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ABSTRACT:  

 
The present study was aimed at understanding alleviation of 

cadmium (Cd) stress using arbuscular mycorrhizal (AM) fungi in 

soybean by studying its growth, yield and seed protein 

characteristics. Considering the legumes' tolerance range to Cd and 

its permissible limit in the soil, Cd (as CdCl2.H2O) was added in 

the soil-filled pots at three concentration levels, viz., 10, 20, and 30 

mg/kg of soil. Besides inoculating the AM fungi Glomus mosseae 

and G. fasciculatum, (individually and collectively) in the pots, they 

were also used for seed priming (VAM powder, 25g/kg of seeds). 
Without AM fungi, all growth parameters, yield, and seed protein 

characteristics were adversely affected by Cd stress. Furthermore, 

the Cd-induced decrease in polypeptide intensity (on SDS gels) of 

seed proteins, computed using GelAnalyzer, was restored to some 

extents. Compared to G. mosseae, G. fasciculatum was found more 

effective in boosting plant growth and alleviating the effects of Cd 

at 10 and 20 mg concentrations. In contrast, at 30 mg, both Glomus 

species were found equally effective. Thus, given the role of AM 

fungi in optimizing seed protein quality and quantity in soybean, 

these two species of AM fungi can be recommended for use to 

improve the plant performance in Cd-affected soil. 
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1. INTRODUCTION 

 

The soybean (Glycine max L.) is a valuable agricultural crop known for meeting humans 

seed-based protein and oil demands (Hamayun et al., 2010). It is used in over half of the 

high-protein meals consumed worldwide (He and Chen, 2013). It is also utilized extensively 

in the food sector to make flour, baked goods, and herbal cheese (Singh and Shivakumar, 

2010). However, various abiotic stresses imposed naturally or by anthropogenic activities 

negatively impact soybean global production. Of these stresses, Cd stress has been linked to 

stunted growth and development in a wide variety of crops, including rice (Jan et al., 2019), 

chickpeas (Ghosh et al., 2022), ryegrass (Wang et al., 2020), tomatoes (Rahmatizadeh et al., 

2019), maize (Zhang et al., 2019), etc. 

Cadmium is a hazardous heavy metal that may accumulate in various human tissues and 

organs (Godt et al., 2006), although it tends to concentrate most heavily in the roots of higher 

plants (Arif et al., 2010). Studies have been conducted to understand how Cd affects higher 

plants' metabolic processes. It has been demonstrated that Cd disrupts the synthesis of 

chlorophyll and inhibits enzymes involved in the photosynthesis and Calvin cycle (Wang et 

al., 2009). Additionally, it suppresses the activity of several other enzymes involved in 

nitrogen and sulphur assimilation, glycolysis, and the pentose phosphate pathway. Cd also 

has the potential to trigger the generation of reactive oxygen species (ROS), which damage 

the biomolecules and cell organelles and hamper the plants' overall growth and yield (El 

Rasafi et al., 2022).  

According to Aparicio et al. (2022), heavy metals can be eliminated from agricultural areas 

using various physiochemical and biological remediation strategies. However, these methods 

are time-consuming and costly. They may result in more complex secondary pollutants 

deposition, further diminishing soil fertility (Ashraf et al., 2019). The use of AM fungi is an 

important biological approach for the bioremediation of heavy metal contaminated soil 

(Kumar, S. and Saxena, S., 2019). AM fungi-improved nitrogen absorption in plants is 

directly proportional to the total accumulated seed proteins. So, exposure of plants to AM 

fungi enhances the performance of the host plant under heavy metal stress (Zhan et al., 2018). 

It has been observed that symbiosis with AM fungi can protect plants against Cd stress; 

however, the role of AM fungi in alleviating Cd harmful effects can vary depending on the 

plant and fungus involved, as well as the concentrations of Cd (Garg and Bhandari, 2014). 

Under high concentrations of Cd and Zn, Glomus species have been found to increase 

presymbiotic hyphal expansion, sporulation, and spore germination (Pawlowska and Charvat, 

2004). There is a need to gain insights concerning the effect of G. mosseae and G. 

fasciculatum on the accumulation of seed proteins in soybean under Cd stress. So, the present 

work aimed to investigate the role of these two different AM fungi in mitigating the adverse 

effects of Cd on soybean. 

 

2. METHODOLOGY 

 

2.1 Location, pot and soil 

The pot field experimental area used for this experiment belongs to department of Botany, of 

Kurukshetra University, Haryana state in the north of India. At N 29°.95903, E 76° 813125, 

soil was collected (clay and sandy soil) at a depth of 12-15 centimetres, air-dried, pulverised 

and analysed for their physical and chemical properties (Table 1). After sterilization, 10 kg of 

soil was filled in each polybag (recyclable, UV protected with 15x16 inches dimension).  

