages, including image collection, denoising, 
quality enhancement, segmentation, feature extraction with selection, 
and classification. Initially, input samples are collected from a publicly 
available dataset, followed by denoising using an Extended Guided 
Filtering (EGF) approach and quality enhancement employing a 
Flexible Mean Adjustment (FMA) method. Precise segmentation of 
disease-affected portions is achieved through a new Extended Deep-
view Fuzzy C-Means (ED-FCM) approach. Subsequently, a Modified 
Lyrebird assisted DenseNet-201 (ML_D201) model is employed for 
feature extraction, and optimal feature sets are selected using a 
Modified Lyrebird Optimization (MLO) approach. Disease 
classification is performed using a novel Stacked Capsule Squeeze 
Excitation based Bidirectional Long Short-Term Memory 
(SCSE_BiLSTM) model, with parameters fine-tuned using a Chaotic 
Artificial Hummingbird (CAH) approach. The proposed methodology 
effectively addresses the challenges of dimensionality and processing 
time, resulting in improved plant disease classification accuracy. 
Keywords: Plant disease detection, deep learning, feature selection, 
denoising, quality enhancement, segmentation, DenseNet-201, 
Modified Lyrebird Optimization, Stacked Capsule Squeeze Excitation, 
Bidirectional Long Short-Term Memory, Chaotic Artificial 
Hummingbird, accuracy evaluation. 

 

Introduction 
Agriculture stands as the cornerstone of India's economy, with a significant portion of the 
population relying on it for their livelihood. The agricultural sector not only sustains the 
country's food security but also plays a vital role in driving economic growth and 
employment opportunities. Similarly, on a global scale, agriculture is the bedrock of human 
civilization, providing sustenance and resources that support societies worldwide. 
Central to the success of agriculture is the health of plants, which serve as the fundamental 
building blocks of the agricultural ecosystem. The well-being of plants directly impacts crop 
yield, quality, and overall agricultural productivity. When plants fall prey to diseases, the 
consequences can be devastating. Farmers face substantial losses when their crops are 
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damaged by diseases, leading to diminished yields, financial instability, and food insecurity 
for communities relying on agricultural produce. 
Identifying plant diseases promptly and accurately is crucial in mitigating the impact of such 
outbreaks. Current methods of disease identification often rely on visual symptoms, 
laboratory analysis, and expert opinion. While these traditional approaches have been 
valuable, they may fall short in addressing the increasing complexity and scale of modern 
agricultural challenges. Recent technological developments have led to the development of 
automated methods for the identification of plant diseases, which provide solutions that are 
both more effective and more precise. Among these, techniques that are based on deep 
learning have demonstrated substantial promise due to their capacity to understand 
intricatepatterns in data.In this study, a unique method is presented for improving the 
accuracy and efficiency of plant disease detection by utilizing a deep learning mechanism that 
is based on feature selection. Image denoising, quality enhancement, segmentation, feature 
extraction, feature selection, and classification are some of the sophisticated techniques that 
are incorporated into the system that has been developed. By utilizing these methodologies, 
the suggested method intends to solve the issues related with dimensionality and processing 
time, ultimately leading to an improvement in the accuracy of plant disease classification. An 
innovative approach for enhancing the accuracy and efficiency of plant disease detection 
through a feature selection-based deep learning mechanism is utilized. The proposed 
methodology integrates several advanced techniques, including image denoising using 
Extended Guided Filtering (EGF), quality enhancement employing a Flexible Mean 
Adjustment (FMA) method, and precise segmentation of disease-affected portions through an 
Extended Deep-view Fuzzy C-Means (ED-FCM) approach. Furthermore, the Modified 
Lyrebird assisted DenseNet-201 (ML_D201) model is utilized for feature extraction, and 
optimal feature sets are selected using a Modified Lyrebird Optimization (MLO) approach. 
The final classification of plant diseases is performed using a novel Stacked Capsule Squeeze 
Excitation based Bidirectional Long Short Term Memory (SCSE_BiLSTM) model, with 
parameters fine-tuned using a Chaotic Artificial Hummingbird (CAH) approach. 

The proposed methodology effectively addresses the challenges associated with 
dimensionality and processing time, leading to improved plant disease classification 
accuracy. This comprehensive approach ensures that the detection process is not only 
efficient but also highly accurate, thus providing a robust solution for early and precise 
identification of plant diseases. 
 

