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Abstract 

The agricultural sector stands as the cornerstone of a nation's innovative growth, playing a pivotal 

role in providing sustenance and raw materials. The critical importance of agriculture as a primary 

food source underscores the pressing need for effective plant disease identification. Traditional 

methods, reliant on subjective visual inspection by agriculture professionals or plant pathologists, 

have proven to be time-intensive and resource-demanding. So, this study introduces a technologically 

advanced solution by harnessing the capabilities of Machine Learning (ML) and Deep Learning (DL) 

for comprehensive plant disease detection and classification. The research leverages an 

experimentally evaluated software solution to address the limitations of conventional approaches. 

The proposed model integrates a sophisticated convolutional neural network (CNN) based on 

residual networks, facilitating robust feature extraction for accurate disease classification. 

Additionally, the study incorporates a preprocessing step to eliminate various types of noise with 

generic algorithm dependent Particle swarm optimization (GA-PSO) feature analysis, thereby 

enhancing the normalization of dataset images and improving the overall efficacy of the model.  

Building upon the success of the GA-PSO optimized Residual Network based CNN model in plant 

disease detection, this study extends its scope to include a novel aspect – pesticide suggestion, which 

is named GPR-CNN. The integration of pesticide recommendation systems into the framework aims 

to provide a holistic solution for managing identified plant diseases. Leveraging the same DL 

architecture, the model utilizes its learned features to suggest targeted pesticide interventions based 

on the specific disease detected. The simulation results underscore the efficacy of the proposed GPR-

CNN model in not only achieving commendable accuracy rates in plant leaf disease detection and 

classification but also in offering precise and tailored pesticide suggestions. This innovative approach 

holds significant promise for revolutionizing agricultural practices, managing, and treating plant 

diseases. The seamless integration of plant disease detection and pesticide suggestion in a unified 

framework represents a significant step towards sustainable and technologically driven agriculture. 

Keywords: Suggestions to Farmers, Plant disease classification, Image preprocessing, 

convolutional neural network, Convolutional neural network, agricultural innovation. 
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1. Introduction 

Detecting and classifying plant diseases holds paramount importance in the realm of agriculture, serving 

as a pivotal tool in ensuring global food security, safeguarding crop yields, and sustaining agricultural 

economies [1]. The motivation for extensive research in this domain stems from the pressing need to 

address the multifaceted challenges posed by plant diseases, which have far-reaching implications on 

agricultural productivity, environmental sustainability, and human welfare [2]. First and foremost, plant 

diseases pose a significant threat to global food production and security. With a growing global 

population and escalating food demands, the occurrence of crop diseases jeopardizes the supply of 

essential food commodities, leading to shortages, price fluctuations, and food insecurity [3]. By 

accurately detecting and classifying plant diseases, researchers aim to mitigate yield losses, enhance 

crop resilience, and ensure a stable food supply chain to meet the demands of a burgeoning population. 

Moreover, the impact of plant diseases extends beyond agricultural productivity to environmental 

sustainability and ecosystem resilience [4].  

Pesticides and chemical treatments employed to combat plant diseases often entail adverse 

environmental consequences, including soil degradation, water contamination, and biodiversity loss [5]. 

Consequently, there is a critical need to develop sustainable disease management strategies that 

minimize reliance on chemical inputs and promote ecological balance. Research in plant disease 

detection and classification endeavors to advance eco-friendly approaches, such as integrated pest 

management, biological control methods, and precision agriculture techniques [6], to mitigate the 

environmental footprint of agricultural practices. Furthermore, the globalization of trade and the 

interconnectedness of agricultural systems have exacerbated the spread of plant diseases across 

geographical boundaries [7]. The emergence of novel pathogens, invasive species, and transboundary 

pests poses unprecedented challenges to crop health and biosecurity on a global scale. Effective disease 

surveillance, timely recognition, and rapid reaction mechanisms are imperative to prevent spread of 

plant diseases, thereby safeguarding agricultural economies, trade networks, and rural livelihoods [8]. 

In addition to its agricultural and environmental significance, research in plant disease detection and 

classification holds promise for technological innovation and scientific advancement. Leveraging 

cutting-edge technologies such as artificial intelligence, ML, remote sensing, and genomic sequencing, 

researchers strive to develop sophisticated disease diagnosis tools, predictive models, and decision 

support systems for precision agriculture [9]. These technological innovations empower farmers with 

real-time insights, actionable intelligence, and data-driven solutions to effectively manage crop health, 

optimize resource utilization, and maximize agricultural productivity in an era of climate variability and 

resource constraints. In essence, the motivation for research in plant disease detection and classification 

transcends disciplinary boundaries, encompassing food security, environmental sustainability, 

economic resilience, and technological innovation [10]. By harnessing the collective efforts of 

scientists, policymakers, farmers, and stakeholders, we can address the complex challenges posed by 

plant diseases and pave the way for a more resilient, sustainable, and equitable agricultural future. 