 

2.2 Seed variety, inoculum and seed priming 

Soybean seeds of variety PS 1347 were procured from NSC (National Seed Corporation 
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Ltd.), Kota, India. This cultivar is resistant to yellow mosaic virus, soybean mosaic virus, 

bacterial pustule, and bacterial leaf blight (BLB). It is also resistant to charcoal rot and 

Rhizoctonia aerial blight (RAB). Both the Glomus mosseae and G. fasciculatum (densely 

colonized mycorrhizal inoculum having soil, spores, mycelium, and maize root pieces) were 

obtained from laboratory of Plant Pathology, Department of Botany, Kurukshetra University, 

Haryana. After surface sterilisation with 5% sodium hypochlorite (v/v), seeds were washed 

thoroughly with distilled water to remove disinfectant residues. G. mosseae and G. 

fasciculatum were used singly and dually, and the seeds were uniformly coated with the 

VAM powder (25g/1kg of seeds).  

 

2.3 Field experimental setup 

The experiment was carried out using a totally randomized block design. First set with one 

control (without any kind of seed or soil treatment), in second set, 3 controls (only with three 

different level of Cd) and in third set, 9 treatments (with single and dual Glomus species 

along with three Cd levels) represented in Table 2. So, there were total three set each with 

five replicates used in this experiment. After priming, seeds were sown in polybags and an 

extra 15 gm AM fungi (around 40 spores/g of soil) were added to each polybag after one 

week of germination. The plant thinning was done to maintain five plants per polybag.  

 

2.4 Preparation of heavy hetal solutions and plant soil treatment 

Cadmium salt as cadmium chloride (CdCl2.H2O) was used in three different concentration 

levels i.e., 10, 20 and 30 mg per kg of pot soil. The Cd solution was applied at three different 

times of plant growth and development: the first treatment was given during vegetative 

growth, the second at blooming stage, and the third before the pod formation. All the 

morpho-physiological parameters were studied and recorded. The crop took around 118 days 

to mature, producing a compact, determinate plant with tawny pubescence and bright yellow 

seeds. For further protein analysis, mature seeds were gathered, dried, and crushed into seed  

meals. 

 

2.5 Morphological and physiological parameters analysis 

Plant morphological characteristics, such as shoot length, were measured using a meter scale 

in centimeters. The number of branches and leaves/plant was counted manually from the base 

to the tip of the plant. The leaf area was determined by following the method given by 

Weirsma and Bailey (1975), using the equation: A = 0.411+ 2.008 LW, where A = trifoliate 

leaf area, L and W are the maximum length and width of the terminal leaflet of a trifoliate 

leaf, respectively, and 0.411 and 2.008 are constants. The chlorophyll and carotenoid content 

were determined using the methodology as described by Arnon (1949) and Holden (1965) at 

663, 645, 510, and 480 nm wavelengths. 

 

2.6 Yield attributes 

Yield attributes were recorded as per Hussain et al. (2014) methods. The number of 

pods/plant was determined by randomly counting the number of pods (containing at least one 

seed) from 10 plants (selected from each treatment) and then average number of pods/plant 

was calculated. The number of seeds/pod (randomly selected 25 pods from each treatment), 

the number of seeds/plant (randomly selected 10 plants from each treatment), seed weight 

(each replicate's pods were cleaned and crushed, and the seed weight/plant was calculated in 

gm/plant) and 100 seeds were then selected randomly from each set of treatments and 

weighed to determine 100 seeds weight; pod weight by randomly selecting 25 pods from each 

treatment, and average weight/pod was determined. 
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2.7 Defatting of seed meal 

The finely crushed seed meal was defatted with hexane (1g/10ml) at 4ºC for two hours. After 

centrifugation for 10 minutes, the supernatant was discarded, and the process was repeated. 

The seed meal present in the pellet was then vacuum-dried (Singh and Matta, 2008) used for 

various protein characterization studies. 

 

2.8 Protein quantification 

The semi-micro Kjeldahl method was used to estimate the total seed protein content 

(Welcher, 1963). First the seed meal was digested with sulfuric acid in the presence of a 

mixture having copper sulphate, selenium dioxide, and potassium dichromate (1:2:1). Then 

Markham's distillation assembly was used to heat the digest with 40% NaOH and the 

resulting ammonia was fixed in boric acid that was then volumetrically titrated against N/40 

HCl to estimate the nitrogen content. Finally, the protein content was calculated by 

multiplying nitrogen content with 6.25. The methods given by Thanh and Shibasaki's (1976) 

were used separate 7S and 11S globulin sub-fractions. The Bradford (1976) method was used 

to determine the protein concentration in the isolated sub-fractions. 