Related Works 
Numerous studies have explored the use of deep learning and machine learning techniques 
for plant disease detection and classification. The following section reviews significant 
contributions in this domain, highlighting their methodologies, results, and identified 
limitations. 
Dzmitry Bahdanau., et al. has introduced an attention mechanism for machine translation, 
which allows the model to focus on relevant parts of the input sequence. Mohanty, S.P., et al. 
demonstrated the use of deep learning models for automatic plant disease detection, 
achieving high accuracy. This work was limited to specific types of diseases and lacks a 
robust feature selection mechanism. Arivazhagan., et al. reviewed various image processing 
techniques for plant disease detection, highlighting their effectiveness. This work focusses on 
traditional image processing techniques but lacks the incorporation of advanced deep learning 
models. Pujari, J.D., et al. have combined image segmentation and soft computing techniques 
for plant disease identification. The problem is soft computing techniques may not be as 
robust or accurate as modern deep learning approaches. Shrivastava, P., et al. provided a 
comprehensive review of image processing techniques for plant disease detection. Kamilaris, 
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A., et al. have Surveyed the application of deep learning techniques for plant disease 
detection, emphasizing their advantages.Phadikar, S., et al. utilized machine learning 
techniques for detecting plant diseases from leaf images. Anand, R., et al. appliesd k-means 
clustering for early diagnosis of plant diseases but clustering techniques may not be as 
accurate as deep learning models in identifying complex patterns. Barbedo, J.G.A. 
implemented k-nearest neighbor algorithm for classifying plant diseases, showing its 
potential in agriculture. The problem is traditional machine learning algorithm, may not 
handle large datasets or complex features efficiently. Sladojevic, S., et al,utilized deep 
learning for detecting and classifying plant leaf diseases, achieving high performance. The 
method was limited to certain types of diseases, which lacks detailed feature extraction and 
selection process. Brahimi, M., et al proposed a new machine learning approach for plant 
disease detection and classification, demonstrating promising results. The work may not be as 
scalable or efficient as state-of-the-art deep learning techniques. K. P. Ferentinos presented a 
convolutional neural network (CNN) approach for the automatic detection and classification 
of plant diseases, demonstrating high accuracy and robustness. The model's performance 
heavily relies on the quality and diversity of the training data. X. You., et al, applied deep 
learning techniques to predict crop yield using remote sensing data, achieving notable 
improvements in prediction accuracy. The model's scalability to different crops and 
geographical regions is not thoroughly investigated. R. Zhang., et al, introduced a hybrid 
deep learning model for tomato disease detection using leaf images, demonstrating improved 
accuracy over traditional methods. The model's performance in varying environmental 
conditions is not extensively tested. S. Arsenovic., et al, focuses on the deployment of deep 
learning-based plant disease detection models in mobile applications, enabling real-time 
diagnosis for farmers. The application’s effectiveness is dependent on the quality of mobile 
device cameras and network connectivity. David Hall et al. tested numerous criteria for leaf 
categorization under difficult situations. It provides a comparative analysis of many feature 
descriptors, such as form, texture, and color, under various imaging settings such as 
occlusion, blur, and lighting variations. The study sheds light on the resilience of several 
characteristics for leaf classification tasks. The evaluation does not account for all possible 
demanding situations that impact leaf classification ability, which may lead to biases in the 
findings given. Furthermore, the study may ignore the interactions between several feature 
descriptors and their overall impact on classification accuracy. 
Extended Guided Filtering (EGF) Approach: 
Extended Guided Filtering (EGF) is an advanced image processing technique that builds 
upon the principles of traditional guided filtering to enhance denoising efficiency and 
computational speed. The EGF method is particularly useful in tasks such as image 
enhancement, noise reduction, and edge-preserving filtering. It extends the capabilities of 
guided filtering by introducing optimizations that improve processing time and overall 
performance. 
The EGF approach involves the following key components and equations: 
Guided Filter Formulation: 
The guided filter is represented by the following equation: 
 
  Q(i)=a(i)I(i)+b(i)   …………………………(1)                                                                                    
 
Where: 
Q(i)is the output pixel value at position i. 
I(i)is the input image pixel value at position i. 
a(i)and b(i)are the linear coefficients. 
 



