Dr. Praveen Kumar Ashok / Afr.J.Bio.Sc. 6(8) (2024)

https://doi.org/10.48047/AFJBS.6.8.2024. 2908-2924

PROCESS VALIDATION OF THE RABEPRAZOLE SODIUM 20 MG INJECTION

Dr. Praveen Kumar Ashok, Arati Tamta, Anisha Arya, Atul Kumar*

Department of Quality Assurance, Gyani Inder Singh Institute of Professional Studies, Dehradun-248003, Uttarakhand, India

> Crossponding Author Details Name: Mr. Atul Kumar Email Id: atulkumar973@gmail.com

Designation: Research Scholar **Affiliation:** Gyani Indersingh Institute of Professional Studies, Dehradun

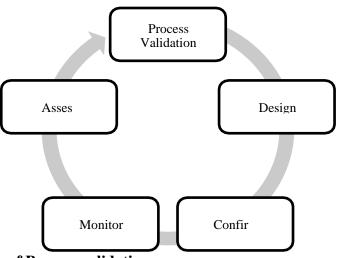
Article Info Volume 6, Issue 8, April 2024 Received: 12 Apr 2024 Accepted: 25 May 2024 Doi: 10.48047/AFJBS.6.8.2024.2908-2924

ABSTRACT

The purpose of this study was to evaluate the relationship among numerous variables to enhance the understanding of the effects of materials and process parameters on drug product quality and to

develop a validated method for manufacturing of RABEPRAZOLE SODIUM 20 MG INJ.). Rabeprazole is used to treat the symptoms of gastroesophageal reflux disease (GERD), a condition in which backward flow of acid from the stomach causes heartburn and possible injury of the esophagus (the tube that connects the throat and stomach) in adults and children 12 year of age and older.

Key Words: Process Validation, Rabeprozole, GI Reflux, Adult.


1. Introduction:

Process validation is establishing documented evidence which provides a high degree of assurance that a specific process (such as the manufacture of pharmaceutical dosage forms) will consistently produce a product meeting its predetermined specifications and quality characteristics.

- **1.1** Steps in validating a Process:
- Development Sequence
- Development stage Pilotscale-upphase
- Product design
- Product characterization

- Product selection
- Process design
- Product optimization
- Process characterization
- Process optimization
- Process demonstration
- Process validation program
- Product/process certification

1.2 Life Cycle of Validation:

1.3 Importance of Process validation-

Process validation provides high degree of assurance of quality of product by reducing the quality differences in batches by providing significant processparameters and controls. It helps to find out faults in manufacturing process and toavoid these faults in future. It minimal the chances of batch failures and reduces the wastage of material and increase the productivity.

1.4 Stages of process validation –

> **Process Design**–The commercial manufacturing process is **defined**.

Process Qualification—The design is evaluated to determine whether the processes meet demands of reproducibility.

Continued Process Verification – Ongoing assurances that all processes remain in a state of control.

1.5 GMP requirements for Process Design

- Design of Facility
- Design of Equipment
- Design of Production and Control Procedures
- Design of Laboratory Controls

Propose process steps (unit operations) and process variables (operating parameters) that need to be studied.

> Identify sources of variability each unit operation is likely to encounter.

- Consider possible range of variability for each input into the operation.
- Evaluate process steps and variables for potential criticality.
- Select process steps and variables for test in representative models.
- > Development studies to identify critical operation parameters and operating ranges
- Designed experiments

Lab scale, pilot scale and/or full-scale experimental batches to gain process understanding

- Establish mechanisms to limit or control variability based on experimental data
- Aim for a "robust process", i.e., one that can tolerate input variability and still produce consistent acceptable output

1.6 Types of Validation

- Prospective validation
- Concurrent Validation
- Retrospective Validation
- > Revalidation

Prospective validation: The objective of the prospective validation is to prove or demonstrate that the process will work in accordance with validation protocol prepared for the pilot production trials. Prospective validation should normally be completed prior to the distribution and sale of the medicinal product. In Prospective Validation, the validation protocol is executed before the process is put into commercial use. During the product development phase the production process should be broken down into individual steps. Each step should be evaluated on the basis of experience or the or etical considerations to determine the critical parameters that may affect the quality of thefinished product. A series of experiments should be designed to determine the criticality of these factors. Each experiment should be planned and documented fully in an authorized protocol [Sumeet et al, 2013].s

