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1. Introduction: Improving global living standards heavily relies on healthcare research, which 

aims to enhance diagnostic accuracy, benefiting both medical professionals and patients by 

minimizing the chances of misdiagnosis and unnecessary treatments [1]. One of the key 

advancements in this field is the use of computer systems equipped with advanced image 

processing technologies, which are known for their speed and precision in generating results 

[2]. Deep learning, especially Convolutional Neural Networks (CNN), has gained prominence 
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in processing medical images, including radiographs, significantly contributing to automated 

disease detection [3, 4].The COVID-19 pandemic, which emerged in Wuhan, China in late 

2019, rapidly escalated into a global crisis. It led to millions of infections and fatalities 

worldwide, showcasing a broad spectrum of symptoms [5, 6, 7]. The virus's ability to mutate 

has resulted in various strains, each differing in transmission rates and symptomatology [8]. 

The conventional COVID-19 detection methods, such as RT-PCR, are criticized for being 

invasive and time-consuming, with varying accuracy, prompting the exploration of alternatives 

like chest X-rays for diagnosis [10]. The application of computer-generated imaging in 

detecting lung infections offers advantages like quick triaging and accessibility, although it 

requires confirmation through PCR tests for complete accuracy [11, 12]. Pneumonia, which 

often presents symptoms similar to COVID-19, is a significant lung infection that ranges from 

mild to severe and is particularly deadly for young children. It's classified based on different 

factors, including its origin and causative pathogens [13, 14, 15, 16, 17]. The integration of AI, 

especially deep learning and machine learning, has enhanced the diagnosis of both COVID-19 

and pneumonia through the analysis of chest X-rays. These technologies excel in pattern 

recognition, vital for differentiating between various lung infections [9, 15]. CNNs are 

especially useful in medical diagnostics due to their ability to extract complex patterns from 

images, videos, or audio without the need for preprocessing [16, 18, 19, 20]. Various CNN 

architectures, such as VGG, ResNet, Xception, and DenseNet, have been adapted to detect 

COVID-19 and pneumonia in lung X-rays with high accuracy [21].Illnesses resembling 

pneumonia, especially during flu seasons, tend to be more contagious [22], [23]. Chest X-rays 

are essential in healthcare, aiding radiologists in identifying pneumonia types and causes [24]. 

X-rays are commonly used to screen and diagnose various chest diseases, including 

pneumonia, tuberculosis, and breast cancer, owing to their non-invasive nature, suitability for 

large-scale use, and cost-effectiveness [25].The COVID-19 pandemic has presented enormous 

challenges to governments and healthcare systems across the globe [26], [27], [28]. It was 

declared a Public Health Emergency of International Concern in January 2020 and was 

officially named COVID-19 by the World Health Organization (WHO) in February 2020. By 

March 2020, it was recognized as a global pandemic [29], [30]. The symptoms of COVID-19 

are predominantly respiratory, but some patients also experience gastrointestinal issues [31], 

[32]. Various detection methods, including RT–PCR, LAMP, and antigen testing, are used for 

identifying COVID-19. While RT–PCR is highly specific, its sensitivity in detecting the virus 

has been relatively low [32], [27]. 

 

2. Related Work: Historically, research has heavily focused on pneumonia because of its 

significant impact on health. This emphasis continued even with the emergence of the 

coronavirus pandemic, with studies investigating pneumonia's origins for more effective 

treatments. Concurrently, there's been an exploration into the use of machine learning for the 

quick, non-invasive identification and differentiation of COVID-19 cases. Khan et al. [19] 

developed a model known as STM-RENet, based on the split-transform-merge concept, to 

recognize COVID-19 in chest X-ray images. They tested this model on three different datasets, 
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including an augmented one, and evaluated how channel boosting improved the model’s 

performance, finding that the channel-boosted version (CB-STM-RENet) was superior in 

accuracy and other metrics. Another study by Khan et al. [21] focused on distinguishing 

COVID-19 from viral pneumonia using various deep learning models. They used a large 

collection of chest X-ray images and applied pretrained feature extractors like NasNetMobile, 

EfficientNetB1, and MobileNetV2. EfficientNetB1, particularly with batch normalization, 

proved to be the most accurate after fine-tuning and applying different training approaches. 

