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1. Introduction 

 

Many health challenges continue to be daunting worldwide, such as uncontrolled cell growth 

and the risk of metastasis. Despite major strides in medical science, cancer remains a leading 

cause of death and illness globally [1,2]. Traditional treatments such as surgery, chemotherapy, 

and radiation therapy, while effective to some extent, are often accompanied by severe side 

effects and the risk of resistance development in cancer cells[3]. Thus, there is a critical need 

for new anticancer compounds that can offer more effective, targeted, and less toxic treatment 

options. The complexity and heterogeneity of cancer necessitate a multifaceted approach to 

drug discovery. Novel therapeutic agents must be capable of targeting specific cancer pathways 

and mechanisms without causing significant damage to normal cells[4]. This ongoing quest for 

new anticancer compounds drives researchers to explore diverse and unconventional sources, 

including marine ecosystems, which have proven to be a treasure trove of bioactive substances. 

Marine plants, particularly algae, have gained significant attention in the field of drug discovery 

due to their unique chemical diversity and the presence of novel bioactive compounds[5]. 

Marine environments, with their distinct ecological niches, offer a rich source of secondary 

metabolites that are often absent in terrestrial plants. These metabolites have evolved as part of 
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the plants' defense mechanisms against predators, pathogens, and environmental stressors, 

making them potent candidates for pharmaceutical applications[6,7]. 

Sargassum spp., a genus of brown macroalgae, is one such marine plant that has shown great 

promise in the discovery of anticancer compounds. Found predominantly in warm waters, 

Sargassum spp. are well-known for their rich chemical composition, including polysaccharides, 

phenolic compounds, flavonoids, terpenoids, and steroids[8]. These compounds exhibit a wide 

range of biological activities, including antioxidant, anti-inflammatory, antiviral, and notably, 

anticancer properties. The significance of Sargassum spp. in drug discovery is underscored by 

numerous studies demonstrating its potential to inhibit cancer cell proliferation, induce 

apoptosis, and prevent metastasis. For instance, fucoidan, a sulfated polysaccharide extracted 

from Sargassum spp., has been extensively studied for its anticancer activity against various 

cancer cell lines[9,10]. The diverse bioactive profile of Sargassum spp. makes it an invaluable 

resource in the ongoing search for new and effective anticancer agents. Artificial Intelligence 

(AI) has revolutionized numerous fields, and pharmaceutical research is no exception. AI 

technologies encompass a broad spectrum of computational techniques and tools, including 

machine learning (ML), deep learning (DL), natural language processing (NLP), and data 

mining[11]. These technologies enable the analysis and interpretation of large datasets, 

uncovering patterns and insights that are often beyond human capability. As part of the drug 

discovery process, AI is used in identifying and validating targets, as well as screening and 

optimizing compounds. To predict the activity and toxicity of potential drug candidates, 

machine learning algorithms can analyze large amounts of biological and chemical data[12]. 

The application of deep learning in image analysis and molecular structure analysis comes from 

its ability to recognize complex patterns in data[13]. The integration of AI in the discovery of 

anticancer compounds offers several significant benefits. Firstly, AI accelerates the drug 

discovery process by automating data analysis and reducing the time required for identifying 

potential drug candidates[14]. Traditional methods of drug discovery are often time-consuming 

and resource-intensive, whereas artificial intelligence can swiftly screen millions of 

compounds, identifying those most likely to be effective. Additionally, AI in drug discovery 

can predict biological activity and side effects with impressive precision using existing data. 

AI models learn from this data, enhancing accuracy and efficiency. This predictive capability 

minimizes the risk of failure in subsequent stages of drug development, thereby increasing the 

overall success rate[15,16]. Thirdly, AI facilitates the discovery of novel compounds that might 

be overlooked using conventional methods[17]. Advanced algorithms can identify unique 

molecular features and interactions that contribute to anticancer activity, leading to the 

identification of unconventional and innovative therapeutic agents. For example, AI has been 

instrumental in identifying marine-derived compounds with potent anticancer properties, 

including those from Sargassum spp[18]. 