Concurrent validation: It is a process where current production batches are used to monitor processing parameters. It gives of the present batch being studied, and offers limited assurance regarding consistency of quality from batch to batch. Concurrent Validation means establishing documented evidence a process does what it is supposed to base on data generated during actual implementation of the process. Concurrent validation may be the practical approach under certain circumstances. It is important in these cases when the systems and equipment to be used have been fully validated previously [Sumeet et al,2013].

Retrospective validation: Conducted fir a product already being marked, and is basedon extensive data accumulated over several lots and over time. Retrospective Validation may be used for older products which were not validated by the fabricator at the time that they were first marketed, and which is now to be validated to confirm to the requirements of division 2, Part C of the Regulation to be Food and Drugs Act. Retrospective Validation is only acceptable for well-established detailed processes and will be Inappropriate where there have recent changes in the formulation of the products, operating procedures, equipment and facility [Sumeetet al,2013].

Revalidation: Re-validation is usually performed to the confirmation of initial validation for a Periodic review. Re-validation provides the evidence that changes in a process and /or the process environment that are introduced do not adversely affect process characteristics and product quality. Documentation requirements will be the same as for the initial validation of the

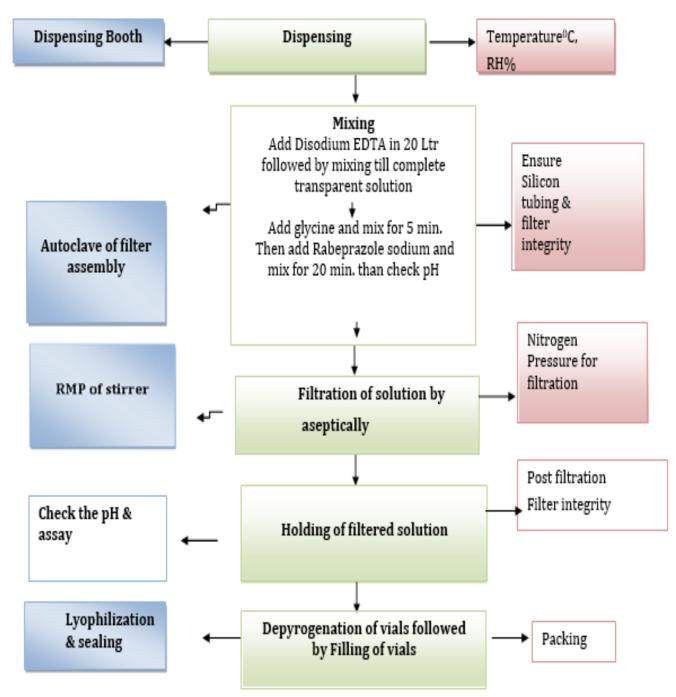
process. Re-validation becomes necessary in certain situations [Sumeetet al, 2013].

- 2. Material and Method:
 - Material used: Rabeprazole sodium
- 2.1 Product Details:

Product Name: Rabeprazole Sodium 20 mg Inj (Lyophilized)

S. No. Equipment Details

- 1. Weighing Balances
- 2. SS Manufacturing vessel with stirrer for solution preparation.
- 3. Sterile filling tank/ Holding tank
- 4. Membrane filtration assembly
- 5. Autoclave
- 6. Vials washing machine
- 7. Sterilizing and Depyrogenation tunnel
- 8. Vial filling machine
- 9. Vial sealing machine
- 10. pH meter
- 11. Lyophilizer
- 12. SS Pressure vessel
- 13. Silicon tubing


2.2 Method:

Three consecutive batches for process validation of the product Rabeprazole Sodium 20 mg Inj (Lyophilized) shall be manufactured as per approved master batch manufacturing record and shall be tested as preapproved standard testing procedure to demonstrate compliance with the approved specifications.