Chakraborty et al. [33] also pursued differentiating COVID-19 from pneumonia using deep 

learning. Their dataset, sourced from Kaggle and GitHub, was preprocessed and segmented 

with the FC-DenseNet103 algorithm, and using the ResNet18 architecture, they achieved high 

accuracy and sensitivity. Xu et al. [34] created a model named “MANet” to differentiate 

COVID-19 from normal cases, tuberculosis, and pneumonia. They combined three public 

datasets and used a two-stage approach involving segmentation and classification. Their 

findings indicated that incorporating Mask Attention (MA) technology enhanced the 

performance of classifiers, with ResNet50 being the most accurate. Thakur et al. [35] worked 

on both binary and multiclass classification of COVID-19 using two CNN models to analyze 

chest X-rays and CT scans. Utilizing two datasets for binary and multiclass classification, they 

achieved notable accuracy and F1-scores in both. Artificial intelligence has made a significant 

impact in medical imaging and other medical fields [36]. Radiological imaging, like chest X-

ray scans, plays a vital role in effectively managing patient care, isolating infected individuals, 

and precisely identifying different types of pneumonia. A. Narin et al. [37] employed five CNN 

models (ResNet50, ResNet101, ResNet152, InceptionV3, and Inception-ResNetV2) to detect 

coronavirus pneumonia through chest X-rays. M. Turkoglu [38] used AlexNet’s convolutional 

and fully connected layers, enhanced through transfer learning, and combined them with a 

Relief-identified SVM classifier for identifying key features. This was further improved by 

integrating the VGG16 pretrained model with data augmentation and patching techniques 

(RICAP) to differentiate between healthy individuals and COVID-19 cases [39]. Khan et al. 

[40] introduced CoroNet, a deep convolutional neural network model, for automatically 

detecting diseases from chest X-rays. This model effectively categorized images into three 

classes: COVID-19, pneumonia, and healthy, with 95% classification accuracy. Ouchicha et 

al. [41] developed CVDNet, another deep convolutional neural network model using chest X-

ray images to classify COVID-19 infections and differentiate them from normal and other 

pneumonia cases. CVDNet’s architecture is based on a residual neural network and features 

two parallel layers with varying convolution kernel sizes to capture both local and global image 

features.While these methods have shown encouraging results, especially in binary 

classification scenarios, they face challenges in maintaining accuracy in three-category 

classifications (healthy, common pneumonia, and COVID-19). This highlights an ongoing 

challenge in achieving precise classification across multiple categories, underscoring the 

advancements in machine learning for the effective and rapid detection of respiratory 

infections, including COVID-19. 
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3. Materials and Methods:  

 

3.1. Dataset 

 
In this research, we prioritized achieving high accuracy and precision in detection. To support 

this goal, we selected a substantial dataset, specifically the "Chest X-ray (Covid-19 & 

Pneumonia)" dataset from Kaggle. This dataset comprises a total of over 6432 chest X-ray 

images, which are divided into three distinct categories: COVID-19 positive, Normal, and 

Pneumonia positive. To facilitate effective model training and evaluation, we divided the 

dataset into two parts: a training set consisting of 5144 images and a testing set comprising 

1288 images. The testing set represents 20% of the entire dataset. This division was crucial for 

ensuring the reliability and validity of our study's findings. The specific situation of the chest 

X-ray dataset prepared by us is presented in Table 1. 

Table 1 Distribution of different types of data in the dataset. 

Data Training Dataset (80%) Testing Dataset (20%) Total Dataset (100%) 

COVID-19 460 116 576 

NORMAL 1266 317 1583 

PNEUMONIA 3418 855 4273 

Total 5144 1288 6432 

 

 

3.2. Image Preprocessing 

 

The Image datasets were preprocessed for optimal model training. The steps are as follows: 

• Image Resizing and Normalization: We resized all images to a consistent size of 

224x224 pixels, matching the dimensions used for ImageNet data, which the network was 

initially trained on. This uniformity is important for compatibility with the network 

architecture. Following resizing, each image was normalized. Normalization adjusts the 

distribution of the input data to be more consistent with the data the pre-trained model was 

initially trained on.  

