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ABSTRACT: 

Applications of DNA sequence analysis in biology and 

computer science, including gene discovery, evolution 

research, and genetic illness diagnosis. Finding 

commonalities across codes in various domains is 

essential. When comparing DNA sequences, 

conventional techniques like the subsequence (LCS) 

algorithm are frequently employed. But in order to clarify 

the difficulties in assessing DNA similarity sequence, this 

research study presents a method that makes use of 

machine learning techniques and the Enhanced Longest 

Common Subsequence Algorithm (ELCS). The 

suggested ELCS algorithm combines the strength of data- 

driven models with the efficiency of sequence alignment. 

It predicts alignment scores using a trained machine 

learning model, which lessens workload while keeping 

accuracy high. The Enhanced LCS Algorithm (ELCS) 

was implemented and deployed with Support Vector 

Machines using the NCBI GenBank nucleotide sequence 

dataset. 
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1. INTRODUCTION 

 

Machine learning, which is generally categorized as artificial intelligence, has demonstrated 

remarkable ability in a variety of fields. Machine learning has emerged as a crucial tool in 

genomics to help decipher the complex structure of DNA sequence data. 

DNA sequence similarity analysis is a very encouraging approach that entails the examination 

of genomic sequences to discern similarities, conserved patterns, and plausible functional 

components. The rapid progress in the fields of genomics and bioinformatics has resulted in an 

unparalleled increase in the production of biological data, providing invaluable insight on the 

underlying mechanisms that regulate life. One of the significant obstacles encountered by 

researchers in this field is to the extraction of valuable knowledge from extensive collections 

of DNA sequences. In order to decipher the enigmatic information embedded in these 

molecular blueprints, researchers have progressively relied on machine learning 

methodologies, effectively using algorithms to identify and analyze patterns, correlations, and 

anticipatory observations that could otherwise remain concealed. 

 

Figure 1.1. DNA Sequence Machine Learning Classification Model 

 

This research article aims to investigate the mutually beneficial association between machine 

learning and the examination of DNA sequence similarity. This study explores the theoretical 

foundations of both fields, elucidating the concepts that empower machine learning algorithms 

to analyze extensive genomic datasets efficiently and accurately. With the exponential growth 

of genomic data, there is a potential for unlocking new levels of understanding in biology and 

biomedicine through the combination of machine learning techniques with DNA sequence 

similarity. Our ultimate objective is to stimulate more investigation and ingenuity, cultivating 

a more profound recognition of the revolutionary capacity of machine learning in the realm of 

genomics research. The analysis of DNA sequences is a fundamental task in biological research 

and has far-reaching implications in various domains, such as evolutionary studies, gene 

discovery, and genetic disease diagnosis. DNA processing refers to the utilization of biological 

molecules rather than traditional silicon chips for completing computational tasks. The concept 

of employing individual particles, including molecules, for computational purposes traces its 

origins back to 1959, when physicist Richard Feynman of the United States first presented his 

ideas on nanotechnology. However, the recognition of DNA processing did not occur until 

1994, when Leonard Adleman, an American computer scientist, provided a demonstration of 

how particles may be effectively employed to address computing problems. A calculation 

might be considered the execution of a calculation, which itself might be characterized as a bit 

by bit rundown of obvious guidelines that takes a few information, processes it, and produces 

an outcome. In DNA registering, data is addressed utilizing the four-character hereditary letters 
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in order A - Adenine, G - Guanine, C - Cytosine, and T - Thymine, as opposed to parallel letter 

set (1 and 0) utilized by customary PCs. A calculation's feedback is thusly addressed (in the 

least difficult case) by DNA particles with explicit groupings, the directions are done by 

research facility procedure on the particles, (for example, arranging them as per length or 

hacking strands containing a specific aftereffect), and the outcome is characterized as some 

property of the last arrangement of atoms (like the presence or nonappearance of a particular 

succession). 