Three validation batches were manufactured and packed and details as:

Sr. No.	Generic Name	Batch No.	Batch Size
1.	Rabeprazole Sodium 20 mg Inj (Lyophilized)	A23	25000 Vials
2.	Rabeprazole Sodium 20 mg Inj (Lyophilized)	B23	25000 Vials
3.	Rabeprazole Sodium 20 mg Inj (Lyophilized)	C23	25000 Vials

2.3 Manufacturing Details:

2.4 **Process Risk on the product Critical Quality Attributes:**

Drug Product CQA	Dispensing	Mixing	Filtration	Feeling	Lyophilization	Sealing
Assay	Low	Low	Low	Low	Low	Low
Blend / Content Uniformity	Low	Low	Low	Low	Medium	Low
Related Substances	Low	Low	Low	Low	Low	Low

2.5 Manufacturing process evaluation

Stage	Critical process parameter	Acceptance Criteria	B. No.: A23	B. No.: B23	B. No.: C23	RECOMMENDATION
	Ultrasonic vibrations	0.01 -0.9(KW)	Min.: 0.47 (KW) Max.: 0.47 (KW)	Min.: 0.47 (KW) Max.: 0.47 (KW)	Min.: 0.43 (KW) Max.: 0.43 (KW)	0.01 -0.9(KW)
	Compressed Air Filtered with 0.2µm	0.2 - 0.4 (mPa)	Min.: 0.32(KW) Max.: 0.37 (KW)	Min.: 0.30(KW) Max.: 0.33 (KW)	Min.: 0.31(KW) Max.: 0.33 (KW)	0.2 - 0.40 (MPa)
	Recirculation Water for injection Filtered with 3µm		Min.: 0.33 (KW) Max.: 0.36 (KW)	Min.: 0.14 (KW) Max.: 0.23 (KW)	Min.: 0.28 (KW) Max.: 0.30 (KW)	0.05 - 0.40 (MPa)
Vial washing	Recycled Water forInjectionPre.Filteredwith0.45µm	0.05 -0.40 (mPa)	Min.: 0.33 (KW) Max.: 0.35 (KW)	Min.: 0.31 (KW) Max.: 0.34 (KW)	Min.: 0.32 (KW) Max.: 0.34 (KW)	0.05 - 0.40 (MPa)
	Water For injection Pressure filtered with 0.22 µm		Min.: 0.14 (KW) Max.: 0.21 (KW)	Min.: 0.14 (KW) Max.: 0.15 (KW)	Min.: 0.12 (KW) Max.: 0.16 (KW)	0.02 - 0.40 (MPa)
	Washing Quality Check	No particulate matter shall be observed in front of white/ black portion of visual board.	No particulate matter observed in front of white/ black portion of visual board.	matter observed in front of white/	No particulate matter observed in front of white/ black portion of visual board.	No particulate matter shall be observed in front of white/ black portion of visual board.

2.6 <u>EQUIPMENTS USED</u>:

Sr.			Equipment ID)
No.	Equipment Name	B. No.: A23	B. No.: B23	B. No.: C23
1.	Thermometer	T01	T01	T01
2.	Weighing Balances	T02	T02	T02
3.	SS Manufacturing vessel with stirrer for solution preparation.	V01	V01	V01
4.	Sterile filling tank / Holding tank	V02	V02	V02
5.	Membrane filter	M01	M01	M01
6.	Membrane filtration assembly	M02	M02	M02
7.	Vials washing machine	V02	V02	V02
8.	Rubber stopper washing machine	P01	P01	P01
9.	Autoclave /DHS/De-Pyrogenating Tunnel	A02	A02	A02
10.	Vial filling Machine	F01	F01	F01
11.	Vial cap sealing	S01	S01	S01
12.	SS Pressure vessel	P02	P02	P02
13.	pH meter	I001	I001	I001
14.	Lyophilizer	L01	L01	L01
15.	Silicon tubing			
16.	Hygrometer			