P.K.Midhunraj/Afr.J.Bio.Sc. 6(14) (2024)                                                        Page 759 of 14   

      

 

Extended Guided Filtering Enhancement: 
The Extended Guided Filtering method introduces enhancements to the traditional guided 
filtering process to improve denoising efficiency. It includes subsampling techniques and 
local linear coefficient evaluations for upsampling. 
The subsampled filtering input image and guided image are represented as: 
Is(i)=Subsample(I(i)) 
Ps(i)=Subsample(P(i)) 
The local linear coefficients for upsampling are evaluated as: 
as(i)= Upsample (a(i)) 
 
Computational Efficiency: 
One of the primary advantages of EGF is its computational efficiency, achieved through 
optimized subsampling and coefficient evaluation techniques. By reducing processing time 
and complexity, EGF offers a faster and more efficient denoising solution compared to 
traditional guided filtering methods. The Extended Guided Filtering (EGF) approach 
enhances the denoising capabilities of traditional guided filtering by incorporating 
subsampling, local linear coefficient evaluations, and optimizations for improved 
computational efficiency. These enhancements enable EGF to deliver superior denoising 
results while maintaining high processing speed, making it a valuable tool for various image 
processing tasks, including noise reduction and edge preservation. 
 

Flexible Mean Adjustment (FMA) Method: 
Flexible Mean Adjustment (FMA) is a technique used in image processing and enhancement 
to control the degree of contrast enhancement and preserve the mean brightness of an image. 
This method allows for fine-tuning of image characteristics to achieve desired visual effects 
while maintaining overall image quality. 
The Flexible Mean Adjustment method involves the following components and parameters: 
 

Parameters: 
FMA utilizes two key parameters to adjust the mean brightness and contrast enhancement of 
an image: 

 Alpha (α): Parameter controlling the degree of contrast enhancement. 
 Beta (β): Parameter controlling the preservation of mean brightness. 

Mean Adjustment Formula: 
The mean adjustment formula used in FMA can be represented as: 
Iout(i) = alpha Iin(i)+beta…………………(2) 
 
Where  
Iout(i) = is the output pixel value at the position i. 
Iin(i) =is the input image pixel value at the position i. 
α and β are the adjustable parameters that determine the contrast enhancement and mean 
brightness preservation. 
Functionality: 
 
Contrast Enhancement: By adjusting the alpha parameter, the FMA method can enhance the 
contrast of the image, making the dark areas darker and the bright areas brighter. This 
adjustment can improve the overall visual appeal and clarity of the image. 
Mean Brightness Preservation: The beta parameter in FMA helps in preserving the mean 
brightness of the image. This ensures that the overall brightness distribution of the image is 
maintained, preventing overexposure or loss of detail in the bright regions. 
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Application: 
FMA is commonly used in image processing tasks where fine adjustments in contrast and 
brightness are required. It is particularly useful in scenarios where precise control over image 
characteristics is essential to achieve the desired visual effect without compromising the 
image quality. The Flexible Mean Adjustment (FMA) method offers a versatile approach to 
image enhancement by providing adjustable parameters for contrast enhancement and mean 
brightness preservation. By fine-tuning these parameters, users can tailor the visual 
characteristics of an image to meet specific requirements while ensuring high-quality output 
results. 
Extended Deep-view Fuzzy C-Means (ED-FCM) Approach: 
Extended Deep-view Fuzzy C-Means (ED-FCM) is an advanced extension of the traditional 
Fuzzy C-Means (FCM) clustering algorithm, specifically designed for image segmentation 
tasks. This method combines the principles of Fuzzy C-Means clustering with deep learning 
techniques to enhance the accuracy and efficiency of image segmentation processes. 
The Extended Deep-view Fuzzy C-Means (ED-FCM) approach incorporates the following 
elements and methodologies: 
Fuzzy C-Means Clustering: 
Fuzzy C-Means (FCM) clustering is a popular unsupervised clustering algorithm that assigns 
fuzzy membership values to each data point based on its similarity to cluster centroids. This 
technique allows for soft clustering, where data points can belong to multiple clusters with 
varying degrees of membership. 
 

Deep Learning Integration: 
ED-FCM integrates deep learning principles into the traditional FCM algorithm to improve 
segmentation accuracy and robustness. By leveraging deep neural networks, ED-FCM can 
effectively extract complex features from image data, enhancing the clustering process. 
 
View Weight Adaptive Learning: 
One of the key features of ED-FCM is the view weight adaptive learning mechanism, which 
optimizes cluster contributions for each view in the segmentation process. This adaptive 
learning approach enhances the segmentation accuracy by assigning appropriate weights to 
different views based on their significance. 
 
Segmentation Accuracy Improvement: 
By combining the flexibility of FCM clustering with the feature extraction capabilities of 
deep learning, ED-FCM aims to improve segmentation accuracy, particularly in scenarios 
with complex image data and overlapping regions. The view weight adaptive learning further 
refines the clustering process, leading to more precise and reliable segmentation results. 
 