 

2.9 Preparation of total seed protein extract 

30 mg of defatted seed meal was extracted in 1 ml of 0.025M Tris-HCl (pH 6.8) containing 

2% sodium dodecyl sulphate (SDS). The suspension was heated on a water bath at 80ºC for 

40 minutes. The content was centrifuged at 12,000g for 10 minutes, and the separated 

supernatant was then mixed with 10% (v/v) glycerol and 2% 2-mercaptoethanol (reducing 

conditions) and heated at 95°C for 10 minutes before loading on gels (Singh et al., 2021). 

 

2.10 SDS-polyacrylamide gel electrophoresis 

Electrophoretic separation of total seed proteins extract was carried out following the 

discontinuous system established by Davis (1964) and Ornstein (1964) and formulation 

provided by Laemmli (1970) on a 14% polyacrylamide SDS-gel under reducing conditions.  

A direct current of 18 mA and 32 mA was used in the stacking and separation gel, 

respectively. Protein bands were visualized following staining with Coomassie Brilliant Blue 

R-250, and their molecular weights were calculated using standard marker proteins run on the 

same gel. 

 

2.11 Densitometric scanning of gel 

The densitometry of polypeptides was performed by using GelAnalyzer software. It analyzes 

gel images that have been scanned, taken with a camera, or recorded digitally. It enables 

visual control of band identification and comparative analysis, considering the comparative 

electrophoretic mobility (Rf) of bands. Additionally, it permits the evaluation of bands that 

are not very well resolved. The GelAnalyzer tool computes normalised coordinates of bands, 

analyses their spectra to identify similarities or changes in their components, and visually 

shows the results to provide a quantitative evaluation and analysis of bands. To simplify our 

data and graphs, we divided all collected raw values by a thousand in our computations. 

 

2.12 Statistical analysis 

The averages of five replicates for each set of data were displayed, followed by the standard 

error of the means. A statistical application, SPSS 17.0, was used to evaluate the gathered 

data. 
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3. RESULTS AND DISCUSSION 

 

3.1 Growth and developmental variables  
It was observed that using AM fungi G. mosseae and G. fasciculatum with different 

concentration levels of Cd, improved shoot length, the number of branches/plant and the 

number of leaves/plant of soybean plants compared to control (Table 3). In our first set, with 

10 mg of Cd, the average shoot height, the number of branches/plant and the number of 

leaves/plant were better with G. fasciculatum compared to control. In the second set with Cd 

concentration 20 mg, the highest shoot height (55.6 cm) was noted again with the application 

G. fasciculatum as compared to the control (49.4 cm). The highest number of branches/plant 

and leaves/plant was also reported with the same G. fasciculatum. In the last level of Cd, i.e., 

30 mg, the 52.4 cm average shoot height in plants inoculated with both AM fungi was 

significantly higher than the control (47.6 cm). Whereas the number of branches/plant was 

higher (7.9) with G. mosseae compared to the control (6.6). The number of leaves/plant was 

the highest (47.5) when both Glomus species were supplied together, compared to the control 

(40.6). A reduction in leaf area was observed with an increase in Cd concentration from 10 to 

30 mg. However, these negative effects on the leaf were minimized with the application of 

Glomus species. 

Thus, the introduction of AM fungi has been found to significantly enhance soybeans' growth 

and morphological characteristics, including shoot length, number of branches and leaves per 

plant, as well as leaf area. However, the increased supply of Cd in the soil negatively 

impacted growth and developmental parameters, particularly at higher concentrations. 

Numerous studies shown the beneficial impact of AM fungi on plant growth characteristics. 

It has been demonstrated that AM fungi can improve the growth and yield parameters of 

cotton and soybean (Cely et al., 2016), wheat and faba bean (Ingraffia et al., 2019), chickpea 

(Sohrabi et al., 2019), tomato (Bona et al., 2017), carrot (Kim et al., 2017), etc. In addition, 

inoculation with AM fungi has been demonstrated to increase specific leaf area and root 

volume in plants (Tian et al., 2013; Zhu et al., 2014) compared to non-inoculated plants. 

Arbuscular mycorrhizal (AM) fungi have been shown to enhance plant growth and yields 

under heavy metal stress by facilitating nutrient uptake (Aloui et al., 2011). AM fungi are 

crucial bioagents that produce fungal structures, such as arbuscules, which facilitate the 

exchange of inorganic chemicals and minerals and serve as a biological filter for heavy 

metals, aiding in their control (Li et al., 2023). By improving water and mineral intake, rate of 

photosynthesis, AM fungi support the plant's ability to grow actively, even under heavy metal 

stress (Dhalaria et al., 2020). Studies conducted by Diagne et al. (2020) have highlighted the 

potential of AM fungi in reducing heavy metal toxicity and enhancing plant growth and 

morphology.  