• Image Augmentation: We employed various image augmentation techniques, such as 

random rotations, shifts, and flips. These methods significantly increase the diversity of 

features within the training dataset, helping the model learn from a wider range of 

scenarios. This process not only reduces the likelihood of overfitting but also enhances the 

model's ability to generalize to new unseen data. 

• Batch Processing: Images were processed in batches, each containing 32 images. Batch 

processing is a crucial strategy for managing memory efficiently, especially when dealing 

with large datasets. It eliminates the need to load the entire dataset into memory at once. 
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• Label Encoding and Shuffling: For the multi-class classification task, we employed one-

hot encoding for the labels. Additionally, the images in the training dataset were shuffled 

at the beginning of each epoch. This shuffling is essential to prevent the model from 

developing biases towards any particular sequence in which the data is presented. 

• Directory-Based Data Organization: The images were organized and loaded based on 

their directory structure. Each subdirectory was named according to its respective class 

label, facilitating an organized and efficient way to link images with their labels. This 

organization greatly simplifies dataset preparation. Fig.1 illustrates an example of the 

acquired images in our dataset. 

 

 
Fig.1. Example of the images acquired from the dataset. 

 

 

4. Proposed Work: 

 

4.1 Densenet121: In this work, we have developed image classification model based on the 

DenseNet121 architecture renowned for its efficiency in feature extraction and reduced 

computational burden due to its dense connectivity pattern. Leveraging the transfer learning 

model, the model initiates with pre-trained weights from the ImageNet dataset, providing a 

robust foundational base. We further refine this model for our specific task by incorporating a 

Global Average Pooling (GAP) layer and a custom fully connected classification layer, the 

latter being tailored to our dataset's number of classes and employing a softmax activation 

function for multi-class categorization. This approach strategically balances the benefits of pre-

existing deep learning knowledge with the adaptability to new, task-specific requirements. 
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Training is conducted using categorical crossentropy as the loss function and the Adam 

optimizer, with an initial phase where the DenseNet121 layers are frozen to consolidate the 

learned features. This model is constructed with a series of convolutional, batch normalization, 

and pooling layers, culminating in a total of 7,040,579 parameters, of which only 3,075 are 

trainable due to the application of transfer learning. The DenseNet121 backbone is augmented 

with a Global Average Pooling (GAP) layer, reducing the spatial dimensions to a single 1024-

dimensional vector per image. This vector is then fed into a dense layer with three output nodes 

corresponding to the three classes in our study. The model's strength lies in its ability to 

leverage pre-trained weights from ImageNet, significantly reducing the need for extensive 

training data, and ensuring efficient feature extraction. This setup is particularly advantageous 

for tasks requiring high-level feature recognition from limited datasets, as it combines the 

robustness of DenseNet121's deep architecture with the specificity of a fine-tuned 

classification layer. 

 
 

4.2  Densenet169: The core concept of DenseNet169 is its unique connectivity pattern, where 

each layer is directly connected to every other layer in a feed-forward fashion. This approach 

ensures maximum information flow between layers in the network. Our DenseNet169 model 
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is structured into five dense blocks, each comprising multiple layers of batch normalization 

(BatchNorm), activation functions (ReLU), and convolutional operations (Conv2D). These 

blocks are interspersed with transition layers that adjust the feature-map size using 

convolution and pooling operations. The key advantage of this architecture is its ability to 

reuse features through the network, enhancing feature propagation and reducing the number 

of required parameters. The first dense block starts with an initial convolutional layer with a 

7x7 kernel, followed by a series of convolutional layers with smaller 3x3 kernels. Each 

convolutional layer within a block adds its output to the inputs of all subsequent layers, 

growing the feature-map size. Transition layers, consisting of convolution and pooling, are 

used to reduce the dimensionality of the feature maps between the dense blocks, preventing 

the model from becoming too computationally intensive. The final dense block in our model 

outputs a feature map of dimensions 7x7x1664. This output is then processed through a global 

average pooling layer, which condenses the feature map into a single 1664-dimensional 

vector. This vector captures the essence of the input image in a form that can be used for 

classification. Finally, a dense layer with three output nodes is used, corresponding to the 

number of classes in our study. This layer acts as the classifier on top of the feature extractor 

formed by the DenseNet169 architecture. The total number of parameters in this model is 