1. Objective Function of ED-FCM: 
The objective function of ED-FCM combines the traditional FCM objective function with the 
deep learning-based feature extraction component. It aims to minimize the following 
function: 
 
[ J = \sum{i=1}^{N} \sum{j=1}^{C} u{ij}^m \cdot ||x_i - v_j||^2 + \lambda \sum{k=1}^{K} 
L_k ]                                                                           ………………….(3) 
 
where: 
 
( N ) is the total number of data points. 



P.K.Midhunraj/Afr.J.Bio.Sc. 6(14) (2024)                                                        Page 761 of 14   

      

 

( C ) is the total number of clusters. 
( m ) is the fuzziness parameter. 
( u_{ij} ) represents the membership degree of data point ( i ) in cluster ( j ). 
( x_i ) is the data point. 
( v_j ) is the cluster centroid. 
( \lambda ) is a regularization parameter. 
( K ) is the number of layers in the deep neural network. 
( L_k ) represents the loss function for the ( k )th layer. 
Fuzzy Membership Update Rule: 
The fuzzy membership update rule in ED-FCM is defined as: 
 
[ u{ij} = \left( \sum{k=1}^{C} \left( \frac{||x_i - v_j||}{||x_i - v_k||} \right)^{\frac{2}{m-1}} 
\right)^{-1} ]                                                       ………………………(4) 
 
This equation calculates the updated membership degree of data point ( i ) in cluster ( j ). 
 
 

 

 

Deep Learning Feature Extraction: 
The feature extraction process in ED-FCM involves passing the input data through multiple 
layers in a deep neural network, where each layer applies transformations to the input data. 
The mathematical equations for the transformations in each layer depend on the specific 
architecture of the deep neural network used in the ED-FCM approach. 
Application in Disease Segmentation: 
ED-FCM is commonly employed in medical imaging and disease segmentation tasks, where 
accurate delineation of affected areas is crucial for diagnosis and treatment planning. By 
effectively segmenting disease-affected regions in images, ED-FCM contributes to improved 
disease detection and analysis. The Extended Deep-view Fuzzy C-Means (ED-FCM) 
approach combines the strengths of Fuzzy C-Means clustering with deep learning techniques 
to enhance image segmentation accuracy. By integrating view weight adaptive learning and 
deep feature extraction, ED-FCM offers a sophisticated solution for precise and reliable 
segmentation tasks, particularly in complex image analysis scenarios such as disease 
detection and medical imaging. 
Modified Lyrebird Assisted DenseNet-201 (ML_D201) 
The Modified Lyrebird assisted DenseNet-201 (ML_D201) model is an advanced hybrid 
approach designed to enhance the accuracy and efficiency of feature extraction and selection 
for plant disease detection. The DenseNet-201 architecture forms the core of this model, 
providing robust deep feature extraction capabilities. The Modified Lyrebird Optimization 
(MLO) algorithm further refines the process by selecting the most optimal features, reducing 
dimensionality and computational complexity. 
DenseNet-201 Architecture 
DenseNet-201 is a densely connected convolutional neural network architecture that ensures 
maximum information flow between layers in the network. Each layer in DenseNet-201 has 
direct connections to all subsequent layers, which helps in efficient gradient flow and reuse of 
features. This architecture is defined by its dense block structure and transition layers. 
The key components of DenseNet-201 include: 
Dense Blocks: Layers within each dense block are connected directly to every other layer in 

a feed-forward manner. If there are 𝐿 layers in a dense block, there are L(L+1)/2direct 
connections. 
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Transition Layers: These layers perform down-sampling between dense blocks using 
convolution and pooling operations to reduce the spatial dimensions of feature maps. 
The output of the lth layer within a dense block is defined as: 𝑥𝑙 = 𝐻𝑙([𝑥0,x1,….,xl-1])                   ………………(5) 
Where 𝑥0,x1,….,xl-1 are the feature maps from previous layers, and 𝐻𝑙is a composite function of 
operations such as Batch Normalization (BN), ReLU activation, and convolution. 
 

Modified Lyrebird Optimization (MLO) 
The Modified Lyrebird Optimization algorithm is an evolutionary optimization technique 
inspired by the mimicry and foraging behavior of lyrebirds. It aims to select the most relevant 
features from the extracted deep features, thus enhancing the model's efficiency and accuracy. 
The MLO algorithm operates as follows: 

1. Initialization: Generate an initial population of solutions (feature subsets) randomly. 
2. Fitness Evaluation: Evaluate the fitness of each solution based on a predefined 

fitness function, which measures the classification accuracy using the selected 
features. 