 

3.2 Photosynthetic pigments 

The effect of G. mosseae and G. fasciculatum on chlorophyll-a, b and carotenoid content 

under varying concentrations of Cd stress (Figure 2 A, B, C and D) revealed that both the 

Glomus species helped plants thrive well under heavy metal stress. In our first set with 10 mg 

of Cd, the highest content of chlorophyll a, b and total chlorophyll was recorded with G. 

fasciculatum, while carotenoids were maximum in G. mosseae treated plants. On the other 

hand, at 20 mg of Cd, chlorophyll a, total chlorophyll, and carotenoids were maximum in 

plants co-inoculated with the Glomus species. Without AM fungi, the content of 

photosynthetic pigments (chlorophyll a, b, total chlorophyll and carotenoids) was much more 

reduced under Cd stress. The photosynthetic pigments were significantly reduced at the 

highest level of Cd stress (30 mg), indicating more severe damage to plants’ photosynthetic 

activity. However, plants recovered from this damage when they were dually inoculated with 
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Glomus species, suggesting that AM fungi can effectively mitigate the negative effects of 

heavy metal stress on plant growth and yield (Leyval et al., 2002). Such positive 

enhancement in photosynthesis with AM fungi has also been reported in many different crops 

like wheat (Ibrahim et al., 2011), rice (Porcel et al., 2015), barley (Rezvani et al., 2015), 

maize (Ghorchiani et al., 2018), etc. In contrast to non- mycorrhizal plants, arbuscular 

mycorrhizal symbiosis protects photosynthetic pigments from photoinhibition and photo-

destruction by reactive oxygen species, which are very frequent under abiotic stress (Asrar et 

al., 2012). 

Thus, our study reveals the potential benefits of AM fungi in improving crop production 

under Cd stress. Moreover, the different AM fungi species may have varying effects on plant 

growth and yield under heavy metal stress, highlighting the need for further research in this 

area. However, it is important to note that the optimal species and application method of AM 

fungi may vary depending on the plant species and environmental conditions. 

 

3.3 Yield parameters 

The yield parameters, including the number of pods/plant, number of seeds/pod, number of 

seeds/plant, seed weight (g), 100 seed weight (g), and pod weight (g), were evaluated at the 

time of harvesting. In the control sets, an increase in Cd concentrations from 10 to 30 mg had 

detrimental effects on all yield parameters (Table 4). However, at 10 mg Cd concentration, G. 

fasciculatum was found to be better than G. mosseae in alleviating the Cd stress and 

improving the yield parameters. In the second set with a Cd concentration of 20 mg, the 

highest number of pods/plant (18.1), the number of seeds/pod (2.3), and the number of 

seeds/plant (41.6) were reported when both Glomus species were applied to plants, as 

compared to control. However, the seed weight and pod weight were maximum with G. 

fasciculatum. In the last level of Cd, i.e., 30 mg, a sharp reduction in the number of 

pods/plant, the number of seeds/pod, and the number of seeds/plant was observed. However, 

the seed weight and pod weight were comparatively similar under individual supply of each 

Glomus species. We also recorded all these growth and yield parameters in plants grown in 

Cd and AM fungi soil (Table 3 and 4) and was found that plant grew and flourish well with 

enhanced yield parameters. 

Our results demonstrated the harmful effects of Cd on soybean yield parameters. This is in 

agreement with studies of Andresen and Küpper (2013) and Goyal et al. (2020) that have 

reported the negative effects of Cd on plant growth and yield. The negative effects of Cd on 

soybean yield parameters can be attributed to the adverse effects of Cd on plant metabolism, 

including photosynthesis, respiration, and nutrient uptake (Silva et al., 2014). Our findings 

are consistent with earlier studies that reported arbuscular mycorrhizal fungi's beneficial 

effects on plant growth under heavy metal stress (Jahromi et al., 2008; Kanwal et al., 2015). 

In a recent study by Adeyemi et al. (2021), soybean plants grown in copper, zinc, and lead-

heavy metal contaminated areas showed improved growth and better seed yield when 

inoculated with AM fungi. The positive effect of G. fasciculatum on yield parameters were 

evident even at high Cd concentrations (20 mg), suggesting that this species is more tolerant 

to heavy metal stress than G. mosseae. Thus, our finding will have important implications for 

sustainable production of soybean in Cd-polluted soils.  