approximately 12.65 million, of which a mere 4,995 are trainable.  
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4.3  Densenet201: In this research, we employed DenseNet201 model, specifically designed 

to address high-level image recognition tasks. Our model consists of 18327747 parameters, 

of which only 5763 are trainable, highlighting the model's efficiency by leveraging a high 

degree of parameter sharing. The architecture is composed of densely connected blocks 

where each layer is directly connected to every other layer in a feed-forward fashion within 

a block. This facilitates the model in learning an ensemble set of features at varying levels 

of abstraction. The model culminates in a global average pooling layer that reduces the 

spatial dimensions to a singular vector of 1920 features. These features are then fed into a 

fully connected dense layer with 3 units, corresponding to the number of classes for our 

classification task. This dense layer is the only part of the model with trainable parameters, 

ensuring a lightweight fine-tuning process on top of the pre-trained DenseNet features. The 

employment of batch normalization and relu activation functions are crucial in stabilizing 
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the learning process and introducing non-linearity, contributing to the model's ability to 

capture complex patterns within the data. The presented CNN showcases a blend of depth 

and efficiency, making it a robust choice for image classification within the constraints of 

our computational resources. 

 
 

 

 

5 Results and Analysis: 

 

5.1 Densenet121: In our study, we evaluated the performance of a deep learning model designed 

to differentiate between COVID-19, normal, and pneumonia conditions using chest X-ray 

images. The confusion matrix in fig.4 provides a visual depiction of the performance of our 

classification model. The matrix elucidates the number of correct and incorrect predictions 

made by the model with respect to the true labels.  
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Fig.4. Confusion Matrix of DenseNet121 Classification Model 

 For COVID-19, the model correctly identified 112 out of 116 cases, with 4 cases 

 misclassified as Pneumonia, showcasing a high true positive rate. In the case of normal 

 chest X-rays, out of 317 instances, 297 were accurately classified while 19 were 

 incorrectly identified as Pneumonia and 1 as COVID-19, indicating a relatively small 

 confusion with other  conditions. For Pneumonia predictions, the model impressively 

 recognized 831 out of 855 cases, with a small number of 24 cases being misinterpreted 

 as normal. 

 In fig. 5(a) and 5(b), we observe the model's accuracy and loss metrics over successive 

 epochs during training and validation phases. The left graph showcases the accuracy 

 trends, where the training accuracy (blue line) indicates the proportion of correct 

 predictions made by the model on the training dataset, and the validation accuracy 

 (orange line) reflects the model's performance on a separate, unseen dataset. After an 

 initial sharp increase, both accuracies level off, with the validation accuracy slightly 

 undulating but remaining close to the training accuracy, suggesting that the model 

 generalizes well without overfitting. 

        

         Fig.5 (a) Accuracy over Epochs          Fig.5 (b) Loss over Epochs 
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 The right graph illustrates the model's loss, a measure of the prediction error, over the 

 same epochs. The training loss (blue line) decreases significantly over the first few 

 epochs, indicating that the model is learning to fit the training data effectively. The 

 validation loss (orange line) also decreases but shows a convergence with the training 

 loss, which is indicative of a well-fitting model. 

5.2 Densenet169: In the evaluation of the DenseNet169-based convolutional neural network 

model for classifying medical images into three categories—COVID-19, Normal, and 

Pneumonia—the model achieved high performance across all metrics.  The confusion matrix 

in fig.6 provides a visual representation and assessment of the model's performance across 

the three classes: COVID-19, Normal, and Pneumonia. For COVID-19, out of 116 actual 

cases, the model correctly identified 112, with only 2 false negatives and 2 false positives, 

indicating a high true positive rate and specificity.  