 

Figure 1.2. double helix structure of DNA 

 

However, in most difficult problems the quantity of potential arrangements develops 

exponentially with the size of the issue (for instance, the quantity of arrangements could two- 

fold for each town added). This implies that even somewhat little issues would require 

unmanageable volumes of DNA (on the request for huge baths) to address every single 

imaginable response. Adleman's trial was critical on the grounds that it performed limited scope 

calculations with organic atoms. More significantly, in any case, it opened up the chance of 

straightforwardly customized biochemical responses. One of the key challenges in this field is 

to determine the degree of similarity between genetic codes, which aids in understanding 

evolutionary relationships, identifying functional regions, and uncovering genetic variations 

associated with diseases. Traditional sequence alignment methods, such as the LCS Algorithm, 

have been widely employed for comparing DNA sequences and detecting similarities.  The 

algorithm is designed to analyze the sequence that is shared by two provided sequences and 

has the maximum length. The ease and efficacy of DNA sequence comparison have made it a 

widely favored option. To overcome these challenges, recent advancements in machine 

learning have shown promise in various bioinformatics applications. Machine learning models 

can capture complex patterns and dependencies in DNA sequences, enabling efficient and 

accurate analysis. In this context, integrating machine learning techniques with the LCS 

algorithm can enhance its performance by reducing computational requirements and improving 

alignment accuracy. The design of DNA comprises of two long entwined stands that structure 

the well-known twofold helix structure as displayed in Figure 1.2. Each strand is worked from 

a little arrangement of constituent particles called nucleotides. A nucleotide comprises of three 

sections. The initial two sections are utilized to shape the lace like spine of the DNA strand, 

and are indistinguishable in all nucleotides. 

 

2. LITERATURE SURVEY 

 

In this paper, the authors used variety of machine learning approaches, such as Support Vector 

Machines (SVM), Convolutional Neural Networks (CNN), Long Short-Term Memory 

(LSTM), Random Forest classifier, Adaboost, Naive Bayes, Support Vector Machines (SVM), 

and K-Nearest Neighbors (KNN), to sequence the DNA on a dataset of human origin. The 

objective of this analysis is to enhance our comprehension and draw conclusions on the 
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comparative performance of these algorithms [27]. The sequences have been split into 

substrings of a certain length, where the "k value" determines the length of the substring. This 

approach is one method for analyzing the sequence [5]. The paper discusses ML algorithms to 

differentiate DNA sequences based on their nucleotide sequence. [29] Emre Delibas and Ahmet 

Arslan [1] performed a Dim level surface were made by the qualities doled out to the 

nucleotides in the DNA groupings. In this article, the Needleman-Wunsch (NW) algorithm was 

used for sequence alignment and achieved an accuracy of 99.7% with a multilayer perceptron. 

Aligning sequences means finding sequence similarity between DNA sequences [28]. 

Closeness estimations were made between these surfaces utilizing histogram-put together 

surface examinations based with respect to first-arrange measurements. The surface highlights 

for 3 distinct DNA informational collections of various lengths, and determined the likeness 

grids. The article introduces a rapid and effective approach for the discovery of DNA sequence 

similarity. However, it does not explicitly address the utilization of machine learning 

techniques in the study. In this study, the authors Wang et al. introduced a novel strategy 

including a 2D k-mer count matrix, which draws inspiration from the CGR technique. They 

further refine this matrix by evaluating neighboring elements and afterwards evaluate 

similarities using a mix of pairwise distance (PD) and phylogenetic tree approaches that yield 

the most accurate results[29]. Authors [2] mentioned examples of the old style LCS issue to 

identify the portion, variations, and occurrences. In addition, procedure to decrease the size of 

the subsequent charts. At last, a thorough exploratory assessment utilizing late definite and 

heuristic most extreme inner circle solvers is introduced. Weiyang Chena, Bo Liao,Weiwei Li 

[3] proposed a technique to utilizing similitude distance framework can be figured and 

connections from the measured highlights, It has been shown that the DNA categorization of 

individuals exhibits the highest level of entropy and the lowest amount of energy. As one 

progresses from the human species to chimpanzees, orangutans, gorillas, and other distinct 

species, there is a decrease in entropy and an increase in energy. Authors [4] developed a unique 

programming calculation that can accurately register a LCAIS between any two successions 

with rehashed components in O(nm) space, Jiaoyun Yang, Yun Xu, Yi Shang [5] developed a 

productive equal calculation to tackling LCS issues on GPUs. By changing the information 

reliance in the score table utilized by unique programming, the calculation empowers more 

serious level of parallelism and accomplishes a decent speedup on. Costas S. Iliopoulos, M. 