 

3.4 Seed Protein content 

Various concentrations of Cd have contrasting effects on seed protein content in soybean 

treated with either one or both the Glomus species (Figure 3 and Table 4). There was a 

negative correlation between the level of Cd stress and the amount of seed proteins 

accumulated. The Glomus-treated soybean plants showed higher seed protein content 

compared to non-treated plants under Cd stress. However, G. fasciculatum was more 
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effective in alleviating Cd levels 1 and 2. However, at Cd concentration level 3, i.e., 30 

mg/kg, the collective use of both Glomus species was found better, with a higher total seed 

protein content (41.56%, 13 T-3) compared to the control plants (38.50%, 10 C-3). Without 

Cd or any AM fungi treatment, total seed protein content was higher (43.43%, 1 C-0). 

It has been found that Cd, Pb, Cr, Hg, Mn, and Co decreases dry matter, nitrogen content, 

seed protein content and seed production (Ghani, 2010). Cd interacts with protein functional 

groups such as carboxyl, sulfhydryl, and amine, which are essential for protein stability and 

function. This interaction cause protein damage or misfolding that eventually resulted in 

decreased seed protein accumulation (Tan et al., 2010). Furthermore, soil contamination with 

heavy metals disrupts symbiotic nitrogen fixation and hence a reduction in synthesis of seed 

storage proteins (Ahmad et al., 2012). 

Mycorrhizal symbiosis helps plants absorb adequate nitrogen and phosphorus which are 

essential for producing proteins and enzymes (Meena et al., 2018). In soybean, Marro et al. 

(2020) reported that AM fungi increases oil and seed protein content. Likewise, Alam et al. 

(2019) found that AM fungi improve biomass, nitrogen and phosphorus contents and seed 

proteins in mung bean plants treated with AM fungi compared to non-treated plants. 

Similarly, Zaidi and Khan (2007) reported that rhizotrophic microbes, particularly AM fungi, 

led to better yield and seed protein content in chickpea. Like previous studies, we have also 

found that soybean plants inoculated with Glomus species have higher levels of total seed 

proteins than non-inoculated plants under Cd stress. Furthermore, AM fungi symbiosis is 

known to enhance Cd tolerance in plants through various mechanisms, such as decreased Cd 

absorption and accumulation in roots, and enhanced phosphorus uptake by AM fungi. Huang 

et al. (2018) and Zhang et al. (2018) reported that AM fungi increases Cd accumulation in 

soybean plants. However, it has been found to decreases Cd accumulation in maize plants (Li 

et al., 2016).  

 

Content of globulin subfractions 

The percentage of β-conglycinin and glycinin varied under different Cd concentrations and 

with a single or dual inoculation of Glomus species (Figure 4). In the first set of experiments 

with a Cd dosage of 10 mg/kg, the β-conglycinin fraction ranged from 22.5% (control) to 

26.8% (AM fungi), while glycinin varied between 23.1% (control) and 24.9% (AM fungi). β-

conglycinin was highest (26.8%) with G. fasciculatum whereas glycinin was maximum 

(24.9%) with dual AM fungi treatments. 

In the second set of experiments with a Cd concentration of 20 mg/kg, the β- conglycinin and 

glycinin content was 19.5% and 20.9% (control) respectively, whereas they were recorded 

highest in G. fasciculatum treated plants. In the last set of experiments with a Cd 

concentration of 30 mg/kg, the β-conglycinin and glycinin content was found highest in 

plants with both fungi as compared to control. In the zero sets (1C-0) without any Cd or AM 

fungi treatment, β-conglycinin and glycinin content were found to be 28.1 and 26.5%, 

respectively, as shown in Figure 4. 

Abiotic stresses, including heavy metal toxicity, have been found to negatively impact seed 

development, resulting in reduced biomass, yield, seed protein content and its major 

subfractions (Juhász et al., 2018; Luo et al., 2018; Nagy-Réder et al., 2022). The variations in 

β-conglycinin and glycinin content with Cd concentration suggest that Cd affects the 

synthesis and accumulation of seed proteins in soybean. Similar findings were reported in 

earlier studies, where Cd exposure was found to alter the expression of genes related to seed 

storage proteins in soybean (Bashir et al., 2019). A study on pea plants revealed that Cd 

exposure led to a significant decrease in globulin and albumin content in seeds, while the 

content of vicilin and legumin increased (Metwally et al., 2005). Nadgórska-Socha et al. 

(2013) revealed that Cd stress in faba bean increases the vicilin and legumin content but 
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decreases convicilin and albumin content. AM fungi have been found to enhance the 

accumulation of seed protein fractions in soybean, under Cd stress (Molina et al., 2020). 