2.7 BATCH SIZE: 40 L / 25000 vials

2.8 TESTS/PROCESS PERFORMED:

Stage	Test/ Process Performed			
	► Preparation of bulk solution as per BMR			
Bulk solution	► A sample to be drawn after bulk sample preparation is over.			
preparation	► Withdraw composite sample from the tank and collect in glass container.			
	► Send the sample to QC for analysis along with test data slip.			
	Filtrations of bulk solution through sterile $2+0.2 \mu$ membrane			
	filter as per the procedure mentioned in BMR			
Bulk solution filtration	► A sample to be drawn after filtration is over.			
Duik solution mitation	► Withdraw composite sample from the tank and collect in glass			
	container.			
	► Send the sample to QC for analysis along with test data slip.			
	Filling of sterile solution in vials and then half stoppering as per			
	procedure mentioned in BMR			
Filling & half stoppering	► Record filling & stoppering parameter observation in BMR.			
of vials	Withdraw the samples during (initial, middle & end) filling &			
	half stoppering of vials.			
	► Send the samples to QC for analysis along with test data slip.			
	► Lyophilization & sealing of filled vials as per BMR			
Lyophilization &	► Withdraw the samples after lyophilization and sealing			
Sealing	Send the samples to QC for analysis as per FP Specification			
	along with test data slip.			

2.9 OBSERVATION & RECOMMENDATION WITH ACCEPTANCE CRITERIA:

STA(GE: WAS	SHING A	ND ST	ERILIZA'	TION VI	ALS				
	Pressure	(kg/ sq.c	m)			Pressure diff. in tunnel (mm of water)				Conv.
	Recirc ulated water (1-2 kg/ cm ²)	P.W. (1-2 kg/cm ²)	WFI (1-2 kg/ cm ²)	Comp. Air (1.5-2.5 kg/cm ²)	Clarity of vials	Drying zone (10- 20)	Steriliza tion zone (35-45)	Cooling zone (10-20)	Sterilizati on zone Temp. ≥ 300°C	Speed NMT 110 mm/mi n
B. No. : A23										
Min	1.2	1.2	1.2	2.2	OK	14	41	14	315°C	160 mm
Max	1.3	1.3	1.3	2.3	OK	15	42	15	328°C	160 mm
Avg	1.25	1.25	1.25	2.25	OK	14.5	41.5	14.5	321.5°C	160 mm
B. No	.: B23		I							
Min	1.4	1.4	1.5	2.3	OK	16	42	16	320	110 mm
Max	1.4	1.4	1.5	2.3	ОК	16	42	16	325	110 mm
Avg	1.4	1.4	1.5	2.3	OK	16	42	16	322.5	110 mm
B. No	.: C23	1		1	1	1	I	1	1	I
Min	1.5	1.4	1.5	2.3	OK	14	42	16	323	150 mm
Max	1.5	1.4	1.5	2.3	ОК	14	42	16	327	150 mm
Avg	1.5	1.4	1.5	2.3	ОК	14	42	16	325	150

						mm
	Rec om					NMT
_	nen	 		 	 	 160
d	lati					mm/mi
0	on					n

2.10 OBSERVATION & RECOMMENDATION WITH ACCEPTANCE CRITERIA:

STAGE	PARAMETER	ACCEPTANCE CFRITERIA	B. No.: A23	B. No.: B23	B. No.: C23
Rubber Plugs	Clarity of wash water		Complies	Complies	Complies
Pukhar Dluga	Temperature	121 °C	121.4 °C	121.4 °C	121.4 °C
Rubber Plugs	Time	30 Mins.	30 Mins.	30 Mins.	30 Mins.
Filling m/c parts, N ₂ filter and tubing.	Tama		121.4°C	121.4°C 15 psi	121.4°C 15 psi
Uniforms, hand gloves and face masks	Temperature	121°C 15 psi for 30	15 psi for	for 30 min	for 30 min
Membrane filter assembly	Pressure Time	min	30 min		
SS filling vessel and lyophilizer trays					
	Temperature	121 °C	121.4°C	121.4°C	121.4°C
Aluminium seals	Pressure	15 psi	15 psi	15 psi	15 psi
	Time	for 30 min	for 30 min	for 30 min	for 30 min
Drying of Pubbor plugs	Vacuum drying	-500 mbar	-500 mbar	-500 mbar	-500 mbar
Drying of Rubber plugs	Time	5 Mins.	5 Mins.	5 Mins.	5 Mins.