Sohel Rahman [6] find an answer for Inflexible Fixed Hole LCS to O(n3). Outstandingly, in 

each of the above cases, we accept that the two given strings are of equivalent length for 

example n. However, our outcomes can be effectively reached out to deal with two strings of 

various length. B.Lavanya, A.Murugan [7] developed and implemented MLCS in a profoundly 

equal manner, and can be reached out to numerous different information mining applications 

moreover. In future, tackling even more constant issues in sub-atomic biology is conceivable. 

Authors [8] proposed a calculation is fundamentally quicker than the best existing successive 

strategies, arriving at up to 2-3 significant degrees quicker speed on enormous size issues. At 

last, we present a productive equal execution of the calculation. Assessing the equal calculation 

on a benchmark set of both irregular and natural successions uncovers a close direct speedup 

concerning the consecutive calculation.[9] analyzed DNA groupings similitude metric is one 

of the central issues of bunching. The arrangement free strategy is an extremely well-known 

method for computing DNA succession closeness. It ordinarily changes over a grouping into a 

component space considering words' likelihood dissemination as opposed to straightforwardly 

matches strings. Authors[10] A sophisticated framework has been designed for the purpose of 

tracking the locations of k-mer throughout the count network. The methodology is 

implemented across six distinct datasets. The high degree of performance is achieved for two 

benchmark datasets, including AFproject. Specifically, a 100 percent accuracy is achieved for 

two datasets, namely 16 S Ribosomal and 18 Eutherian. Furthermore, notable advancements  
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are made in terms of improve performance use when compared such as HEV and HIV-1. In 

this article, research focuses on the utilization of a neural network method to forecast diseases 

based on DNA sequence analysis, specifically by considering the GC content within the 

sequence. Additionally, a medical picture registration technique is employed to track the 

progression of the predicted diseases. [30]. 

 

3. PROPOSED METHODOLOGY 

 

In order to evaluate the similarity of two genetic codes, this study uses the Enhanced Longest 

Common Subsequences (ELCS) technique inside the Proposed Methodology. The time 

complexity of this approach is O(n2). This technique uses a new approach to combine edge 

computation with DNA sequencing, which leads to better results in terms of performance and 

temporal complexity. This study proposes a method for predicting the similarity assessment of 

genetic code sequences using a machine learning model. The goal is to use machine learning 

techniques to precisely determine how similar the two sequences are. Several machine learning 

methods for classification were compared in this work, including Random Forest, K-Means 

Clustering, Support Vector Machine, Naive Bayes Classifier, Logistic Regression, Stochastic 

Process, and XG Boost. 

 

Figure 1.3. Systematic Representation of Machine Learning SVM Classification for Similarity 

Evaluation of DNA Genetic Codes 

 

In Figure 1.3 states that Systematic Representation of Machine Learning SVM Classification 

for Similarity Evaluation of DNA Genetic Codes, specifically Support Vector Machine (SVM) 

classification, can be effectively utilized for similarity evaluation of DNA genetic codes. SVM 

classification offers a powerful approach to compare and classify DNA sequences based on 

their genetic similarities. It is a step-by-step overview of the data training process for sequence 

similarity. This ML Model to perform a variety DNA Genetic Codes to find the Similarity 

Evaluation, Prediction and Accuracy between DNA. The Dataset DNA genetic codes (A - 

Adenine, T-Thymine, G-Guanine, C-Cytosine) is labeled by an expert to identify the different 

types of sequences present in the dataset. After the Preprocessing techniques, machine learning 

model is trained on the labeled data to learn how to classify the DNA sequences. The 

performance of the trained model is assessed by evaluating it on a separate validation dataset. 

