https://doi.org/10.33472/AFJBS.6.6.2024.1391-1400

" Quantitative Morphometric Study of Orbit in Kancheepuram District-Based on CT Scans

Saravana Kumar S^{1*}, Karthick S², Gnanavel A³, Lalitha R⁴, Rajaskehar K V⁵

^{1*}Associate Professor, Department of Anatomy, Meenakshi Medical College Hospital & Research Institute
²Professor & HOD, Department of Anatomy, Meenakshi Medical College Hospital & Research Institute
³Professor, Department of Anatomy, Meenakshi Medical College Hospital & Research Institute
⁴Associate Professor, Department of Anatomy, Meenakshi Medical College Hospital & Research Institute
⁵Dean & Professor, Department of Radiology, Meenakshi Medical College Hospital & Research Institute

Corresponding author: Dr. S.Saravana Kumar

Associate Professor, Meenakshni Medical College Hospital & Research Institute, Kancheepuram

Article Info

Volume 6, Issue 6, May 2024 Received: 09 March 2024 Accepted: 18 April 2024 Published: 22 May 2024 doi: 10.33472/AFJBS.6.6.2024.1391-1400

ABSTRACT:

AIM: To assess and document the quantitative morphometry of orbital cavity for Kancheepuram district Population.

Objectives: To analyse the morphometric measurements of right and left orbital cavity CT scans and to see the statistical significance in it. The Orbit place a very vital role in oral and maxilla facial surgical procedures. The detailed knowledge of the measurements of the orbit is vital for all surgeons who work on the orbit. In this regard a detailed study has been done in the Department of Radiology , Meenakshi Medical College Hospital & Research Institute. Total of 50 patients were included in the study (Male - 25 , Female - 25). Bi orbital distance and inter orbital distance = this test not applicable as no right and left difference exists. Among males, Difference between right and left measures were tested for statistical significance. P values indicate that there is statistically significant difference exist between left and right medial wall, left and right Distance from Center of Eyeball to the apex of orbit and left and right bony orbit volume. Among females, Difference between right and left measures were tested for statistical significance. P values indicate that there is no statistically significant difference exist between left and right orbits of any measures.

Keywords: CT-Scan, Orbit, Morphometry.

© 2024 Saravana Kumar S, This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Creative Commons license, and indicate if changes were made

1. Introduction:

The orbit is a very complicated yet interesting region of human body. Orbital anatomy is vital for surgical correction of the bony orbit to ensure an efficient structural disposition of the visual apparatus. Reconstruction surgery for the management of traumatic or any pathological conditions related to orbit will need thorough knowledge of orbital region.

The study of orbital morphometry is important for choosing better treatment in orbital region Advanced radiological techniques have been proven to be the better choice in cases where skull study can be more enhanced and compared in living and non living, hence the clinical implications can be much authentic. The three-dimensional (3D) reconstruction technique serves as a practical tool in diagnosis, surgical planning, and outcome prediction of plastic and reconstructive surgery. Deformation of the orbit results in apparent physical signs such as enophthalmos and exophthalmos, and may also lead to serious disequilibration of bilateral craniofacial development, especially in children. The main goals of plastic surgery for congenital orbital hypoplasia and orbital fracture are to repair the stereo-structure of the orbit and to reestablish the symmetric relationship between the two orbits. Empirical evaluation of orbital deformations is no longer satisfactory for the level of accuracy that can now be achieved in reconstruction surgery, and a quantitative morphometric method is needed. Many studies have been conducted in adult dry skulls which enumerate orbital height, orbital breadth, and orbital index of the corresponding population. These studies categorize the orbital cavity as microseme, mesoseme and megaseme based on the value of orbital index In late nineteenth and twentieth century there were many studies trying to set the standard method to compare the morphometry of orbit with the radiological images of the living people. The direct measurement in dry skulls stands as an accurate method to study the quantitative morphometry of orbital cavities. But there is a need to study the quantitative morphometry of orbital cavity in living people for assessing the deformed orbit and to plan the reconstructive surgery, as categorized with age, sex Race, food habits and Body Mass Index. Hence, In this study, we are going to study the morphometry measurements of the bony orbit of Kancheepuram District people in computed tomographic images

2. Materials and Method

The quantitative morphometry of orbital cavity will be studied in computed tomographic images of brain belonging to 50 patients (25 males and 25 females), after getting the informed consent from the patients.