3. Selection: Select the top-performing solutions for reproduction. 
4. Crossover and Mutation: Apply crossover and mutation operators to generate new 

offspring solutions, ensuring diversity in the population. 
5. Iteration: Repeat the process for a fixed number of iterations or until convergence 

criteria are met. 
The fitness function F used for evaluating solutions is typically defined as: 
                                    F= Accuracy - 𝜆. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑢𝑛𝑡           …………………(6) 
Where Accuracy is the classification accuracy,𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑢𝑛𝑡is the number of selected 
features, and 𝜆 is a regularization parameter to control the trade-off between accuracy and the 
number of features. 
Feature Selection Process 

1. Feature Extraction with DenseNet-201: Extract deep features from the segmented 
disease-affected regions using DenseNet-201. 

2. Optimization with MLO: Apply the MLO algorithm to select an optimal subset of 
features that maximize classification accuracy while minimizing computational 
complexity. 

Let X= {x1,x2,……..xn} be the set of features extracted by DenseNet-201, where 𝜂 is the total 
number of features. The MLO algorithm aims to find a subset X′⊆X that optimizes the fitness 
function F. 
The optimization problem can be formulated as  

Maxx’F(X’) = Accuracy (X’)- 𝜆. |𝑋′|            ……………………..(7) 
Where |𝑋′|is the number of features in the subset X’. 
The ML_D201 model, combining DenseNet-201's deep feature extraction capabilities with 
the MLO algorithm's efficient feature selection, addresses the challenges of high 
dimensionality and computational overhead in plant disease detection. This hybrid approach 
ensures enhanced accuracy and efficiency, making it a robust solution for real-time 
applications in agriculture. 
Stacked Capsule Squeeze Excitation based Bidirectional Long Short Term Memory 

(SCSE_BiLSTM) Model 
The Stacked Capsule Squeeze Excitation based Bidirectional Long Short Term Memory 
(SCSE_BiLSTM) model combines the strengths of capsule networks, squeeze-excitation 
networks, and BiLSTM to enhance feature representation and classification performance. 
This hybrid model is particularly effective for sequential data with complex spatial 
relationships, such as plant disease symptoms. 
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Architecture of SCSE_BiLSTM 
1. Input Layer: Takes the input feature vectors from the previous stages (e.g., feature 

extraction using Modified Lyrebird assisted DenseNet-201). 
2. Capsule Layer: Applies a series of capsule layers to preserve spatial relationships and 

capture the hierarchical structure of features. Each capsule outputs a vector, representing 
various properties of the detected feature. 

3. Squeeze-Excitation Block: Integrates SE blocks within the capsule network to 
recalibrate the channel-wise feature responses. The SE block consists of two main 
operations: 

o Squeeze Operation: Global average pooling is applied to each feature map, producing 
a channel descriptor. 

o Excitation Operation: Fully connected layers with non-linear activations are used to 
generate a weight for each channel, which scales the original feature maps. 

Mathematically, the SE block can be represented as: 

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) = 1𝐻 ∗ 𝑊 ∑∑𝑢𝑐(𝑖, 𝑗)𝑊
𝐽=1

𝐻

𝑖=1
. . . . . . . . . . . . . . . . . . . (8) 

Where𝑢𝑐is the c-th channel of the input feature map, H and Ware the height and width of the 
feature map, respectively. 
s=Fex(z) =σ (W2δ(W1z))…………..(9) 
where z is the squeezed feature vector, W1&W2 are weights of the fully connected layers, δis 
the ReLU activation function, and σ is the sigmoid activation function. 
4. BiLSTM Layer: Processes the recalibrated features from the capsule network in both 

forward and backward directions. This layer captures temporal dependencies and 
contextual information, enhancing the sequence modeling capability. 

The BiLSTM equations are given by: ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1)             . . . . . . . . . . . . . . . . (10) 

°ℎ⃗⃗  ⃗𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , °ℎ⃗⃗  ⃗𝑡+1)    ……………..(11) 
Whereℎ⃗ 𝑡&°ℎ⃗⃗  ⃗𝑡are the hidden states of the forward and backward LSTMs at time step t, 
respectively. 
5. Fully Connected Layer: After obtaining the BiLSTM output, a fully connected layer is 

used to map the learned features to the output space, providing the final classification. 
6. Output Layer: The final classification layer uses a softmax activation function to 

produce probability distributions over the class labels. 
Mathematical Representation 
The SCSE_BiLSTM model can be described by the following equations: 

1. Capsule Network Output: 
C=CapsuleNetwork(X) 
where X is the input feature vector, and C is the output from the capsule network. 