The trained model is utilized for the purpose of predicting the degree of similarity between 

sequences. The evaluation of the model's correctness is conducted by comparing its predictions 

to the ground truth labels of the validation dataset. 
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DNA Sequencing and Data Preprocessing 

In this Methodology, 10000 DNA Genetic Code Data Samples is used to produces raw data in 

the form of nucleotide sequences. These sequences can be quite lengthy, so they are typically 

transformed into fixed-length vectors by encoding the nucleotides (A, C, G, T) into numerical 

representations or converting them to k-mer representations (substrings of length k). This 

process converts each DNA sequence into a numerical format suitable for feeding into machine 

learning classification algorithms. 

 

Feature Extraction 

In Feature Extraction, Once the dataset is converted into nucleotide sequence using Data 

Preprocessing techniques. This process will extract the features from the dataset. In this 

extraction process of DNA Nucleotide is implemented into Enhanced Longest Common 

Subsequence Algorithm (ELCS) and improves performance and the time complexity of O(n2). 

 

Data Labeling 

In this methodology, ELCS is deployed in the NCBI DNA Genetic Codes and finds the 

similarity evaluation of two DNA Genetic codes subsequences. It involves associating each 

DNA sequence with a specific class or category. For instance, the sequences could be labeled 

as functional or non-functional process, etc., 

 

Training the model 

In this Training model, Machine Learning Classification Model is developed, NCBI Dataset is 

tested and trained the model using different classification algorithm. This feature depicts the 

labeled training data in order to acquire knowledge about the data and associations intermediate 

and data is extracted with associated class. Support Vector Machine (SVM) algorithm is 

designed to identify an ideal hyperplane that effectively divides distinct classes within the 

feature space. 

 

Evaluation Model: 

On Comparison of Different Classification Algorithm, Support Vector Machine (SVM) model 

has been trained and its show good results with the prediction and accuracy of 98%, it is 

subjected to evaluation using the set of test data. This evaluation aims to determine the model's 

ability to reliably categorize previously unknown DNA sequences. In Evaluation Model, SVM 

Algorithm and ELCS is trained with 10000 NCBI Dataset DNA Genetic Codes and it improves 

the performance in terms of time complexity and similarity evaluation. 

 

Experimental Result 

Dna Similarity Evaluation Of Elcs And Machine Learning Classification Algorithm 

The Enhanced Longest Common Subsequences (ELCS) Algorithm is employed in the 

experimental result to examine the similarity evaluation of the DNA genetic codes, and it 

increases the algorithm's efficiency by reducing its time complexity to O(n2). The machine 

learning model is integrated with the results of the ELCS Algorithm and similarity evaluation 

to forecast the corresponding DNA sequence patterns. Several machine learning classification 

techniques, including Support Vector Machine, Naive Bayes Classifier, Random Forest, K- 

Means Clustering, Stochastic Process, Logistic Regression, and XG Boost Algorithm, are used 

to assess the model. The performance of two machine learning techniques, Support Vector 

Machine (SVM) and XG Boost Algorithm, is compared in this study. The results show that 

both algorithms offer better accuracy results and predictive power. 

Table 1.1. DNA Similarity Evaluation of Enhanced Longest Common Subsequences (ELCS) 

and Machine Learning Classification Algorithm 
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Samp 

le 1 

 

Genetic Codes 

 

Sample 2 

 

Genetic Codes 

 

Matching Sequence 

% of 

simila 

rity 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC A- 

 

CHIMPA 

NZEE 

GTCAGATTTG 

GGGGA 

TGCTTCTGGCT 

C------ 

GTCACGATTTGG 

GGGAT 

GCTTCTGGCTC---- 

--A- 

 

99.8 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 

-A- 

 

 

GORILLA 

GTCACGATTT 

GGGGG 

ATGCTTCTGG 

CTC ----- A- 

 

GTCAGATTTGGG 

GGATG 

CTTCTGGCTC------ 

 

 

99.7 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 
-A- 

 

ORANGU 

TAN 

GTCACGATTT 

GGGAG 

ATGCTTCTGG 

CTC ---- G- 

GTCACGATTTGG 

GGGAT 

GCTTCTGGCTC---- 

--A- 

 

 

91.67 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 
-A- 

 

 

BABOON 

GTCAGAATTT 

GGGGG 

ATGCTTCTGG 

CTC ----- T- 

 