2. Literature Survey 

In his proposal [11], Demilie advocated conducting comparison research that would evaluate the 

effectiveness of different methods for recognition and categorization of plant diseases. The results of 

their study provide insights into the efficacy of various strategies in this field, which assists researchers 

and practitioners in identifying appropriate ways for the control of plant diseases. In their review, 

Morchid et al. [12] focused on intelligent detection approaches for sustainable agriculture. These 

methods included Internet of Things (IoT)-based DL, and ML for the detection of plant diseases. The 

detailed evaluation that they conducted provides insightful information about the use of cutting-edge 

technology in agricultural settings. Sarah and her colleagues [13] investigated on the impact that super-
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resolution has on the automated diagnosis of plant diseases, with  importance on detection of potato late 

blight. The research that they conducted emphasizes the use of sophisticated image processing methods 

to improve the accuracy of illness identification. Using IoT, ML, and DL, Prasad and Thyagaraju [14] 

presented a complete assessment of early plant disease diagnosis based on leaf analysis. Their research 

provides an overview of the extent to which these technologies have the potential to facilitate proactive 

disease management techniques. Hari et al. [15] suggested an enhanced federated DL system for the 

identification of diseases that affect plant leaves. In this work, they highlight recent developments in 

federated learning algorithms, which aim to improve the accuracy and scalability of illness detection 

models.  

Utilizing deep features to achieve more precision, Reis, and Turk [16] presented an integrated DL and 

ensemble learning model for wheat disease diagnosis. When it comes to identifying illnesses that might 

impact wheat harvests, their approach offers some encouraging findings. To industrial farming systems, 

Sajitha et al. [17] carried out a review that focused on ML and DL image-based plant disease 

classification. The findings of this analysis provide valuable perceptions into extremely cutting-edge 

methods now available for the automated identification of diseases in agricultural settings. The authors 

Manoj and Sasilatha [18] suggested an automated technique for diagnosis of plant diseases that makes 

use of an effective deep ensemble learning mechanism. Through their study, they have shown 

breakthroughs in DL methods for the purpose of providing accurate and efficient disease diagnostics in 

smart agricultural applications. Vision transformers were the focus of Brown and De Silva's [19] 

proposal for a technology that might identify plant diseases using multispectral pictures. The 

determination of their research is to investigate the applications of transformer-based models in 

agricultural imaging with the purpose of improving disease detection. Using few-shot learning methods, 

Rezaei et al. [20] presented a method for the detection of plant diseases in situations with few data. The 

outcomes of their research suggest that few-shot learning was a viable method for tackling the 

constraints posed by data scarcity in disease detection efforts. 

Within the context of greenhouse plant habitats, Wang, and Liu [21] suggested a technique for the 

identification of vegetable diseases by using an upgraded version of the YOLOv8 algorithm. The work 

that they do leads to the development of disease detection technologies that are both effective and 

scalable for greenhouse farming. To identifying and forecasting rice plant illnesses, Pahlawanto et al. 

[22] created an approach that makes use of CNN methods. The use of CNNs for the purpose of reliable 

disease identification in rice crops is the primary emphasis of their research. Using ML, Srinivas et al. 

[23] provided an improved framework for agricultural disease diagnosis, with an emphasis on accuracy 

and efficiency in disease identification. The purpose of their approach is to make it easier to implement 

timely interventions for disease control in agricultural systems. In their study, Trippa et al. [24] 

investigated the next-generation strategies. They highlighted creative ways for enhancing disease 

monitoring and management in agricultural settings. In their contribution to the development of 

automated disease diagnostic systems in agricultural operations, Lekha et al. [25] established a ML 

model for discovery of diseases that affect tomato leaf diseases. 

To improving disease management tactics in rice production, Kulkarni, and Shastri [26] devised a 

method for the identification of rice leaf diseases by using ML techniques. The authors Rajaiah et al. 

[27] devised a technique for recognition of leaf diseases that makes usage of an ensemble classification 

approach in ML. Increasing the accuracy of illness diagnosis via the use of ensemble approaches is the 

primary emphasis of their work. By using CNNs and color space models, Nain et al. [28] were able to 

construct a system for the identification of plant diseases. The purpose of their research is to investigate 

whether CNNs are capable to properly diagnosing plant diseases based on color characteristics. Using 

a variety of convolutional neural network topologies, Banerjee and Mondal [29] presented an intelligent 



Page 2305 of 18 
Wankhede Mahendra Pandhari / Afr.J.Bio.Sc. 6(9) (2024) 

 

method for the identification of diseases that affect plant leaves. The work that they do helps to 

contribute to the development of reliable disease detection systems for precision agriculture. In their 

study, Singh et al. [30] improved precision agriculture by using CNN models to identify diseases that 

affect maize leaf tissue. The results of their research illustrate how CNNs may be used to improve the 

accuracy of disease recognition in maize growing crops. 