2.11 OBSERVATION & RECOMMENDATION WITH ACCEPTANCE CRITERIA:

STAGE	PARAMETER	ACCEPTANCE CFRITERIA	B. No.: A23	B. No.: B23	B. No.: C23
Take about 30 L of WFI IP $(20^{\circ}C - 30^{\circ}C, pH 4.0)$	Qty of WFI	30 L	30 L	30 L	30 L
-7.0) in the mfg. vessel	pН	4.0 - 7.0	6.00	6.00	6.0

	Temperature	$20^{\circ}\text{C} - 30^{\circ}\text{C}$	26°C	20°C	20°C
Add Disodium EDTA	Stirring Time	For Record	10 min.	30 min.	30 min.
Add Disodium EDTA	RPM	To be established	50 RPM	50 RPM	50 RPM
	Volume	40 L	40 L	40 L	40 L
	Stirring Time	For Record	15 min.	5 min.	5 min.
Add Glycine Make up volume to 40 L with WFI	RPM	To be established	50 RPM	50 RPM	50 RPM
IP $(20^{\circ}\text{C} - 30^{\circ}\text{C})$	pН	For Record	6.00	6.00	6.0
	Description	Clear colourless to light yellow coloured solution free from any foreign particles.	Complies	Complies	Complies
Pass about 3.0 Ltrs Water for Injection IP through the filtration membrane $(2\mu+0.2\mu$	Integrity of Filter	Should be OK	ОК	ОК	ОК
If membrane integrity is OK then start filtration of BULK solutions at 1.8 bar Nitrogen Pressure. Discard initial few ml of filtered solution and collect the sterile solution in Sterile Filling Vessel.	Filtration Time	For Record	70 Mins.	50 Mins.	75 Mins.
After completion of filtration process check the integrity of the filter as per SOP.	Integrity of Filter	Should be OK	ОК	ОК	OK
	pН	10 - 12	11.20	11.50	11.45
	Description	Clear colourless to light yellow coloured solution free from any foreign particles.	Complies	Complies	Complies

STACE	PARAMETER	LIMIT		Batch Number			
STAGE	PAKAMETER			A23	B23	C23	
ر ب		Clear	Initial	Complies	Complies	Complies	
PERING	DESCRIPTING & HALF STOPPERING OF VIALS SLILLING & HALF STOPPERING MALE STOPPER	colorless to light yellow	Middle	Complies	Complies	Complies	
TLLING & HALF STOP OF VIALS		colored solution free from any foreign particles	End				
FIL OF	% Yield	To be estab	lished	90.39 %	94.24 %	94.83 %	
Vial		Chauld ha	Initial	OK	OK	ОК	
sealing	Sealing Quality	Should be OK	Middle	ОК	OK	ОК	
/Visual		To be establi	End	ОК	OK	ОК	
Inspection	% Yield		lished	87.64 %	92.70 %	90.26%	
Packing	% Batch Yield	To be estab	lished	87.64 %	92.70 %	90.26%	

2.12 <u>OBSERVATION & RECOMMENDATION WITH ACCEPTANCE CRITERIA</u>:

2.13 RESULT OF ANALYTICAL TEST PERFORMED WITH ACCEPTANCE CRITERIA:

STAGE	TEST	LIMIT	Batch Numb		
			A23	B23	C23
Bulk	Description	Clear colourless to light yellow coloured solution free from any foreign particles.	Complies	Complies	Complies
before filtration	рН	Between 10.0 to 12	11.23	11.30	11.45
	Assay				
	Rabeprazole	90-110%	100.10	101.0 %	100.0%
	Bio burden	For record	Complies	Complies	Complies
Bulk	Description	Clear colourless to	Complies	Complies	Complies

after filtration		light yellow coloured solution free from any foreign particles.					
	pН	Between 10 to 12	11.45	11.30	11.50		
	Bulk Sterility	Must be sterile	Sterile	Sterile	Sterile		
	Assay						
	Nicorandil	90-110%	100.50	101.15 %	100.0%		