Similarly, in Cajanus cajan, AM fungi have been reported to increase the content of albumin 

and globulin fractions under Cd stress (Garg and Chandel, 2012). A decrease in the 

accumulation of β- conglycinin during soybean seed development under heavy metal polluted 

sites has been reported in several studies (Danchenko et al., 2009; Klubicova et al., 2012). 

The profiles of glycinin proteins were also analyzed in plants grown under heavy metal 

stress, although the difference was not statistically significant.  

 

SDS-polyacrylamide gel electrophoresis 

SDS-PAGE was run to observe the qualitative and quantitative changes in the polypeptide 

pattern of total proteins extracted from seeds of plants grown under varying levels of Cd 

concentrations along with and without AM fungi. We differentiated the two sub-fractions of 

globulins, β- conglycinin and glycinin, based on their molecular weights on the gel, 

consistent with earlier studies (Liu et al., 2007; Ochnio et al., 2018). The intensities of β- 

conglycinin and glycinin subfractions varied with increased Cd concentration. 

Furthermore, single and dual AM fungi regimes positively affected seed protein 

accumulation, resulting in intense and dark bands (Figure 5). GelAnalyzer software was used 

to measure the peak intensity of each β- conglycinin α', α, and β band and glycinin acidic and 

basic bands. It was observed that co-inoculation of both AM fungi improves the globulin sub-

fractions. The band intensities of α and α′ (of β-conglycinin) increased from 2.22 and 2.79, 

respectively, in control plants (2C-1) to 3.24(α) and 4.21(α′) at 4T-2, and 3.27(α) and 4.52(α′) 

at 5T-3 levels of Glomus species. Likewise, the intensity of β of β-conglycinin increased 

from 3.81 (2C-1) in control to 5.05 (4T-2), and 5.25 (5T-3) under single and dual inoculation 

of both Glomus species. The band intensity of acidic and basic subunits of glycinin fraction 

was found to be 3.35 and 7.0 in control plants. It increased to 3.54, 4.22, and 5.05 (acidic) 

and 6.46, 9.14, and 8.80 (basic) with AM fungi (3T-1, 4T-2, 5T-3) treatment. These findings 

indicate that even low levels of Cd exposure, such as 10 mg/kg, significantly impact soybean 

seed protein fractions and their polypeptide intensities. 

Under the influence of 20 mg/kg concentration of Cd (6 C-2) on two sub-fractions and their 

counter effect by Glomus species. The AM fungi species, G. fasciculatum, was observed to 

be better in alleviating Cd stress than G. mosseae and their collective inoculation. In control 

plants, the band intensities of α', α and β of 7S β-conglycinin were observed as 2.14, 2.74 and 

3.52, respectively. With Glomus species treatments (G. mosseae, G. fasciculatum and their 

simultaneous supply), α' values were 2.92, 3.17, 3.33, α values as 3.68, 4.18, 4.10, and β 

values were 4.18, 5.39, 4.92. Glycinin, acidic and basic subunits band intensities in Cd-

stressed plants were 3.79 and 7.10, respectively. With G. 

mosseae and G. fasciculatum individual treatments, these intensity values increased to 3.95 

and 7.81 and 8.57, respectively. With dual inoculation of both Glomus species, these acidic 

and basic subunit intensities were noted as 4.77 and 8.37. The gel picture (Figure 5) depicts 

the apparent loss in band thickness of 6 C-2, as compared to 7 T-1, 8 T-2, and 9 T-3. 

In the third set with 30 mg/kg Cd (10 C-3) both Glomus species showed similar improvement 

in seed protein characteristics. However, alleviation was slightly lesser than in the previous 

two sets (10 and 20 mg Cd). Both the subfractions (11S and 7S) showed almost similar 

degrees of enhancement in band intensity with AM fungi treatment. The band intensities of 

the 7S α', α and β under control conditions were 1.98, 2.69, and 3.8, respectively. In contrast, 

these band intensities were altered with G. mosseae treatment to 2.85, 3.62, 4.5 (11 T-1), 

with G. fasciculatum treatment to 2.71, 3.31, 4.84 (12 T-2), and with their co-inoculation to 

2.88, 4.01, 4.56 (13 T-3). In this last set, the acidic and basic glycinin subunits under control 

plants were found to be 3.13 and 7.37, respectively. With AM fungi treatments, the peak 
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intensity values of both glycinin subunits changed to 4.18 and 8.06 (G. mosseae), 3.79 and 

7.88 (G. fasciculatum), and with co-inoculation to 4.45 and 8.06. 

SDS-PAGE analysis using GelAnalyzer indicates that the impact of Cd supply on seed 

protein characteristics was more pronounced in the last set, despite the addition of AM fungi. 

Numerous studies have reported similar effects of heavy metals and AM fungi on seed 

proteins. Repetto et al. (2013) observed changes in the protein profile in pea under Cd stress. 