The Body Mass Index of the Patients will be calculated From the height and weight of the Patient to compare it with the Nutritional Status of the person.

Inclusion and Exclusion Criteria

The computed tomographic images of brain reported as 'normal study' will be included in this study. The patients with any disease affecting eye and orbital cavity such as thyroid disease, Intra orbital tumor and congenital abnormalities like microphthalmia, anophthalmia and orbitofacial cleft will be excluded from this study.

The study will be conducted after obtaining approval from ethics committee of Meenakshi Medical college hospital and Research Institute in Department of Radiology & Imaging Sciences.

Parameters to be Measured:

Fig.No.1 . Biorbital distance

Fig.No.2 interorbital distance

Fig.No.3 DISTANCE FROM CENTRE OF EYEBALL TO THE APEX OF ORBIT

Fig.No.4 Medial & Lateral wall

Fig.No.5 – Length & Breadth

1.orbital height, 2. orbital breadth, 3. orbital index, 4. length of superior wall, 5. length of inferior wall, 6. length of medial wall,7. length of lateral wall,8. inter orbital distance, 9.bi orbital distance, 10. orbital rim perimeter, 11. orbital foramen area and 12. bony orbital volume.

Sampling:

The quantitative morphometry of orbital cavity will be studied in computed tomographic images of brain belonging to 50 patients (25 males and 25 females).

Data Collection Technique:

The CT scan Measurements will be taken from the Department of Radiology & Imaging Sciences, Meenakshi Medical College Hospitals & Research Institute. In computerized tomographic images of brain, measurements will be taken in bone window by using MM basic 3D application. Anatomical land marks will be marked on the CT to measure all the parameters mentioned above.

Data Analysis:

Statistical analysis is done by using SPSS software (Statistical package for the social sciences) The Quantitative morphometry of right and left orbital cavities is compared by independent sample T test and discriminant functional analysis Wilk's lambda value will be used to assess the variablility for gender determination Using Fisher's linear discriminant function, the coefficient of each parameter is determined .

Duration of The Study: 6 months

3. Results

Μ

Total

Age and sex of the respondents							
Standard							
Mean Deviation Minimum Maximu							
Age	41	15	19	77			

Table .1 – showing the Mean & standard deviation in total population							
	Count	Column N %					
F	18	36.0					

32

50

Table .2 – showing the total percentage of the population

64.0

100.0

Fig.No.6 Difference between right and left: Total cases

Wilcoxon paired test was performed to find the difference between right and left orbits. P values of <0.05 was considered as statistically significant. Total cases

		Mean	Standard Deviation	Mini mum	Maxi mum	t statis tic	P valu e
Orbital Length	Ri ght	24.5	2.2	21.2	32.7	-	0.08
	Lef t	24.9	2.4	21.1	34.9	1.705	8
Orbital Breath	Ri ght	24.2	2.2	20.7	32.2	-	0.73
Orbital Breath	Lef t	24.4	2.3	20.2	32.7	0.344	1
Orbital Index	Ri ght	101.5	10.0	85.7	129.0	-	0.52
	Lef t	102.8	10.9	85.2	140.4	0.642	1
Superior wall	Ri ght	45.3	2.5	40.3	52.2	-	0.29 5
	Lef t	45.2	2.2	41.1	50.4	1.048	
Inferior wall	Ri ght	43.35	3.29	35.70	50.00	0.254	0.79 9
	Lef t	43.2	3.3	33.1	50.0		
Medial wall	Ri ght	38.0	4.8	30.0	47.1	3.002	0.00
	Lef t	41.0	7.7	23.7	50.0		3*
I ateral wall	Ri ght	39.0	4.9	30.1	46.8	_	0.47
	Lef t	39.5	5.7	28.6	49.9	0.716	4
Inter orbital distance		25.0	1.9	21.8	29.2		
Bi orbital distance		95.4	5.9	62.2	101.7		
Orbital Parimeter	Ri ght	53	2	48	58	-	0.07
Orbital Perimeter	Lef t	53	2	48	57	1.803	1
Distance from Center of Eyeball		846	61	709	945	_	0.00
to the apex of orbit	Lef t	865	62	720	945	3.324	1*
Dereventit veluere (Certiere it)	Ri ght	1307 99.8	26333.7	94362	24146 2.8	-	0.06
Bony orbit volume (Cubic units)		1355 29.7	29035.8	94123 .5	25461 5.8	1.839	6