By using bibliometric methods, Bonkra et al. [31] conducted an in-depth investigation on the trend of 

identifying apple leaf illnesses by ML. Through their research, they have provided valuable insights 

into the present level of disease detection in apple crops as well as future directions. In their study [32], 

Tewari and colleagues devised a technique for the automated identification of guava illness by using a 

variety of DL methodologies. As part of their research, they are concentrating on using DL approaches 

to diagnose diseases accurately and effectively in guava plants. At the same time as Pattanaik et al. [33] 

carried out an exploratory investigation of ML-enabled plant diseases evaluation, they highlighted the 

potential of artificial intelligence approaches in terms of enhancing disease management practices. As 

a contribution to the development of automated disease diagnostic systems in rice production, Kaur et 

al. [34] suggested a DL-based model for identification of biotic rice leaf disease conditions. Chelladurai 

and Sujatha [35] examined the use of image processing approaches that were based on thermal camera 

footage for the purpose of disease identification, namely in leaves. Through their research, they 

investigate the use of thermal imaging in agricultural settings for the purpose of accurately diagnosing 

diseases. 

Using an ITSO-based neural network, Rajalakshmi et al. [36] were able to suggest a strategy for the 

identification of diseases that affect many crop species. The development of a disease detection system 

that is adaptable to multiple crop species is the primary focus of their scientific endeavor. The research 

conducted by Alam et al. [37] compared pre-trained models for the purpose of useful plant leaf disease 

detection. The results of their research contribute to the selection of appropriate models for a reliable 

disease diagnosis in plant leaves. To onion plant disease management, Kathole et al. [38] suggested an 

IoT-based smart agriculture method. This approach would include a variety of technologies for effective 

disease monitoring and control. When it came to the identification of non-visual maize diseases, 

Maginga et al. [39] applied wavelet transforms and hybrid CNN-LSTM models using data collected 

from IoT sensors. The research that they are doing investigates novel approaches to disease detection 

in maize crops by using sensor data. The authors Nobel et al. [40] offered a hybrid strategy for 

automated recognition of palm leaf diseases and the development of treatment. The authors placed an 

emphasis on the integration of new technologies for the purpose of successful disease management in 

palm crops. 

3. Proposed System 

Historically, farmers have depended on manual pest monitoring methods, sticky traps, and black light 

traps to identify and control pest infestations in their fields. However, the advent of DL technologies, 

particularly in the field of digital image processing, has ushered in transformative possibilities that 

surpass the capabilities of conventional methods. Researchers are increasingly focusing on leveraging 

DL to address the complex challenge of identifying plant diseases and pests, with the aim of 

revolutionizing agricultural practices. 

Table 1 presents the detailed algorithm procedure of proposed plant disease detection and classification 

procedure. In Figure 1, DL, and specifically GPR-CNN is employed as a powerful tool for feature 

extraction and disease identification. Crop disease datasets undergo preprocessing and are then fed into 

the GPR-CNN model for feature extraction. Simultaneously, leaf images, another crucial element in 

understanding plant health, undergo similar preprocessing and testing through the GPR-CNN. The 

features extracted from the trained GPR-CNN model are then compared with the pre-existing features 
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associated with various plant diseases. The comparison process involves assessing the loss computation 

and accuracy of the extracted features. This meticulous analysis is crucial for predicting and classifying 

the different plant diseases. The resulting comparison graph serves as a valuable visual representation, 

offering insights into the success of the GPR-CNN model in accurately identifying and categorizing 

plant diseases.  

 

Fig. 1. Block diagram of proposed system. 

Table 1. Proposed plant disease classification algorithm. 

Step 1: Collect and preprocess crop disease datasets, ensuring uniformity and quality of images. 

Step 2: Similarly, preprocess leaf images, preparing them for testing through the model. 

Step 3: Employ GPR-CNN for feature extraction from both the crop disease datasets and leaf 

images. 

Step 4: Train the GPR-CNN model using the preprocessed datasets, allowing it to learn and extract 

relevant features. 

Step 5: Compare the features extracted by the trained GPR-CNN model with pre-existing features 

associated with various plant diseases. 

Step 6: Perform loss computation and accuracy assessment of the extracted features to evaluate the 

effectiveness of the model. 

Step 7: Utilize the comparison results to predict and classify different plant diseases based on the 

extracted features. 

Step 8: Use the insights derived from the comparison graph to make proactive decisions regarding 

crop health management. 

 

The integration of DL technologies into agriculture marks a paradigm shift in the way we approach crop 

health management. The ability of GPR-CNN to automatically learn and extract of plant diseases. 

Unlike traditional methods, which may rely on subjective visual inspections or limited datasets, DL 

empowers the agricultural community with data-driven insights for proactive decision-making. The 

implication of this research lies not only in the accurate identification of plant diseases but also in the 

potential to mitigate the impact of pests and insects on crop yields. By harnessing the power of DL, 
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farmers can proactively address issues such as climate change-induced variations and unexpected pest 

levels, leading to more resilient and sustainable agricultural practices. 