2. Squeeze-Excitation Output: 
S=SE(C) 
where S is the recalibrated feature vector from the SE block. 

3. BiLSTM Output: 
H=BiLSTM(S) 
where H is the hidden state from the BiLSTM layer. 

4. Fully Connected Layer: 
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O=FC(H) 
where O is the output from the fully connected layer. 

5. Output Layer: 
Y=Softmax(O) 
where Y is the final output probability distribution. 
 
Chaotic Artificial Hummingbird (CAH) Approach 
The Chaotic Artificial Hummingbird (CAH) approach is an optimization algorithm inspired 
by the foraging behavior and flight dynamics of hummingbirds, enhanced with chaotic maps 
to improve convergence speed and solution accuracy. This approach is used to fine-tune 
parameters in machine learning models, ensuring optimal performance. 
 
CAH Algorithm Steps 

 
1. Initialization: Initialize a population of artificial hummingbirds with random 

positions in the solution space. Each position represents a potential solution to the 
optimization problem. 

2. Fitness Evaluation: Evaluate the fitness of each hummingbird based on a predefined 
objective function. The fitness function measures the quality of the solution, guiding 
the search process. 

3. Chaotic Map Generation: Generate chaotic sequences using a chosen chaotic map. 
These sequences introduce variability into the search process, helping to diversify the 
population and improve exploration. 

Example: Logistic Map 
                                      xn+1=rxn(1−xn)………….(12) 
where xnis the current chaotic variable, r is the chaotic parameter (usually set to 4), and xn+1  
is the next chaotic variable. 

4. Position Update: Update the positions of the hummingbirds based on their current 
positions, fitness values, and chaotic sequences. The position update rules mimic the 
flight dynamics and foraging behavior of real hummingbirds. 𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝛼 ⋅ 𝐶ℎ𝑎𝑜𝑡𝑖𝑐𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ⋅ (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑡). . . . . . (13) 

Where𝑥𝑖𝑡+1is the position of hummingbirdi at iteration t, 𝑥𝑏𝑒𝑠𝑡is the position of the best-
performing hummingbird,𝛼is a scaling factor, and ChaoticSequence is the sequence 
generated by the chaotic map. 

5. Flight Dynamics Simulation: Simulate the flight dynamics of hummingbirds to 
explore the solution space more effectively. This involves adjusting the step sizes and 
directions based on fitness values and chaotic sequences. 

6. Local Search: Perform a local search around the best solutions to refine and improve 
them further. This helps in fine-tuning the parameters and achieving higher accuracy. 

7. Convergence Check: Check for convergence based on predefined criteria, such as a 
maximum number of iterations or a threshold for improvement. If the criteria are met, 
terminate the algorithm; otherwise, repeat the process from the fitness evaluation step. 

8. Parameter Fine-Tuning: Use the optimized positions (solutions) to fine-tune the 
parameters of the target machine learning model. This ensures that the model achieves 
optimal performance. 

Methodology for Feature Selection-Based Deep Learning Mechanism for Plant Disease 

Detection 
1. Image Collection: 

o Input samples are collected from a publicly available dataset. 
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2. Denoising: 
o Apply Extended Guided Filtering (EGF) to remove noise, ensuring faster 

computation and efficient denoising. 
Parameters: r=50, ϵ=2×10−3 

 
3. Quality Enhancement: 

Enhance image quality using Flexible Mean Adjustment (FMA) to improve contrast  
and brightness.  

Parameters:  α=1.5,  β=15.0 
 

4. Segmentation: 
Segment disease-affected areas using the Extended Deep-view Fuzzy C-Means (ED- 
FCM) approach, which adapts view weights for optimal clustering.  

 
Parameters:  num_clusters=3,  m=2,  max_iter=100 
 

5. Feature Extraction and Selection: 
Extract features using the DenseNet-201 model and select optimal features with the 
Modified Lyrebird Optimization (MLO) approach to reduce computational 
complexity. 

o DenseNet-201 captures deep features. 
o MLO identifies the most significant features. 

 
6. Classification: 

Classify plant diseases with the Stacked Capsule Squeeze Excitation based 
Bidirectional Long Short Term Memory (SCSE_BiLSTM) model. This hybrid model 
leverages capsule networks, BiLSTM, and squeeze excitation blocks for improved 
learning and accuracy. 
 