Table. No.3 – showing the results in total population

Difference between right and left measures were tested for statistical significance. P values indicate that there is statistically significant difference exist between left and right medial wall, and Distance from Center of Eyeball to the apex of orbit. Bi orbital distance and inter orbital distance = this test not applicable as no right and left difference exist **Males**

		Mean	Standard Deviation	Mini mum	Maxi mum	test statisti c	P val ue
Orbital Langth	Ri ght	24.2	1.7	21.4	28.4	0.02	0.3 27
	Le ft	24.6	2.1	21.1	28.7	0.70	
Orbital Breath	Ri ght	23.6	1.5	20.7	26.2	0.731	0.4
	Le ft	23.9	1.8	20.2	27.2	-0.731	65
Orbital Index	Ri ght	103.3	10.8	87.0	129.0	-0 561	0.5
	Le ft	103.3	11.7	85.2	140.4	-0.501	75
Superior wall	Ri ght	45.3	2.8	40.3	52.2	-0.094	0.9 25
Superior wan	Le ft	45.4	2.4	41.8	50.4		
Inferior wall	Ri ght	43.80	3.43	35.70	50.00	-0.011	0.9 91
	Le ft	43.7	3.2	39.0	50.0		
Medial wall	Ri ght	38.1	5.0	30.0	47.1	-2.412	0.0 16*
	Le ft	40.9	8.0	24.0	50.0		
Lataral wall	Ri ght	39.2	5.0	30.1	46.8	1 108	0.2
		39.8	5.8	28.6	48.7	-1.108	68
Inter orbital distance		25.5	1.9	21.8	29.2		
Bi orbital distance		95.7	6.9	62.2	101.7		
Orbital Darimator	Ri ght	53	2	48	58	1 220	0.1
Orbital Perimeter	Le ft	53	2	48	56	-1.329	84
Distance from Center of Eyeball	Ri ght	853	56	709	945	2.222	0.0
to the apex of orbit		877	56	721	940	-3.332	01*

Bony	orbit	volume	(Cubic	Ri ght	1244 67.3	16067.1	9436 2.3	15882 0.7	2.076	0.0
units)				Le	1321	21238 5	9412	17679	-2.070	38*
				ft	33.2	21238.3	3.5	7.0		

Table. No.4 – showing the results in Male.

Wilcoxon paired test was performed to find the difference between right and left orbits. P values of <0.05 was considered as statistically significant. Among males, Difference between right and left measures were tested for statistical significance. P values indicate that there is statistically significant difference exist between left and right medial wall, left and right Distance from Center of Eyeball to the apex of orbit and left and right bony orbit volume .Bi orbital distance and inter orbital distance = this test not applicable as no right and left difference exists

Females

		Mean	Standard Deviation	Mini mum	Maxi mum	test statisti c	P val ue
Orbital Length	Ri ght	24.8	2.8	21.2	32.7	1.965	0.0
	Lef t	25.4	2.9	22.1	34.9	-1.805	62
	Ri ght	25.3	2.7	20.8	32.2	0.75	0.4
	Lef t	25.1	2.9	21.1	32.7	-0.75	53
Orbital Index	Ri ght	98.3	7.7	85.7	111.8	-1.938	0.0
	Lef t	101.8	9.6	87.6	127.0		53
Superior wall	Ri ght	45.3	2.0	40.4	48.2	-1.961	0.0
	Lef t	44.8	1.8	41.1	46.8		50
Inferior wall	Ri ght	42.57	2.97	37.90	47.10	0.545	0.5
menor wan	Lef t	42.2	3.3	33.1	47.0	-0.343	86
Modial wall	Ri ght	37.8	4.7	30.1	43.7	1 972	0.0
Mediai wan	Lef t	41.1	7.3	23.7	48.5	-1.8/3	61
Lateral wall	Ri ght	38.7	4.8	30.7	44.1	0.227	0.7
	Lef t	38.8	5.8	30.3	49.9	-0.327	44
Inter orbital distance		24.1	1.8	22.0	27.8		
Bi orbital distance		94.7	3.6	87.7	100.6		
Orbital Perimeter	Ri	54	2	49	56	-1.185	0.2

	ght						36
	Lef t	52	2	49	57		
Distance from Center of Eyeball	Ri ght	835	69	710	915	0 972	0.3
to the apex of orbit	Lef t	844	68	720	945	-0.072	83
	Ri	1420	36300 5	99396	24146		
Bony orbit volume (Cubic units)	ght	57.7	30309.3	.2	2.8	0.292	0.7
	Lef	1415	39334.2	10172	25461	-0.203	77
	t	67.8		7.0	5.8		

Table. No.5 – showing the results in Female.