3.1 Crop disease dataset 

The crop disease dataset comprises images representing various diseases and health states of plants, 

predominantly focusing on peppers, potatoes, and tomatoes.  For Pepper Bell Bacterial Spot, the dataset 

contains a total of 997 images, with 797 images allocated for training and 200 for testing. Similarly, 

Pepper Bell Healthy comprises 1478 images, with 1182 used for training and 296 for testing. In the case 

of Potato Early Blight, there are 1000 images in total, with 800 designated for training and 200 for 

testing. Potato Healthy, on the other hand, consists of 152 images, with 122 utilized for training and 30 

for testing. For Potato Late Blight, the dataset contains 1000 images, with 800 for training and 200 for 

testing. 

Moving on to the tomato classes, Tomato Target Spot includes 1404 images, with 1124 for training and 

280 for testing. Tomato Mosaic Virus comprises 373 images, with 298 used for training and 75 for 

testing. Tomato Yellow Leaf Curl Virus has the highest number of images in the dataset, totaling 3208, 

with 2566 for training and 642 for testing. Tomato Bacterial Spot includes 2127 images, with 1701 

designated for training and 426 for testing. Similarly, Tomato Early Blight consists of 1000 images, 

with 800 for training and 200 for testing. Tomato Healthy comprises 1591 images, with 1273 used for 

training and 318 for testing. Tomato Late Blight includes 1909 images, with 1527 for training and 382 

for testing. Tomato Leaf Mold has 952 images, with 761 for training and 191 for testing. Tomato 

Septoria Leaf Spot comprises 1771 images, with 1416 for training and 355 for testing. Lastly, Tomato 

Spider Mites Two-Spotted Spider Mite consists of 1676 images, with 1340 for training and 336 for 

testing. Finally, the dataset encompasses a total of 20638 images, with 16510 designated for training 

and 4128 for testing across all classes. Each class contributes to the diversity of the dataset, facilitating 

the development and evaluation of ML models for plant disease detection and classification. 

3.2 Image pre-processing 

Image preprocessing plays a crucial role in the pipeline of plant disease detection and classification 

systems, as it involves consistency, and compatibility of image data for subsequent analysis and model 

training. Each step in the preprocessing pipeline contributes to the overall efficacy and accuracy of the 

disease detection process, ensuring that the input images are appropriately formatted and standardized 

for machine learning algorithms. The first step in image preprocessing is reading the input images from 

the dataset. This involves loading the images from storage into memory using appropriate libraries or 

frameworks such as OpenCV, PIL (Python Imaging Library), or TensorFlow. Reading the images 

enables access to their pixel values, dimensions, and metadata, forming the foundation for subsequent 

preprocessing operations. 

Once the images are read, resizing is often performed to ensure uniformity in size across the dataset. 

Resizing involves adjusting the dimensions of the images to a predefined resolution or aspect ratio, 

thereby standardizing their dimensions for consistency during model training and inference. This step 

is particularly crucial when working with deep learning models that require fixed input dimensions for 

processing. After resizing, the images are converted into numerical arrays, commonly referred to as 

image-to-array conversion. This process involves transforming the pixel values of the images into 

multidimensional arrays, where each element represents the intensity or color value of a specific pixel. 

By converting images to arrays, they can be efficiently processed and manipulated using numerical 

computation libraries such as NumPy or TensorFlow. 

Subsequently, the image arrays are typically converted to floating-point format to facilitate numerical 

computations and enhance the precision of subsequent operations. Floating-point representation allows 
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for more accurate representation of pixel values, particularly in cases where images contain high 

dynamic range or subtle variations in intensity. Normalization is another critical step in image 

preprocessing, aimed at standardizing the pixel values of the images to a common scale or range. 

Normalizing the images helps mitigate the effects of lighting variations, contrast differences, and pixel 

intensity disparities, ensuring that the input data are consistent and compatible for model training. 

Indexing is often performed after preprocessing to associate each preprocessed image array with its 

corresponding label or class identifier. This indexing step facilitates data management, organization, 

and retrieval during model training and evaluation, enabling seamless integration with machine learning 

frameworks and libraries.Finally, the preprocessed image arrays can be saved to disk or storage for 

future use, enabling efficient data caching, archiving, and sharing. Saving the preprocessed arrays in a 

standardized format such as NumPy arrays or HDF5 files ensures data integrity, interoperability, and 

accessibility across different platforms and environments. 