 

Marine Plants and Anticancer Compounds 

Importance of Marine Biodiversity in Pharmaceutical Research 

Marine biodiversity is a vital asset in pharmaceutical research, providing a vast reservoir of 

bioactive compounds that hold potential for developing new medicines. The ocean, which 

covers more than 70% of the Earth’s surface, is home to a diverse array of organisms, many of 

which have evolved unique chemical defenses and metabolic pathways due to the extreme and 

varied conditions of their habitats[19]. These unique compounds, often not found in terrestrial 

environments, can offer novel mechanisms of action and structural frameworks for drug 

development. Marine plants, particularly algae, are significant for their production of various 

secondary metabolites with diverse biological properties, such as antimicrobial, antiviral, 

antifungal, and anticancer effects. The structural diversity and complexity of these metabolites 

provide numerous therapeutic opportunities. Preclinical studies have shown the bioactivity of 
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compounds derived from marine algae, including fucoidans, phlorotannins, and 

carotenoids[20,21]. The exploration of marine biodiversity has already led to the discovery of 

several clinically useful drugs. For example, cytarabine, an anticancer drug, and ziconotide, a 

pain management drug, are both derived from marine organisms. These successes underscore 

the potential of marine ecosystems as a critical resource for pharmaceutical innovation, 

encouraging ongoing and future research into marine-derived compounds for therapeutic 

applications[22]. 

 

Historical Use of Marine Plants in Traditional Medicine 

The use of marine plants in traditional medicine dates back centuries, with various cultures 

recognizing their therapeutic potential long before the advent of modern scientific methods. 

Coastal communities across the world have utilized marine plants for their medicinal 

properties, incorporating them into remedies for a variety of ailments[23]. In traditional 

Chinese medicine (TCM), marine algae have been used to treat conditions such as goiter, 

edema, and respiratory issues. Similarly, in Japan, seaweeds like kombu and wakame are 

integral to the diet and are believed to confer health benefits, including improved digestion and 

cardiovascular health[24,25]. Indigenous cultures in the Pacific Islands and along the coasts of 

Europe have also harnessed the medicinal properties of marine plants for wound healing, anti-

inflammatory purposes, and as nutritional supplements. These historical uses are supported by 

contemporary research, which has validated many of the traditional claims and uncovered new 

potential applications[26]. For instance, the antimicrobial properties of certain seaweeds align 

with their traditional use in treating infections. This blending of historical knowledge with 

modern science enhances the understanding and utilization of marine plants in contemporary 

medicine, paving the way for innovative therapeutic approaches[27]. 

 

Sargassum spp. 

Sargassum spp. is a genus of brown macroalgae found predominantly in tropical and 

subtropical oceans[28]. These seaweeds are characterized by their distinctive air bladders, 

which help them float, and their leafy structures, which provide a habitat for various marine 

organisms. Sargassum species can be found in both coastal regions and open oceans, with some 

species forming large floating mats, such as those seen in the Sargasso Sea[29,3]. The 

distribution of Sargassum is widespread, with notable concentrations in the Atlantic Ocean, 

particularly in the Gulf of Mexico and the Caribbean Sea[5]. These floating mats are dynamic 

ecosystems, supporting a diverse range of marine life and playing a crucial role in marine 

ecology. The adaptability of Sargassum to different environmental conditions contributes to its 

extensive distribution and ecological importance[30,7,21]. 

 

Traditional and Contemporary Uses of Sargassum Spp. In Medicine 

Traditionally, Sargassum spp. have been used in various forms of medicine across different 

cultures. In TCM, Sargassum is known as "hai zao" and is used to treat thyroid conditions, 

particularly goiter, due to its high iodine content. It is also employed in the treatment of edema, 

testicular swelling, and other inflammatory conditions[31]. The use of Sargassum in traditional 

remedies highlights its perceived therapeutic value and historical significance. In contemporary 

medicine, research has focused on the bioactive compounds found in Sargassum spp. and their 

potential health benefits[15]. Studies have shown that Sargassum extracts possess a range of 

pharmacological activities, including antioxidant, anti-inflammatory, antiviral, and anticancer 

properties. These findings have sparked interest in Sargassum as a source of novel therapeutic 

agents, particularly for the treatment of cancer[32,33]. 
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Overview of known bioactive compounds in Sargassum spp. 

Sargassum spp. are rich in a variety of bioactive compounds, contributing to their therapeutic 

potential. Some of the key bioactive compounds include: 

 Fucoidans: Sulfated polysaccharides that exhibit significant anticancer activity. 

Fucoidans have been shown to induce apoptosis in cancer cells, inhibit tumor growth, and 

enhance immune responses[22]. 