Likewise, the qualitative and quantitative alterations in soybean (Amit and Kumar, 2023) and 

chickpea seed protein fractions were seen under Cd stress (Ghosh et al., 2022). Ahsan et al. 

(2007) observed Cd-induced changes in seed protein patterns on SDS- PAGE, with variations 

in protein patterns between molecular weights 116 and 45 kDa and 25 and 14 kDa, indicating 

that these are the major metal-binding proteins in rice. Mycorrhizal exposed plants exhibited 

a significant downregulation of these Cd stress-induced bands, indicating their role in 

reducing the effects of Cd stress. Massa et al. (2020) demonstrated the tight regulation of 

total nitrogen content in common bean by AM fungi and Rhizobia, either alone or in 

combination, and the highest total seed protein content was detected in the seeds of plants 

inoculated with both microorganisms. Stress-responsive proteins could be those polypeptides 

that were either newly detected in protein fractions or whose levels changed in response to a 

stress (Kosová et al., 2023). Heavy metal stress is known to cause the upregulation of several 

proteases, which could explain why some polypeptides, which are degraded by these 

proteases, become less noticeable (Seneviratne et al., 2019). AM fungi have also been 

reported to enhance the accumulations of Mg, K, Zn, Mn, and starch, resulting in increased 

plant resistance against abiotic stress and improved plant growth and physiology, ultimately 

leading to increased yield and seed protein content (Chen et al., 2023). 

 

4. CONCLUSION 

 

We studied the effects of cadmium in soybean in the presence of two Glomus species. The 

results highlight the deleterious impact of cadmium on soybean growth, physiology, yield, 

and seed protein characteristics. Heavy metal stress resulted in reduced biomass and 

photosynthetic activity, ultimately decreasing overall growth and yield. However, inoculation 

with arbuscular mycorrhizal fungi (AMF) ameliorated the Cd-induced toxicity and improved 

soybean growth and seed protein content. Therefore, the inoculation with both Glomus 

species could be a crucial strategy to enhance soybean performance in Cd-contaminated 

agricultural soils. Future research should focus on optimizing the use of AM fungi species in 

crop plants based on the level and type of heavy metals in specific regions, given the crucial 

role of AM fungi in enhancing legume yields and metal detoxification. 
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Tables and figures 

 

Table 1. Chemical composition of soil. 

Soil type Sandy loam soil 

pH 7.60 

EC (ds/m) 0.55 

Organic carbon (%) 0.52 

Available N (ppm) 62.0 

Available P (ppm) 0.65 

Available K (ppm) 56.0 

Available S (ppm) 74.0 

 

Table 2. Experiment treatment allocations (G1= Glomus mosseae, G2= G. fasciculatum) 

1 C-0 Control  Without any amendments (no Cd, no AM 

fungi) 

2 C-1 Only with Cd 

treatments 
 Cd (10, 20 and 30 mg/kg) 

6 C-2 

10 C-3 

3 T-1  

 

 

With AM fungi 

treatments 

 Cd 10mg + G1 

4 T-2  Cd 10mg + G2 

5 T-3  Cd 10mg +G1+G2 

7 T-1  Cd 20mg + G1 

8 T-2  Cd 20mg + G2 

9 T-3  Cd 20mg + G1 + G2 

11 T-1  Cd 30mg + G1 

12 T-2  Cd 30mg + G2 

13 T-3  Cd 30mg + G1 + G2 

 

Table 3.  Representing the average mean value of morphological parameters of soybean 

plants attributes grown with two Glomus species and with different Cd concentrations. 

Lane 

Heavy metal 

treatment 

Cadmium 

VAM 

Treatment 

Shoot 

length (cm) 