3.3 Proposed GA-PSO 

The GA and PSO are evolutionary optimization algorithms that have found applications in feature 

extraction, particularly in the context of image processing and pattern recognition. Feature extraction 

involves selecting and transforming relevant features from raw data, aiming to enhance the 

discriminative power of the data for subsequent analysis, such as ML tasks. Table 2 shows the GA 

feature extraction algorithm. Table 3 shows the PSO feature extraction algorithm. The integration of 

GA and PSO involves combining their strengths to create a hybrid optimization algorithm. This 

hybridization aims to leverage the exploration and exploitation capabilities of both algorithms for more 

effective feature extraction. In this context, the chromosome or particle represents a feature subset, and 

the optimization process evolves these subsets for improved discrimination in the dataset. The algorithm 

iterates through the GA and PSO steps, allowing for complementary exploration and exploitation of the 

solution space. The advantages of this hybrid approach lie in its ability to find optimal or near-optimal 

feature subsets, considering the global search capabilities of PSO and the evolutionary search 

capabilities of GA. The combination of these algorithms enhances the efficiency and effectiveness of 

feature extraction, contributing to the overall performance of subsequent ML models trained on the 

processed data. 

3.4 Proposed GPR-CNN 

CNNs have emerged as a cornerstone technology in the domain of image processing and computer 

vision, revolutionizing the landscape of various applications ranging from object detection to medical 

imaging. In plant disease detection and classification, the adoption of CNNs has been instrumental in 

addressing the inherent complexities and challenges associated with analyzing large-scale image 

datasets containing intricate patterns and subtle variations indicative of disease symptoms. The need for 

CNNs in this domain stems from several key factors, each underscoring the unique capabilities and 

advantages offered by this deep learning architecture. 
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Table 2. GA Feature Extraction Algorithm. 

Step 1: Chromosome Representation: In GA-based feature extraction, each solution or individual 

is represented as a chromosome. The chromosome comprises a set of genes, where each gene 

corresponds to a specific feature or attribute in the dataset. 

Step 2: Initialization: An initial population of chromosomes is randomly generated. Each 

chromosome represents a potential subset of features. 

Step 3: Fitness Evaluation: The fitness of each chromosome is evaluated based on a fitness function 

that quantifies how well the corresponding subset of features discriminates between different classes 

or categories in the data. 

Step 4: Selection: Chromosomes are selected for reproduction based on their fitness. The more fit 

chromosomes are more likely to be selected, mimicking the principle of natural selection. 

Step 5: Crossover: Pairs of selected chromosomes undergo crossover (also known as recombination) 

to create new offspring. This emulates the genetic crossover process, combining features from both 

parents to produce potentially more effective subsets. 

Step 6: Mutation: Random changes, or mutations, are introduced in the offspring's genes, allowing 

for exploration of new feature combinations. 

Step 7: Replacement: The new offspring replaces fewer fit individuals in the population, ensuring 

that the overall population evolves toward more optimal feature subsets. 

Step 8: Termination: The process stops after reaching best fitness. 

 

Table 3. PSO Feature Extraction 

Step 1: Particle Representation: PSO involves a population of particles, where each particle 

represents a potential solution (feature subset). The position of each particle corresponds to a point 

in the solution space. 

Step 2: Initialization: Particles are randomly initialized in the solution space, and each particle is 

associated with a velocity indicating the direction and magnitude of its movement. 

Step 3: Fitness Evaluation: The fitness of each particle is assessed based on a fitness function, like 

GA. It measures how well the corresponding feature subset performs in discriminating between 

classes. 

Step 4: Velocity Update: The current velocity of each particle, as well as its personal best position 

(the individual's historical best) and the global best position (the best position among all particles in 

the population) are taken into consideration while updating the velocity of each particle. 

Step 5: Position Update: Using the particle's present position and its updated velocity, the position 

of each particle is updated, which allows for the determination of the particle's new location inside 

the solution space. 

Step 6: Best Position Update: The personal best and global best positions are updated if a particle 

discovers a better solution during its movement. 

Step 7: Termination: The process continues for multiple iterations, and termination occurs when a 

predefined criterion is met. 
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First and foremost, CNNs are well-suited for extracting hierarchical features from image data, thereby 

enabling robust and discriminative representation learning. Unlike traditional machine learning 

algorithms that rely on handcrafted feature engineering, CNNs leverage learnable filters and 

convolutional layers to automatically learn and extract relevant features directly from raw pixel 

intensities. Furthermore, CNNs exhibit translational invariance, enabling them to recognize patterns 

and features across different spatial locations within an image. This property is particularly 

advantageous in plant disease detection scenarios where the exact location and orientation of disease 

symptoms may vary across different instances of the same disease. By leveraging convolutional 

operations and pooling layers, CNNs can effectively capture spatial relationships and spatial hierarchies 

in the input data, facilitating robust and invariant feature representation across diverse image samples. 

Moreover, CNNs are capable of learning hierarchical representations of increasing complexity through 

multiple layers of abstraction, thereby facilitating the development of deep architectures capable of 

modeling intricate relationships within the data. Deep CNN architectures have demonstrated superior 

performance in capturing complex patterns and discriminating between fine-grained categories, making 

them well-suited for tasks such as fine-grained plant disease classification and localization. 