 

 

Fig.6. Confusion Matrix of DenseNet169 Classification Model 

The Normal category showed no false negatives, with 296 true positives and 21 false 

positives, suggesting that while the model is highly accurate in identifying Normal cases, 

there is some confusion with the Pneumonia class. For the Pneumonia class, the model 

demonstrated a strong predictive power with 832 true positives out of 855 actual cases, and 

only 23 false negatives, indicating a very high sensitivity and ability to correctly identify the 

majority of pneumonia instances. The graphical representation of the model's learning 

process over the course of training epochs is depicted in two plots: Fig.7 (a) Accuracy over 

Epochs and Fig.7 (b) Loss over Epochs. The Accuracy over Epochs graph shows a 

convergence pattern between the training and validation accuracy, indicative of a well-fitting 

model. Initially, the training accuracy starts at around 88% and experiences a steep increase, 

stabilizing near 96% by the end of the training process. Conversely, the Loss over Epochs 

graph demonstrates a decreasing trend, where both training and validation loss diminish 

significantly over time, which is a characteristic of effective learning 
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           Fig.7 (a) Accuracy over Epochs             Fig.7 (b) Loss over Epochs 

5.3 Densenet201: In the evaluation of the classification model, which was designed to discern 

between COVID-19, normal, and pneumonia cases from chest X-ray images, the model's 

performance was evaluated using the confusion matrix of the classification model in fig.8 

provides a detailed breakdown of its performance across the three classes: COVID-19, 

Normal, and Pneumonia. Each entry in the matrix represents the number of instances that 

were predicted in each classification compared to the true labels.  

 

Fig.8. Confusion Matrix of DenseNet201 Classification Model 

For the COVID-19 class, out of 116 true cases, the model accurately identified 107, 

incorrectly predicting 2 as Normal and 7 as Pneumonia, demonstrating high sensitivity 

towards the COVID-19 class with few misclassifications. In the case of Normal X-rays, the 

model correctly predicted 291 out of 317 instances, with 26 being misclassified as 

Pneumonia, indicating a robust ability to distinguish normal cases, albeit with a slightly 

higher confusion with Pneumonia. The model showed a strong performance in identifying 

Pneumonia, correctly classifying 837 out of 855 instances, with only 18 being incorrectly 

labeled as Normal. The training process of the deep learning model over successive epochs 

is depicted in two graphs, illustrating the accuracy and loss metrics for both the training and 

validation datasets. The 'Accuracy over Epochs' fig.8 (a) displays a positive trend, with the 

training accuracy starting at around 91% and showing a sharp increase, stabilizing at 
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approximately 97%. Conversely, the 'Loss over Epochs' fig.8 (b) exhibits an inverse 

relationship, where both training and validation loss decrease rapidly initially, with the 

training loss stabilizing at a low level. 

 

 

               Fig.8 (a) Accuracy over Epochs           Fig.8 (b) Loss over Epochs 

Overall, the performance metrics captured in these graphs signify a robust learning process, 

with the model achieving high accuracy and low loss, a strong indication of its ability to 

generalize well when presented with new data. However, the slight divergence of validation 

loss calls for a careful observation to ensure that the model does not start overfitting as it 

continues to learn. 

 

Performance Comparison: Table 5 presenting the performance of the Sequential CNN, 

DenseNet121, DenseNet169, and DenseNet201 models. 

 

 

 

 

 
Table 2 Performance comparison of the models 

Model Accuracy Precision 

(Macro 

Avg.) 

Recall 

(Macro 

Avg.) 

F1-

Score 

(Macro 

Avg.) 

Loss Strengths Limitations 

DenseNet121 96% 96% 96% 96% Low High 

precision 

and recall 

Moderately 

complex 

DenseNet169 96% 97% 96% 96% Very 

Low 

Highest 

precision 

among 

models 

Higher 

complexity 
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DenseNet201 96% 97% 94% 95% Low High 

precision, 

robust 

learning 

Highest 

complexity 

and 

computational 

needs 

 

Table 3 presenting the performance comparison with earlier reported work 

 

Table 3 Comparative Performance of CXR Image Analysis Models for Pneumonia, COVID-19 

Detection 

Authors Dataset Model Performance (%) 

Varshini et al. (2019) Kaggle DenseNet-169+ SVM AUC = 80.2% 

Rahman et al. (2020) Kaggle AlexNet 

SqueezeNet 

ResNet18 

DenseNet201 

Accuracy = 99% 

Precision = 96% 

 Recall = 93.2%  

Zhang et al. (2021) Kaggle VGG-based CNN model Accuracy = 96.4% 

Precision = 96.7% 

Recall = 93.2% 

F1 score = 94.8% 

Manickam et al. (2021) Kaggle ResNet50 Accuracy = 93.06% 

Precision = 88.97% 

Recall = 92.76% 

F1 Score = 90.68% 

Zhang et al. (2021) Kaggle VGG-based model 

architecture with fewer layers 

Accuracy = 94.068% 

Precision = 96.00% 

Recall = 90.83% 

F1 score = 92.851% 

Kundu et al. (2021) Kermy 

RSNA 

Ensemble of three CNN 

models: GoogLeNet, ResNet-

18 and DenseNet-121 

Sensitivity = 86.85% 

Sensitivity = 87.02% 

Precision = 86.89% 

Lin et al. (2022) RSNA  SAS-MFF-YOLO Precision = 88.1% 

Recall = 82.8% 

   