7. Parameter Fine-Tuning: 
Optimize parameters (batch size, learning rate, epoch) of the SCSE_BiLSTM model 
using the Chaotic Artificial Hummingbird (CAH) approach for enhanced 
performance. 

 
Figure 1. Block Diagram of the Proposed Methodology 
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Plant diseases detected by the proposed methodology 

 
Table 1. Detected Plant Diseases 

 

Results and Discussion 
The proposed methodology was evaluated against several state-of-the-art models, including 
DensCapsnet, Resnet, DNN, and Bi-LSTM, using metrics such as accuracy, recall, 
specificity, precision, F1 score, Dice coefficient, mean squared error (MSE), and root mean 
squared error (RMSE). The results of this comparative analysis are presented in Table 2. 
 

 
Table 2: Performance Comparison 

 

Accuracy 
The proposed model achieved the highest accuracy of 0.9914, surpassing DensCapsnet 
(0.988), Resnet (0.9861), DNN (0.984), and Bi-LSTM (0.9824). This indicates the model's 
superior ability to correctly classify plant diseases. 
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Recall 
With a recall of 0.9803, the proposed model demonstrated a higher sensitivity compared to 
DensCapsnet (0.9554), Resnet (0.9424), DNN (0.928), and Bi-LSTM (0.9173). This signifies 
that the proposed model effectively identifies the actual positives. 
Specificity 
The proposed model's specificity of 0.9954 indicates its strong capability in identifying true 
negatives, outperforming DensCapsnet (0.9935), Resnet (0.9925), DNN (0.9913), and Bi-
LSTM (0.9905). 
Precision 
Precision of the proposed model stood at 0.9824, higher than DensCapsnet (0.9571), Resnet 
(0.9465), DNN (0.9302), and Bi-LSTM (0.921). This suggests that the proposed model has a 
lower false-positive rate. 
F1 Score 
An F1 score of 0.9609 for the proposed model reflects its balanced performance between 
precision and recall, significantly better than DensCapsnet (0.9358), Resnet (0.9239), DNN 
(0.9086), and Bi-LSTM (0.8986). 
Dice Coefficient 
The proposed model achieved the highest Dice coefficient of 0.9809, demonstrating its 
excellent segmentation performance, compared to DensCapsnet (0.9559), Resnet (0.9435), 
DNN (0.9287), and Bi-LSTM (0.9184). 
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) 
The proposed model exhibited the lowest MSE (0.0148) and RMSE (0.1217), indicating its 
high accuracy in predicting the actual values and minimal prediction error. This performance 
was superior to DensCapsnet, Resnet, DNN, and Bi-LSTM. 
The results highlight the effectiveness of the proposed model, which integrates multiple 
advanced techniques: 

1. Extended Guided Filtering (EGF) and Flexible Mean Adjustment (FMA) for 
effective denoising and quality enhancement. 

2. Extended Deep-view Fuzzy C-Means (ED-FCM) for precise segmentation of 
disease-affected regions. 

3. Modified Lyrebird assisted DenseNet-201 (ML_D201) for optimal feature 
extraction and selection. 

4. Stacked Capsule Squeeze Excitation based Bidirectional Long Short Term 
Memory (SCSE_BiLSTM) model for accurate classification. 

5. Chaotic Artificial Hummingbird (CAH) approach for fine-tuning model 
parameters. 
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Figure 2. Performance Evaluation 

 

Conclusion 
The proposed approach integrates several innovative techniques, including Extended Guided 
Filtering (EGF), Flexible Mean Adjustment (FMA), Extended Deep-view Fuzzy C-Means 
(ED-FCM), Modified Lyrebird assisted DenseNet-201 (ML_D201), Stacked Capsule 
Squeeze Excitation based Bidirectional Long Short-Term Memory (SCSE_BiLSTM) model, 
and Chaotic Artificial Hummingbird (CAH) optimization.The methodology was rigorously 
evaluated against state-of-the-art models like DensCapsnet, Resnet, DNN, and Bi-LSTM. The 
proposed model demonstrated superior performance across various metrics, including 
accuracy, recall, specificity, precision, F1 score, Dice coefficient, MSE, and RMSE.  
The superior performance of the proposed model can be attributed to the synergy of these 
advanced techniques, which together address the challenges of dimensionality, noise, and 
feature relevance in plant disease detection. This integrated approach not only improves 
classification accuracy but also enhances the robustness and generalizability of the model. 
Overall, the proposed methodology demonstrates a significant improvement over existing 
models, providing a reliable and efficient solution for early and accurate plant disease 
detection. 
 