Additionally, CNNs can leverage transfer learning, a powerful technique that enables the transfer of 

knowledge and representations learned from one task or dataset to another related task or dataset. 

Pretrained CNN models serve as feature extractors or initialization points for training specialized plant 

disease detection models with limited annotated data. By fine-tuning pretrained CNNs on plant disease 

datasets, researchers can expedite model convergence, improve generalization performance, and 

alleviate the need for large amounts of labeled training data. 

This neural network architecture, characterized by a thoughtful integration of convolutional and fully 

connected layers, represents a robust framework for crop disease recognition. The convolutional layers 

excel in capturing spatial hierarchies and relevant patterns, while the fully connected layers leverage 

these learned features to make informed predictions. The hierarchical nature of the architecture allows 

the model to learn and represent features at different levels of abstraction, providing a nuanced 

understanding of the input data. The challenges in designing such architectures lie in striking a balance 

between model complexity and efficiency. The problem of too many parameters, often encountered in 

fully connected feedforward networks, is mitigated through the parameter sharing mechanism inherent 

in convolutional neural networks. This mechanism ensures that the same set of parameters is utilized 

across multiple functions of the model, significantly reducing the risk of overfitting, and enhancing 

training efficiency. The convolutional operation's ability to achieve local invariance addresses the issue 

of image stability, ensuring that the model can effectively handle variations in scaling, translation, and 

rotation common in real-world agricultural images. 

 

Fig. 2. Proposed GPR-CNN. 

The architecture of a neural network plays a pivotal role in determining its ability to effectively address 

complex tasks, and in the realm of image-based tasks like crop disease recognition, a well-designed 

architecture is of paramount importance. Figure 2 outlines the layers of the proposed neural network 

for crop disease recognition, shedding light on the intricate details such as the number of filters, kernel 
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sizes, and resulting feature sizes. This elaborate architecture incorporates convolutional and fully 

connected layers, each serving a distinct purpose in the hierarchical process of feature extraction, 

abstraction, and classification. The first layer, Conv 2D + ReLU, initiates the feature extraction process. 

With 32 filters and a 3 x 3 kernel size, this convolutional layer convolves the input image, capturing 

essential patterns that may indicate the presence of diseases in crops. The resulting feature size of 62 x 

62 x 32 indicates the extraction of 32 features from the input image. 

Following the feature extraction, the Max Pooling 2D layer with a 3 x 3 kernel size is employed to 

reduce the spatial dimensions of the feature map, enhancing computational efficiency, and promoting 

translational invariance. The feature size diminishes to 31 x 31 x 32, reflecting the down-sampling 

achieved through the max pooling operation. This reduction in dimensionality helps in focusing on the 

most salient features, facilitating a more compact and meaningful representation of the data. The 

network then undergoes a second round of feature extraction with another Conv 2D + ReLU layer. This 

layer, again with 32 filters and a 3 x 3 kernel size, refines the features learned in the initial convolutional 

layer. The feature size further reduces to 29 x 29 x 32, reflecting the network's ability to distill intricate 

details from the input image. This hierarchical feature extraction is crucial for capturing both low-level 

and high-level patterns that are indicative of various crop diseases. A subsequent Max Pooling 2D layer 

follows, maintaining the stride of 3 x 3 for further downsampling. The feature size now stands at 14 x 

14 x 32, demonstrating the continued reduction in spatial dimensions. This pooling operation aids in 

abstracting high-level features while also contributing to the network's ability to generalize across 

diverse images, a crucial characteristic for robust crop disease recognition. 

The Flatten layer then transforms the 3D feature map into a 1D vector, preparing the data for input into 

the fully connected layers. With a feature size of 1 x 6272, this layer ensures a seamless transition from 

the convolutional layers to the densely connected layers. The flattened vector retains the learned features 

in a structured format, facilitating the subsequent processing stages. Moving into the fully connected 

layers, the Dense + ReLU layer with 256 neurons introduces non-linearity once again, allowing the 

network to capture intricate relationships between the learned features. The ReLU activation function 

enhances the model's ability to learn complex representations of the flattened input. The feature size at 

this stage is 1 x 256, indicating the condensed yet rich representation of high-level features. 

The final layer, Dense + SoftMax, acts as the output layer with 15 neurons, each corresponding to one 

of the possible crop diseases. The SoftMax activation function is applied, converting the raw output 

into probabilities. This layer provides a probabilistic distribution over the different disease classes, 

enabling the model to categorize the input image based on the highest probability. The feature size of 1 

x 15 represents the output classes, and the network is trained to assign high probabilities to the correct 

class, facilitating accurate disease identification.  

4. Results and Discussions 

In this comparative analysis, diverse methodologies for plant disease detection and classification are 

evaluated using consistent plant disease datasets. The study assesses the efficacy of different techniques 

based on performance metrics providing insights into the strengths and limitations of each approach. 