Wilcoxon paired test was performed to find the difference between right and left orbits. P values of <0.05 was considered as statistically significant. Among females, Difference between right and left measures were tested for statistical significance. P values indicate that there is no statistically significant difference exist between left and right orbits of any measures. Bi orbital distance and inter orbital distance = this test not applicable as no right and left difference exist.

4. Discussion

Difference between right and left measures were tested for statistical significance. P values indicate that there is statistically significant difference exist between left and right medial wall, and Distance from Center of Eyeball to the apex of orbit. Among males, Difference between right and left measures were tested for statistical significance. P values indicate that there is statistically significant difference exist between left and right medial wall, left and right Distance from Center of Eyeball to the apex of orbit and left and right bony orbit volume. Among females, Difference between right and left measures were tested for statistical significant difference exist between left and right medial wall, left exist statistical significance. P values indicate that there is no statistically significant difference exist between left and right orbits of any measures.Bi orbital distance and inter orbital distance = this test not applicable as no right and left difference exists.

References	Right	Left	P value
Mekala 2015	85.22	84.2	0.71
Ezeuko 2015	72.20	72.0	0.88
Gopalakrishna 2015	80.69	81.6	0.011
My study	85.7	85.2	0.521

Table.No. 7 - Comparison of orbital index in various population

5. Conclusion

The data obtained from this study may help to develop a database to determine the normal orbital values. This reference data can be used for quantitative assessment of orbital disease

and orbitofacial deformities, both for preoperative planning and for assessing postoperative outcome

6. References

- 1. Botwe et al.,(2017),Radiologic evaluation of orbital index among Ghanaians using CT scan, Journal of Physiological Anthropology (2017) 36:29.
- 2. Fathy A. Fetouh and Dalia Mandour,(2014), Morphometric analysis of the orbitin adult Egyptian skulls andits surgical relevance, *Eur. J. Anat. 18* (4): 303-315 (2014)
- Gopalakrishna K, Kashinatha M (2015). The Craniometrical study orbital base of Indian Population and its applied importance. Scholars Academic Journal of Biosciences ; 3(2):618–23. Jaswinder Singh , (2016)Orbital Morphometry: A Computed Tomography Analysis,

Jaswinder Singh , (2016)Orbital Morphometry: A Computed Tomography Analysis, The Journal of Craniofacial Surgery _ Volume 28, Number 1, January 2017.

- Laboni Ghorai et.al.,(2017), Sex determination in Indian population by orbital aperture morphometry using posteroanterior radiographs, Journal of Forensic Dental Sciences / Volume 9 / Issue 2 / May-August 2017
- 5. Mekala D , Shubha R , Rohini Devi M (2015)ORBITAL DIMENSIONS AND ORBITAL INDEX: A MEASUREMENT STUDY ON SOUTH INDIAN DRY SKULLS , Int J Anat Res 2015;3(3):1387-1391. DOI: 10.16965/ijar.2015.242
- 6. StanisBaw Nitek Et.al., (2015) Morphometry of the Orbit in East-European Population Based on Three-Dimensional CT Reconstruction, Advances in Anatomy, Volume 2015, Article ID 101438, 10 pages.
- Sumi Ghorai., (2019), A comparative study of orbital morphometry in dry skulls of a district in West Bengal, International Journal of Medical Science and Public Health, 2019 | Vol 8 | Issue 9.
- 8. Vitalis C. Ezeuko and Ferdinand A.E. Om'Iniabohs , Radiologic Evaluation of the Orbital Index among the Igbo Ethnic Group of Nigeria , Eur. J. Anat. 19 (1): 9-14 (2015)
- 9. Yongrong Ji,(2010), Quantitative morphometry of the orbit in Chinese adults based on a three-dimensional reconstruction method, J. Anat. (2010) 217, pp501–506 doi: 10.1111/j.1469-7580.2010.01286.x.