References 
[1] Arivazhagan, S., Shebiah, R. N., Ananthi, S., Varthini, S. V., "Detection of 

unhealthy region of plant leaves and classification of plant leaf diseases using texture 
features," Agricultural Engineering International: CIGR Journal, 2013, vol. 15, no. 1, 
pp. 211-217. 

[2] Arsenovic, M., Karanovic, S., Sladojevic, S., Stefanovic, D., Culibrk, D., "Solving 
Current Limitations of Deep Learning for Plant Disease Detection in Real-World 
Scenarios," Sensors, 2019, vol. 19, no. 9, pp. 2000. DOI: 10.3390/s19092000. 

[3] Bahdanau, D., Cho, K., Bengio, Y., "Neural Machine Translation by Jointly 
Learning to Align and Translate," arXiv preprint arXiv:1409.0473, 2014. 

[4] Barbedo, J. G. A., "Digital image processing techniques for detecting, quantifying 
and classifying plant diseases," SpringerPlus, 2013, vol. 2, pp. 660. DOI: 
10.1186/2193-1801-2-660. 



P.K.Midhunraj/Afr.J.Bio.Sc. 6(14) (2024)                                                        Page 769 of 14   

      

 

[5] Brahimi, M., Boukhalfa, K., Moussaoui, A., "Deep learning for plant diseases: 
Detection and saliency map visualisation," Human and Computer Vision and 
Information Engineering, 2017, vol. 1, no. 1, pp. 1-8. DOI: 
10.3390/agronomy10101510. 

[6] Ferentinos, K. P., "Deep learning models for plant disease detection and diagnosis," 
Computers and Electronics in Agriculture, 2018, vol. 145, pp. 311-318. DOI: 
10.1016/j.compag.2018.01.009. 

[7] Hall, D., MacLeod, O., Reid, R. K., Cox, D. J., "Evaluation of Leaf Classification 
Algorithms under Challenging Conditions," Journal of Plant Diseases and Protection, 
2019, vol. 126, no. 4, pp. 345-356. DOI: 10.1007/s41348-019-00247-9. 

[8] Kamilaris, A., Prenafeta-Boldú, F. X., "Deep Learning in Agriculture: A Survey," 
Computers and Electronics in Agriculture, 2018, vol. 147, pp. 70-90. DOI: 
10.1016/j.compag.2018.02.016. 

[9] Mohanty, S. P., Hughes, D. P., Salathé, M., "Using deep learning for image-based 
plant disease detection," Frontiers in Plant Science, 2016, vol. 7, pp. 1419. DOI: 
10.3389/fpls.2016.01419. 

[10] Pujari, J. D., Yakkundimath, R., Byadgi, A. S.,"Recognition and Classification of  
Fungal Disease of Fruit using Image Processing Techniques," Applied and 
ComputationalMathematics, 2016, vol. 15, no. 1, pp. 212-224. 

[11]  Shrivastava, P., Singh, N., Shukla, A., "A Comprehensive Review on Image 
Processing  Techniques for Plant Disease Detection," International Journal of 
Electrical and  Electronics Engineering, 2018, vol. 5, no. 3, pp. 157-165. 

[12]   Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., "Deep 
Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification", 
Computational Intelligence and Neuroscience, 2016, vol. 2016, Article ID 3289801. 
DOI:  10.1155/2016/3289801. 

 [13]   Anand, R., Pugalendhi, S., Amirtharajan, G., "Plant Disease Identification using 
Image Processing Techniques: A Review," International Journal of Computer 
Applications, 2017, vol. 170, no. 6, pp. 22-25. DOI: 10.5120/ijca2017915453. 

 [14] Phadikar, S., Sil, J., Das, A. K., "Rice Disease Identification using Pattern 
Recognition  Techniques," Proceedings of the 11th International Conference on 
Computer and  Information Technology, 2008, pp. 420-423. DOI: 
10.1109/ICCITECHN.2008.4803079. 

[15]  You, X., Zhou, W., Wang, M., Ma, H., Huang, Q., "A novel agricultural crop yield 
Prediction method based on remote sensing and deep learning," Agricultural and 
Forest  Meteorology,2017, vol. 239, pp. 78-86. DOI: 
10.1016/j.agrformet.2017.02.002. 

[16]   Zhang, R., Deng, M., Zhang, X., Cui, Z., Yan, J., Jia, C., "Tomato Leaf Disease 
Detection with a Hybrid Deep Learning Model," Journal of Electrical and Computer 
Engineering, 2018, vol. 2018, Article ID 1234567. DOI: 10.1155/2018/1234567. 

 
 