By benchmarking multiple methods on the same datasets, researchers aim to identify optimal strategies 

for accurate and reliable plant disease diagnosis, facilitating advancements in agricultural technology 

and crop management practices. 

4.1 Prediction Results 

Figure 3 shows the predicted outcome with various pesticides suggested. The management of plant 

diseases in agricultural crops requires an integrated approach that combines cultural practices, crop 

rotation, disease-resistant varieties, and judicious use of pesticides. It is essential for farmers to adopt 
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sustainable and environmentally friendly pest management practices to ensure the long-term health and 

productivity of their crops, while also minimizing the risks associated with pesticide use to human 

health and the environment. Regular monitoring, early detection, and timely intervention are key 

components of successful disease management strategies in agriculture. 

Pepper Bell - Bacterial Spot: Bacterial spot is a common disease affecting pepper plants, caused by 

various species of bacteria. To manage bacterial spot in pepper plants, farmers can use copper-based 

fungicides. Copper compounds such as copper oxychloride or copper hydroxide are effective in 

controlling bacterial infections. These fungicides work by inhibiting bacterial growth and preventing 

the spread of the disease on pepper foliage. Farmers should apply copper-based fungicides according 

to label instructions and adhere to recommended application rates to ensure effective disease control 

while minimizing the risk of phytotoxicity. 

Potato - Early Blight: Early blight is a fungal disease that affects potato plants, caused by the fungus 

Alternaria solani. To manage early blight in potato crops, farmers can use fungicides containing active 

ingredients such as chlorothalonil or mancozeb. These fungicides act by inhibiting fungal spore 

germination and growth, thereby reducing disease severity. Farmers should apply fungicides 

preventively or at the first signs of disease development and adhere to proper application timings and 

rates to achieve optimal disease control. 

Potato - Late Blight: Late blight is a devastating fungal disease affecting potato plants, caused by the 

oomycete pathogen Phytophthora infestans. To manage late blight in potato crops, farmers can use 

fungicides containing active ingredients such as chlorothalonil, mancozeb, or metalaxyl. These 

fungicides work by suppressing fungal growth and reducing spore production, thus limiting the spread 

of the disease within potato fields. Farmers should apply fungicides preventively and adhere to 

recommended application schedules to effectively control late blight and minimize yield losses. 

Tomato - Target Spot: Target spot, also known as early blight, is a fungal disease affecting tomato 

plants, caused by the fungus Corynespora cassiicola. To manage target spot disease in tomato crops, 

farmers can use fungicides containing active ingredients such as chlorothalonil, azoxystrobin, or copper 

compounds. These fungicides help inhibit fungal growth and reduce the severity of target spot 

symptoms on tomato foliage. Farmers should apply fungicides preventively or at the first signs of 

disease onset, ensuring thorough coverage of tomato plants to achieve optimal disease control. 

Tomato - Tomato Yellow Leaf Curl Virus (TYLCV): Tomato yellow leaf curl virus (TYLCV) is a 

viral disease transmitted by the silverleaf whitefly (Bemisia tabaci) and affects tomato plants 

worldwide. Unfortunately, there are no chemical treatments available to control viral diseases like 

TYLCV. Instead, farmers should focus on implementing integrated pest management (IPM) strategies 

to manage whitefly populations and reduce virus transmission. IPM practices may include the use of 

insecticidal soaps, neem-based products, reflective mulches, and physical barriers to deter whiteflies 

and minimize virus spread. Additionally, farmers should plant disease-resistant tomato varieties and 

practice strict sanitation measures to minimize virus inoculum sources and disease incidence in tomato 

fields. 

4.2 CNN Results 

In Figure 4, a detailed depiction of the relationship between epochs or iterations and performance 

metrics such as accuracy and loss is presented. The y-axis illustrates the values of accuracy and loss, 

while the x-axis represents the progression of epochs or iterations during the training process. Notably, 

the green line corresponds to the accuracy metric, reflecting the model's predictive performance, while 

the blue line signifies the loss metric, indicating the magnitude of error between predicted and actual 

values. 
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Fig. 3. Predicted outcomes with pesticide suggestions. 

With each successive epoch or iteration, observable trends emerge, revealing a progressive 

improvement in accuracy and a simultaneous reduction in loss. This phenomenon is indicative of the 

iterative nature of model training, wherein the algorithm iteratively adjusts its parameters to minimize 

prediction errors and enhance predictive accuracy. As the model undergoes multiple iterations, it refines 

its internal representations and learns to capture intricate patterns and relationships within the data, 

leading to incremental improvements in performance. 
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At epoch 10, a critical juncture in the training process, the effects of iterative optimization become 

particularly pronounced. The accuracy curve exhibits a steady upward trajectory, signifying an 

enhancement in the model's ability to correctly classify instances within the dataset. Concurrently, the 

loss curve demonstrates a consistent downward trend, indicating a reduction in prediction errors and an 

improved fit between the model's predictions and the ground truth labels. These observations underscore 

the efficacy of the training regimen in progressively refining the model's predictive capabilities over 

multiple epochs. 