2.14 DETAILS OF ANALYTICAL RESULTS AS PER FINISHED PRODUCT ANALYSIS:

TEST	ACCEPTANCE LIMIT	BATCH NUMBER		
1651	ACCEPTANCE LIMIT	A23	B23	C23
Description	Off-white powder or cake in sealed glass vials.	Complies	Complies	Complies
Reconstitutedsolutioni)Completenessandclarity of solution A)Test A	Solution should not be hazy	Complies	Complies	Complies
Reconstitutedsolutioni)Completenessandclarity of solutionB) Test B	Solution should be free from undissolved matter	Complies	Complies	Complies
Reconstitutedsolutionii)Particulate matter	Solution is clear and free from any Particulate matter	Complies	Complies	Complies
Identification - By HPLC	The retention time of Nicorandil peak in chromatogram of the Assay preparation corresponds to that in the chromatogram of the standard preparation, as obtained in the Assay.	Complies	Complies	Complies
pH of reconstituted	10.0-12.0	11.50	11.45	11.23

solution				
Abnormal Toxicity	To comply the test	Complies	Complies	Complies
Test for Pyrogen	To comply the test	Complies	Complies	Complies
Sterility	To comply the test	Complies	Complies	Complies
Water	Not more than 2.0 %	1.1%	0.82 %	1.70 %
Uniformity of dosage	It must conform to USP general	Between	Between	Between
units(By content	chapter $< 905 >$ criteria.	98.25%-	97.05%-	99.35%-
uniformity)	chapter < 905 > chteria.	102.30%	99.75%	103.33%
Assay : Each	Not less than 90.0 % and not			
lyophilized vial	more than 110.0 % of label claim			
contains:		99.71%	100.05%	99.79%
Rabeprazole sodium				
20 mg				

3.0 <u>DEVIATION/CHANGES (IF ANY)</u>:

No deviation or any types of changes were observed during manufacturing of **Rabeprazole** Sodium Inj 20 mg B. No. . A23, B23 & C23

4.0 <u>STABILITY PLAN</u>:

The three validation batches of **Rabeprazole Sodium Inj 20 mg B. No.** . **A23, B23 & C23** have been charged for stability as per storage conditions specified in the stability protocol

5.0 <u>CONCLUSION</u>:

Based on various studies performed and subsequent observations and results of these three batches, it is concluded that manufacturing process of **Rabeprazole sodium inj 20 mg consistently** produces product of its predetermined quality and recommended to carry out next batches.

AKNOWLEDGEMENT

The authors report no conflicts of interest. The authors are responsible for the content and writing of the paper. Author highly thankful to Gyani inder singh institute of professional studies, Dehradun for providing the all facility for carried out my research work.

CONFLICT OF INTEREST: NIL

REFERENCES

- 1. Anonymous. Remington. The Science and Practice of Pharmacy. 21st edn., Wolters Kluwer Health (India) Pvt. Ltd., New Delhi, 2007, (I), 633-642.
- **2.** Anonymous. Shimadzu Instruction manual pharamaspec UV-1700 series operation guide, Shimadzu Corporation, Kyoto, Japan, 2001, 6.2.
- **3.** Anonymous. The Merck Index. 14th edn., Merck Research Laboratories Division of Merck □ Co. Inc, USA, 1958, 2961.