GTCACGATTTGG 

GGATG 

CTTCTGGCTC------ 

 

 

88.89 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 
-A- 

 

MACAQU 

E 

GTCAGAATTT 

GGGGG 

ATGCTTCTGG 

CTC ----- T- 

 

GTCAGATTTGGG 

GGATG 

CTTCTGGCTC------ 

 

 

88.89 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 

-A- 

 

 

VERVET 

GTCAGAATTT 

GGGGG 

ATGCTTCTGG 

CTC ----- T- 

 

GTCAGATTTGGG 

GGATG 

CTTCTGGCTC------ 

 

 

88.89 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 

-A- 

 

MOUSE- 

LEMUR 

ATCACAG- 

TTGGGGGATG 

CCACT 

GGCCT ----- C- 

 

GTCAGATTTGGG 

GGATG 

CTTCTGGCTC------ 

 

 

75 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 
-A- 

 

 

LEMUR 

ATCACAA- 

TTGGGGG- 

TGCCACGGTC 

CT ------ C- 

 

TCACGTTGGGGG 

ATGCC TGGCT---- 

-- 

 

 

69.44 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 

-A- 

 

 

RABBIT 

ATCACAATTT 

GGGGA 

ACACCACTGG 

CAT ----- C- 

 

TCACATTGGGGG 

TGCCG 

GCT------ 

 

 

69.44 
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HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 

-A- 

 

 

RAT 

GTCACAATTT 

GGAGG 

ATGTTACTGG 

CAT ----- C- 

 

TCACATTTGGGG 

ACCTG GCT------ 

 

 

77.78 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC A- 

 

MOUSE 

GTCACATTTG 

GGGAT 

GTTCTGGCT--- 

--- 

GTCACAGTTTGG 

AGGAT 

GTTACTGACAT--- 

--C- 

 

72.22 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 
TGGC TC A- 

 

HEDGEH 

OG 

GTCAGTTTGA 

TTTTG 

GCT------ 

GTCATAGTTT---- 

GATTATATGGGC 

TT ---- C- 

 

58.33 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 
TGGC TC A- 

 

DOG 

GTCACATTTG 

GGGGA 

TCTCTGGCT---- 
-- 

GTCACAATTTGG 

GGGAT 

ACTACTGGCAT--- 
--C- 

 

80.56 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC A- 

 

CAT 

GTCACGTTTG 

GGGGA 

CTCTGGCT----- 

- 

GTCACAGTTTAG 

GGGGT 

ACTACTGGCAT--- 

--C- 

 

72.22 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC A- 

 

HORSE 

GTCACATTTG 

GGTGC 

CTGGCT------ 

GTCACAATTTAG 

GAAGTG 

CCACTGGCCT----- 

C- 

 

71.12 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC----- 

-A- 

 

 

COW 

GCCTCTCTTT-- 

--------- 

CTGCCCTGCA 

GGC---- 

-- 

GTCACAGTTTGG 

AGGAT 

GTTACTGACAT--- 

--C- 

 

 

33.33 

 

HUM 

AN 

GTCACGATT 

TGGG 

GGATGCTTC 

TGGC TC A- 

 

ARMADI 

LLO 

---------------- 

TGCTACTAAT 

AT ----- T- 

GTCATAGTTT---- 

GATTATATGGGC 

TT ---- C- 

 

36.11 

 

To ensure that they are in an appropriate format for use by the ELCS and machine learning 

algorithm, the DNA similarity evaluation process of the ELCS and machine learning 

classification algorithm may be preprocessed. The procedure could involve turning the data 

into a numerical format, cleaning the data, and removing noise. DNA genetic code similarity 

assessments are produced via the application of the ELCS approach.. The machine learning 

algorithm is taught using DNA sequences and the matching rules given by the ELCS method. 