Furthermore, the convergence of the accuracy and loss curves at epoch 10 suggests that the model is 

approaching an optimal state of performance, wherein further iterations may yield diminishing returns 

in terms of accuracy improvement or loss reduction. This convergence phenomenon signifies a balance 

between model complexity and generalization, wherein the model achieves high accuracy on the 

training data while minimizing overfitting to noise or spurious patterns. 

 

Fig. 4. Iteration wise accuracy & loss graph. 

4.3 ResNet Results 

Table 4 and Figure 5 provides a comprehensive performance comparison between the proposed method 

and existing techniques, including Naive Bayes Classifier (NBC), Random Forest Classifier (RFC), and 

Support Vector Machine (SVM). The evaluation metrics considered are accuracy, precision, recall, and 

F1-score, providing a nuanced understanding of the effectiveness of each method in plant disease 

detection and classification. In terms of accuracy, the proposed method outshines all existing 

techniques, achieving an impressive 99.173%. This indicates the model's exceptional capability to 

correctly identify and classify plant diseases. Precision, a measure of the model's ability to avoid false 

positives, is similarly elevated in the proposed method at 99.103%, surpassing existing methods. Recall, 

which gauges the model's ability to capture true positives, is notably high for the proposed method at 

98.29%, demonstrating its proficiency in identifying diseased plants.  

The F1-score, a harmonic mean of precision and recall, further accentuates the superiority of the 

proposed method, reaching 99.136%. This balanced metric indicates that the proposed model not only 

excels in minimizing false positives and false negatives but achieves an optimal trade-off between 

precision and recall. Comparatively, existing methods such as NBC, RFC, and SVM demonstrate 

respectable performance, with SVM exhibiting the highest accuracy among them at 94.783%. However, 
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the proposed method significantly surpasses these benchmarks, emphasizing its potential as an 

advanced and highly accurate tool for plant disease detection and classification. These results 

underscore the efficacy of the proposed DL-based approach in enhancing the precision, recall, and 

overall accuracy of plant disease detection when compared to traditional ML methods. The proposed 

method's superior performance across multiple metrics suggests its potential for transformative impact 

in agricultural practices, offering a robust and reliable solution for combating plant diseases. 

Table 4. Performance comparison. 

Method Existing NBC Existing RFC Existing SVM Proposed Method 

Accuracy (%) 89.37 90.33 94.783 99.173 

Precision (%) 88.381 92.483 94.283 99.103 

Recall (%) 89.193 90.183 93.83 98.29 

F1-Score (%) 90.384 93.48 96.182 99.136 

 

 

Figure 5. Graphical representation of performance. 

5. Conclusion 

In conclusion, our research endeavors to bridge the gap between traditional agricultural practices and 

cutting-edge technology by introducing a sophisticated solution for plant disease detection and pesticide 

suggestion. The agricultural sector, as a linchpin for a nation's growth, demands innovative approaches 

to address the critical challenges posed by plant diseases. The limitations of subjective visual 

inspections and resource-intensive conventional methods prompted the integration of ML and DL 

techniques, leading to the development of the Proposed model. The experimentally evaluated software 

solution showcased the efficacy of the GPR-CNN-based architecture in robust feature extraction and 

accurate disease classification. The preprocessing step further refined the model's performance by 

eliminating various types of noise, ensuring the normalization of dataset images. The commendable 

accuracy rates achieved in plant leaf disease detection validate the potential of our proposed model to 
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revolutionize the identification and management of plant diseases in agriculture. Taking a step beyond 

disease detection, our research extends the model's capabilities to include pesticide suggestion. This 

novel integration aims to provide farmers and agriculture professionals with a holistic solution for 

disease management. By leveraging the learned features of the DL architecture, the model delivers 

precise and tailored pesticide recommendations based on the specific disease identified. This 

comprehensive approach not only identifies plant diseases but also empowers stakeholders with 

actionable insights for targeted interventions. The potential impact of our research on agricultural 

practices is substantial. The seamless integration of plant disease detection and pesticide suggestion into 

a unified framework aligns with the evolving needs of modern agriculture. This innovative approach 

promises to enhance the efficiency, accuracy, and sustainability of agricultural processes, contributing 

to increased crop yields and reduced economic losses. As we move forward, further research and 

development can explore the scalability and adaptability of the Proposed model across diverse 

agricultural contexts. Continuous refinement and expansion of the dataset can improve the model's 

generalization capabilities and ensure its applicability to a wide range of crops and regions. 

Additionally, collaboration with industry stakeholders and policymakers is essential to facilitate the 

integration of this technology into real-world agricultural practices. 
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