- **4.** Anonymous. Indian Pharmacopeia vol 2. The Indian Pharmacopeia Commission Ghaziabad, 2010, 1191 1194.
- **5.** Archana Roy, Daisy Yohannan, Lalith K and Ranendra N. Saha. Development of Rapid Spectrophotometric Methods for Estimation of Celecoxib and Acyclovir in formulations, Indian Journal Pharmaceutical Education Research, 2008, 42(3) 215-221.
- **6.** Beckett A. H and Stenlake J. B. Practical Pharmaceutical Chemistry. 4th edn., CBS Publishers and Distributors, New Delhi, 2007, (II), 259-260, 278-290, 293-297.
- 7. Chandran S, Jadhav PR, kharwade PB and Saha RN. "Rapid and sensitive spectrofluorimetric method for the estimation of celecoxib". Indian Journal of Pharmaceutical Sciences, 2006, 68(1), 20-25.
- **8.** Chatwal G and Anand. Instrumental Methods of Chemical Analysis. 5th edn., Himalayan Publishing House, Mumbai, 2007, 1.2, 2.108, 2.168, 2.147.
- **9.** Code Q2A, Text on Validation of Analytical Procedures. ICH Harmonized Tripartite Guidelines, Geneva, Switzerland, 1994, 1 5.
- 10. Deshpande M. M., Gondane S. J, Mahajan M.P., Deshpande A. S and Sawant
- 11. S.D. Estimation of Diacerein by UV Spectrophotometry in Bulk and formulation.
- **12.** International Journal of Chemical and Analytical Science, 2011, 2(1), 1-2.
- 13. Douglas A. Skoog, Donald M. West, James E. Holler and Stanley Crouch.
- 14. Fundamental of Analytical Chemistry. 8th edn., Thomson Asia Pvt. Ltd., Singapore 2006, 2, 344-346.
- **15.** Giannellini V, Salvatore F, Bartolucci G, Coran SA, Bambagiotti-Alberti M. A validated HPLC stability indicating method for the determination oof diacerhin in bulk drug substance J Pharm Biomed Anal. 2005, 39 (3-4), 776-780.
- **16.** Jadhav A. S and Shingare M. S. A New Stability Indicating RP-HPLC Method to Determine Assay and Known Impurity of Celecoxib API. Drug Development and Industrial Pharmacy, 2005, 31 (8), 779-783.
- **17.** Janhavi rao, Kanchan Chauhan, Mahadik K.R and Kadam S.S. "Stability-Indicating high performance liquid chromatographic method for the determination of Diacerein in capsules". Indian journal of pharmaceutical science. 2009, 24-26.
- **18.** Jayasagar G, Kumar MK, Chandrasekhar K, Prasad PS, Rao YM. Validated HPLC method for the determination of celecoxib in human serum and its application in a clinical pharmacokinetic study. Pharmazie. 2002, 57(9), 619-21.
- **19.** Kannappan N, Madhukar A, Srinivasan R, Srinivas R.L.A, Naveen Kumar CH and Mannavalan R. Analytical Method Development and Validation of Diacerein tablets by RP-HPLC. International Journal of ChemTech Research, 2010, 2(1), 143-148.
- **20.** Lalitha Keddal G, Thangavel Venkatachalam, Ramraj Srinivasan, ponnusamy Kalaiselvi, Nagappan Kannappan. A Simple HPLC Method for Quantiation of Diacerin in Tablet Dosag Form. European Journal of Analytical Chemsty, 2010, 5(1), 81-88.
- 21. Bonlawar, J., Setia, A., Challa, R.R., Vallamkonda, B., Mehata, A.K., Vaishali, , Viswanadh, M.K., Muthu, M.S. (2024). Targeted Nanotheransotics: Integration of Preclinical MRI and CT in the Molecular Imaging and Therapy of Advanced Diseases. Nanotheranostics, 8(3), 401-426. https://doi.org/10.7150/ntno.95791.
- 22. Pasala, P. K., Rudrapal, M., Challa, R. R., Ahmad, S. F., Vallamkonda, B., & R., R. B. (2024). Anti-Parkinson potential of hesperetin nanoparticles: in vivo and in silico

investigations. Natural Product Research, 1–10. https://doi.org/10.1080/14786419.2024.2344740