The training procedure facilitates the acquisition of knowledge by the machine learning 

algorithm, enabling it to effectively categorize DNA sequences into distinct categories. The 

evaluation of the ELCS and machine learning algorithms is conducted on a separate test dataset 

that is not used during the training process. This assessment facilitates the comparison of the 

performance of the two algorithms and enables the identification of the algorithm that exhibits 

superior performance on the provided dataset. 
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Figure 1.4. Graphical Representation of DNA Sequence Similarity 

 

In the fields of bioinformatics and genomics research, graphical representations are essential 

resources for learning important lessons about genetic links, motif conservation, and 

evolutionary trends. Heatmaps, phylogenetic trees, and sequence alignment plots are a few 

examples of common visualizations used in this area. With the aid of these tools, researchers 

can more easily and intuitively understand complex DNA data, leading to the identification of 

conserved regions, evolutionary connections, and functional features present in genomic 

sequences. 

 

Figure 1.5. Human DNA class distribution 

 

The analysis of class distribution entails the determination of the proportion or frequency of 

each category within the human genome. The examination of the distribution of human DNA 

among a population is a crucial undertaking in the process of describing the genetic 

composition of individuals, as it provides valuable insights into the many functions that 

different DNA elements fulfill in biological processes and overall well-being. 

 

Figure 1.6. Chimpanzee DNA class distribution 
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The current study is important because it sheds light on the genetic makeup of chimpanzees— 

our closest living relatives—and helps understand the similarities and differences between the 

genomes of humans and chimps. It is possible to learn a great deal about evolutionary 

relationships, conserved elements, and the genetic bases of unique traits or adaptations shared 

by the two species by comparing the distribution of DNA classes in the two. Studying the 

spread of chimpanzee DNA in an academic setting advances our overall understanding of 

primate genetics and the genetic factors that have shaped the evolution of humans. 

 

Figure 1.7. Prediction of DNA Similarity Evaluation of Machine Learning Classification 

Algorithm 

In DNA sequences, predicting similarity evaluation , encompasses the advancement and 

evaluation of computational models that employ machine learning techniques to categorize 

DNA sequences according to their degree of similarity or dissimilarity. 

 

Analysis of Model Prediction And Accuracy 

The predictions made on a DNA sequence test performed on chimpanzees were analyzed using 

the Pandas crosstab function, which produced the confusion matrix. The following 

performance metrics are calculated and output by the program: Accuracy, precision, recall, and 

F1-score are the basic metrics used in the field of machine learning and classification model 

evaluation. This method included a matrix representation that included a succinct assessment 

and description of a machine learning technique after it was tested on a dataset. Predicting 

category labels given input cases is a common use of classification model performance 

measurement. The amounts of true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN) that the model produced when it was applied to the test data are 

displayed in the matrix. 

 

Classification Accuracy 

 

Classification accuracy is used to find the exact prediction to the dataset and it is calculated 

based on the ratio of the given samples. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
8+1

 
8+1+1+0 

= 0.993 

Precision 

In this method, the outcome is based on the labelled element such as True positive and it is 

calculated based on the True Positive and total number of samples. 
𝑇𝑃 

 
True Positive Counts = 8 

False Positive Counts = 0 

True Negative Counts = 1 

False Negative Counts = 1 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
8+0 

= 0.994 
8+1 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
 

 

𝑇𝑃 + 𝐹𝑃 

F1-Score 

F1-Score is the metric and it used to measure the accuracy model of the given samples. It is 

combination of the precision and it recall scores of a given model. 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 
2∗0.994−0.994 

= 0.994 
0.994+0.994 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

With a score of 0.993, the model is quite accurate. Furthermore, it performs precisely, as 

evidenced by a precision value of 0.994. This means that the model correctly predicted 99.3% 

of the cases, and 99.4% of the positive predictions were correct. 

 

Figure 1.8. Confusion Matrix for Predictions on Human DNA to Chimpanzee DNA Sequence 

 

4. CONCLUSION 

 

To determine how similar two DNA sequences are, the Enhanced Longest Common 

Subsequence algorithm is employed. To maximize the ELCS's performance, its computation is 

accomplished by reducing pointless correlations with earlier research. This tool makes it easier 

to compare the genetic code sequences of two strings to see how similar they are. Using edge 

and ELCS computations, the similarity rate between genetic codes is calculated, removing 

dissimilarity sequences to minimize time complexity. When the program runs inside its time 

restrictions, the execution process time efficiency exceeds its computing capacity. 
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