No. of 

branches/plant 

No. of 

leaves/plant 

1C-0 NA NA 56.5 ± 1.70 9.9 ± 2.10 57.5 ± 1.10 

2C-1 Cd level 1 None 52.2 ± 1.86 7.8 ± 0.96 48.3 ± 1.98 

3T-1 Cd level 1 G. mosseae 56.3 ± 1.75 9.8 ± 1.51 55.9 ± 1.66 

4T-2 Cd level 1 G. fasciculatum 57.8 ± 1.53 10.3 ± 1.90 58.6 ± 1.50 

5T-3 Cd level 1 Both 57.1 ± 1.68 10.1 ± 1.84 57.7 ± 1.61 

6C-2 Cd level 2 None 49.4 ± 1.36 7.0 ± 1.06 45.2 ± 1.71 

7T-1 Cd level 2 G. mosseae 54.2 ± 1.52 8.8 ± 1.16 52.5 ± 1.91 

8T-2 Cd level 2 G. fasciculatum 55.6 ± 1.52 9.4 ± 1.35 55.4 ± 2.23 

9T-3 Cd level 2 Both 54.4 ± 1.74 8.8 ± 1.10 53.0 ± 2.32 

10C-3 Cd level 3 None 47.6 ± 1.40 6.6 ± 0.82 40.6 ± 2.52 

11T-1 Cd level 3 G. mosseae 51.9 ± 2.07 7.9 ± 1.10 45.7 ± 2.01 

12T-2 Cd level 3 G. fasciculatum 52.3 ± 1.85 7.5 ± 0.79 46.1 ± 1.80 

13T-3 Cd level 3 Both 52.4 ± 2.52 7.7 ± 0.97 47.5 ± 1.63 

Each value is a mean of five replicates, ± SE and means followed by same letter/s are not 

significantly different at P ≤ 0.05. 
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Table 4. Showing various average mean value of yield attributes of soybean plant grown 

under Cd stress with two Glomus species inoculated seeds. 

Lan

e 

No. of 

Pods/plant) 

No. of 

seeds/pod 

No. of 

seeds/plant 

Seed 

Weight 

(g) 

100 seed 

weight (g) 

Pod 

weight 

(g) 

Nitro

gen 

Cont

ent % 

1C-

0 
19.8 ± 2.11 2.6 ± 0.39 52.4 ± 4.39 

0.16 ± 

0.03 
16.5 ± 3.07 

0.51 ± 

0.05 
6.95 

2C-

1 
16.2 ± 1.68 2.2 ± 0.23 36.6 ± 4.50 

0.12 ± 

0.02 
12.6 ± 2.33 

0.41 ± 

0.09 
6.65 

3T-

1 
18.1 ± 1.47 2.4 ± 0.20 44 ± 5.47 

0.14 ± 

0.02 
14.2 ± 2.62 

0.44 ± 

0.14 
6.75 

4T-

2 
19.5 ± 1.61 2.6 ± 0.20 50.6 ± 7.82 

0.15 ± 

0.02 
15.1 ± 2.39 

0.47 ± 

0.13 
6.92 

5T-

3 
19.5 ± 1.59 2.5 ± 0.24 48.7 ± 6.45 

0.14 ± 

0.03 
14.6 ± 3.00 

0.45 ± 

0.16 
6.88 

6C-

2 
14.7 ± 1.39 1.9 ± 0.29 28 ± 5.83 

0.11 ± 

0.02 
11.8 ± 3.01 

0.35 ± 

0.08 
6.35 

7T-

1 
17.5 ± 1.58 2.2 ± 0.31 38.6 ± 6.42 

0.13 ± 

0.02 
13.8 ± 2.31 

0.39 ± 

0.09 
6.70 

8T-

2 
17.9 ± 1.43 2.3 ± 0.33 41.2 ± 7.69 

0.13 ± 

0.02 
13.7 ± 2.54 

0.4 ± 

0.09 
6.85 

9T-

3 
18.1 ± 1.94 2.3 ± 0.31 41.6 ± 9.78 

0.13 ± 

0.03 
13.6 ± 3.60 

0.39 ± 

0.11 
6.82 

10

C-3 
12.5 ± 1.51 1.7 ± 0.30 21.2 ± 3.49 0.1 ± 0.02 10.9 ± 2.73 

0.28 ± 

0.05 
6.16 

11T

-1 
14.6 ± 1.02 1.8 ± 0.20 26.4 ± 5.72 

0.11 ± 

0.02 
11.5 ± 2.37 

0.33 ± 

0.04 
6.60 

12T

-2 
14.7 ± 1.59 1.8 ± 0.20 26.6 ± 7.40 

0.11 ± 

0.02 
11.5 ± 2.56 

0.35 ± 

0.07 
6.55 

13T

-3 
14.9 ± 1.62 1.8 ± 0.33 26.8 ± 7.75 

0.12 ± 

0.02 
11.8 ± 2.59 

0.36 ± 

0.07 
6.65 

 

Each value is a mean of five replicates, ± SE and means followed by same letter/s are not 

significantly different at P ≤ 0.05.  

 

 
Figure 1. The effects of Cd and AM fungi various treatments on soybean leaf area (cm2). 
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Figure 2. The effects of Glomus species on soybean plants grown under different Cd levels. 

 

 
Figure 3. The seed protein content (%) under different concentration of Cd and with different 

treatment with AM Fungi. 
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Figure 4. Effect of Cd toxicity on soybean major globulin seed protein fractions. 

 

 
Figure 5. The SDS-gel of soybean seed protein and major fractions from plants grown at 

various Cd and Glomus species. 
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