- 23. Suseela, M. N. L., Mehata, A. K., Vallamkonda, B., Gokul, P., Pradhan, A., Pandey, J., ... & Muthu, M. S. (2024). Comparative Evaluation of Liquid-Liquid Extraction and Nanosorbent Extraction for HPLC-PDA Analysis of Cabazitaxel from Rat Plasma. Journal of Pharmaceutical and Biomedical Analysis, 116149. https://doi.org/10.1016/j.jpba.2024.116149
- 24. Chakravarthy, P.S.A., Popli, P., Challa, R.R. et al. Bile salts: unlocking the potential as bio-surfactant for enhanced drug absorption. J Nanopart Res 26, 76 (2024). https://doi.org/10.1007/s11051-024-05985-6
- 25. Setia, A., Vallamkonda, B., Challa, R.R., Mehata, A.K., Badgujar, P., Muthu, M.S. (2024). Herbal Theranostics: Controlled, Targeted Delivery and Imaging of Herbal Molecules. Nanotheranostics, 8(3), 344-379. https://doi.org/10.7150/ntno.94987.
- 26. Dhamija P, Mehata AK, Tamang R, Bonlawar J, Vaishali, Malik AK, Setia A, Kumar S, Challa RR, Koch B, Muthu MS. Redox-Sensitive Poly(lactic-co-glycolic acid) Nanoparticles of Palbociclib: Development, Ultrasound/Photoacoustic Imaging, and Smart Breast Cancer Therapy. Mol Pharm. 2024 May 5. doi: 10.1021/acs.molpharmaceut.3c01086. Epub ahead of print. PMID: 38706253.
- 27. Eranti, Bhargav and Mohammed, Nawaz and Singh, Udit Narayan and Peraman, Ramalingam and Challa, Ranadheer Reddy and Vallamkonda, Bhaskar and Ahmad, Sheikh F. and DSNBK, Prasanth and Pasala, Praveen Kumar and Rudrapal, Mithun, A Central Composite Design-Based Targeted Quercetin Nanoliposomal Formulation: Optimization and Cytotoxic Studies on MCF-7 Breast Cancer Cell Lines. Available at SSRN: https://ssrn.com/abstract=4840349 or http://dx.doi.org/10.2139/ssrn.4840349
- 28. Setia A, Challa RR, Vallamkonda B, Satti P, Mehata AK, Priya V, Kumar S, Muthu MS. Nanomedicine And Nanotheranostics: Special Focus on Imaging of Anticancer Drugs Induced Cardiac Toxicity. Nanotheranostics 2024; 8(4):473-496. doi:10.7150/ntno.96846. https://www.ntno.org/v08p0473.htm
- **29.** Rabia Bushra et al. Enteric coating of Ibuprofen tablet using an aqueous dispersion system. Brazilian Journal of Pharmaceutical Sciences. 2010; 46(1): 100-104.
- **30.** Payam Khazaeli, Abbas Pardakhty and Fereshteh Hassanzadeh. Formulation of Ibuprofen Beads by Ionotropic Gelation. Iranian Journal of Pharmaceutical Research. 2008; 7(3): 163-70.
- **31.** Kumar SS, Rajkumar S and Ruchmani K. Formulation and evaluation of Ibuprofen loaded nanoparticles for improved anti inflammatory activity. Acta Pharmaceutica Turica. 2003; 45: 125-30.
- **32.** Sudhamani T, Noveenkumar reddy K, Ravi Kumar VR, Revathi R and Ganesh V. Preparation and evaluation of ethyl cellulose microspheres of Ibuprofen for sustained drug delivery. International Journal of Pharma Research and Development. 2010; 2(8): 119-22.
- **33.** Ravindra Kamble, Ajay Kumar, Kakasaheb Mahadik and Anant Paradkar. Ibuprofen-Glyceryl Monostearate Beads using Melt Solidification Technique:Effect of HLB. International Journal of Pharmaceutical Sciences. 2010; 2(4): 100-103.
- 34. Surendiran NS and Yuvaraj TV. Preparation and evaluation of Ibuprofen

microspheres by using Co-acervation phase separation technique. International Journal of ChemTech Research. 2010; 2(2): 1214-19.

- **35.** Siva Ramakrishna G , Keshireddy, AnjiReddy, Jalachandra Reddy B ,Dinakar P, Ramatherdana Rao P and Pamula Reddy Bhavanam. Enhanced dissolution rate of Ibuprofen by solid dispersion method. Journal of Innovative Trends in Pharmaceutical Sciences. 2010; 1(4): 170-173.
- **36.** Jessy Shaji and Digambar Jadhav. Statistical development and optimization of solid dispersion self emulsifying pellets. International Journal of pharmaceutical Sciences Review and Research. 2010; 4(3): 157-67.
- **37.** Rabia Bushra, Muhammed Harris Shoib, Nousheen Aslam, Zafar Alam Mehmood and Durriya Hashmat. Enteric coating of Ibuprofen tablet using an aqueous dispersion system. Brazilian Journal of Pharmaceutical Sciences. 2010; 46(1): 100-104.