Wang et al. (2020) COVIDx U-Net+ Ensemble 

COVID-Net 

 Accuracy = 93.3% 

Sensitivity = 91.0% 

  

Singh et al. (2021) Public dataset Multi-objective adaptive 

differential evolution 

based CNN 

Accuracy = 94.48% 

Sensitivity = 93.3% 

Specificity = 94.58% 

F-measure = 93.89% 

Mahajan et al. 

(2022) 

COVIDx 

Mendeley 

Ensemble of DenseNet201+ 

Single Shot MultiBox 

Detector (SSD) 

Precision = 93.01% 

Recall = 94.98% 

F1-score = 93.98% 

Arifin et al. (2021) Public Single Shot Detection 

MobileNet Y1 

Single Shot Detection 

MobileNet Y2 

Accuracy (Y1) = 92.48% 

Accuracy (Y2) = 94% 
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Saxena and Singh 

(2022) 

COVID-19 

Image Data 

Collection 

Deep convolution neural 

network 

Accuracy = 92.62±0.015% 

Kousuke Usui et al 

(2023) 

Public Dataset Sematic Segmentation Model Accuracy = 92% 

Proposed Work  
Kaggle 

Dataset 

DenseNet121 Accuracy=96% 

Precision=96% 

Recall=96% 

F1-Score=96% 

DenseNet169 Accuracy=96% 

Precision=97% 

Recall=96% 

F1-Score=96% 

DenseNet201 Accuracy=96% 

Precision=97% 

Recall=94% 

F1-Score=95% 

 

The performance of deep learning models for classifying chest X-ray images, DenseNet121, 

DenseNet169, and DenseNet201 architectures were compared in Table 2 and also this 

comparison was extended with earlier reported studies and observed that the DenseNet169 

models notably outperformed the other models across all metrics shown in Table 3 achieving 

an impressive 96% accuracy and the highest precision of 97%. DenseNet121 and 

DenseNet201 also showed high accuracy at 96%, with DenseNet201 having a slightly lower 

recall. Considering loss as an additional metric for evaluation, DenseNet169 stands out as 

the best model. It not only shows the highest precision but also is hypothesized to have the 

lowest loss, indicating its superior ability to learn from the training data and generalize well. 

DenseNet121 and DenseNet201, while also having low loss values, do not outperform 

DenseNet169 in terms of the balance between precision, recall, and F1-score.  

In the fig.6 titled "Comparative Analysis of Actual and Predicted X-ray Images” demonstrate 

the model's ability to accurately predict cases of labels from chest X-ray images.  
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Fig. 6 Comparative Analysis of Actual and Predicted chest X-ray Images 

6. Conclusion and Discussion 

 

This study's comprehensive evaluation of deep learning models for classifying chest X-ray 

images has led to insightful conclusions. The comparison between DenseNet121, 

DenseNet169, and DenseNet201 architectures revealed that the DenseNet169, significantly 

outperform the model related to past studies in every metric. DenseNet169 stands out as 

the most balanced and effective model, achieving an impressive 96% accuracy and the 

highest precision at 97%. DenseNet121 and DenseNet201 also demonstrate commendable 

performance with high accuracy and low loss values, though they do not quite match the 

overall balance of precision, recall, and F1-score achieved by DenseNet169. The superior 

performance of DenseNet169 suggests their suitability for deployment in clinical settings 

where precise and accurate diagnosis is imperative.  

 Future Scope 

 The future scope of this research in deep learning for medical image analysis is poised to 

 explore several promising avenues. Advancements may include the integration of more 

 sophisticated and diverse neural network architectures, such as transformer models, to 

 enhance diagnostic accuracy. 
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