 Phlorotannins: Polyphenolic compounds with strong antioxidant properties. Phlorotannins 

can scavenge free radicals and protect against oxidative stress, which is linked to cancer 

progression. 

 Terpenoids: Known as terpenoids, these compounds exhibit a variety of biological effects, 

including anti-inflammatory and anticancer properties. In cancer cell studies, terpenoids 

from Sargassum have shown to inhibit cell proliferation and arrest cell cycle 

progression[19]. 

 Steroids: Compounds that can modulate immune responses and exhibit anticancer 

properties. Steroidal compounds from Sargassum have been investigated for their potential 

to suppress tumor growth[19]. 

 Carotenoids: Pigments with antioxidant and anticancer activities. Carotenoids can protect 

cells from oxidative damage and modulate signaling pathways involved in cancer 

development[21]. 

 

The rich chemical diversity of Sargassum spp. underscores their potential as a source of novel 

anticancer compounds. Ongoing research aims to isolate and characterize these bioactive 

substances, further exploring their mechanisms of action and therapeutic applications[15]. This 

growing body of evidence highlights the importance of Sargassum spp. in the quest for new 

anticancer drugs and reinforces the value of marine plants in pharmaceutical research[31]. 

 

AI Technologies in Drug Discovery 

Machine learning, deep learning, and other relevant AI methodologies 

Artificial intelligence (AI) enables computers to perform tasks typically done by humans in 

various ways. In drug discovery, AI primarily employs machine learning (ML) and deep 

learning (DL) methodologies. These techniques have revolutionized the field by simplifying 

the analysis and interpretation of complex biological data[32]. 

 

Machine Learning (ML): Machine learning (ML) identifies patterns, makes predictions, and 

makes decisions without explicit programming by training algorithms on large datasets[17]. In 

drug discovery, ML helps identify potential drug targets, optimize drug formulations, and 

predict the biological activity of compounds. Various algorithms, including random forests, 

support vector machines (SVM), and k-nearest neighbors (k-NN), are used in this process. 

These algorithms enable scientists to uncover correlations, such as those between chemical 

structures and biological assays, that traditional analysis methods might miss[33]. 

 

Deep Learning (DL): A subset of ML, DL employs neural networks with multiple layers 

(hence "deep") to model complex relationships within data. DL excels at tasks involving large, 

unstructured datasets, such as images, sequences, and text[34]. In drug discovery, DL can 

analyze high-throughput screening data, model protein-ligand interactions, and predict 

molecular properties. Convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) are among the DL architectures frequently utilized. CNNs, for example, are 

particularly effective in image-based drug screening, while RNNs can be used for sequence 

data, such as predicting the activity of peptides[19,4]. 
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Other Relevant AI Methodologies: Beyond ML and DL, other AI methodologies also play 

crucial roles in drug discovery. Natural language processing (NLP) helps in mining scientific 

literature and patents for relevant information[21]. Reinforcement learning (RL) is used to 

optimize drug design by iteratively testing and refining compounds. Transfer learning, which 

involves using pre-trained models on new tasks, helps in leveraging existing knowledge to 

accelerate the drug discovery process[35]. 

 

Tools and platforms commonly used in AI-guided drug discovery 

Several tools and platforms have been developed to facilitate the application of AI in drug 

discovery, integrating various AI methodologies to streamline the process from data acquisition 

to compound validation[36]. One notable tool is DeepChem, an open-source library 

specifically designed for applying deep learning (DL) to drug discovery[3,9]. DeepChem 

provides a comprehensive suite of tools for tasks such as molecular modeling, data processing, 

and bioactivity prediction. It supports various neural network architectures, making it a popular 

choice for developing predictive models in the pharmaceutical industry[37]. 

 

Another significant platform is Atomwise, which utilizes DL to predict the binding affinity of 

small molecules to target proteins[32]. Atomwise's AtomNet platform employs convolutional 

neural networks (CNNs) to analyze 3D representations of molecules, aiding in the virtual 

screening of large compound libraries. This technology has been instrumental in identifying 

potential drug candidates for various diseases, including cancer, showcasing its utility in 

accelerating the drug discovery process[38,19]. 

 

Schrödinger's Maestro platform combines AI with molecular modeling to enhance drug 

discovery workflows[18]. It integrates machine learning (ML) models with traditional 

computational chemistry methods, such as molecular dynamics and quantum mechanics, 

providing accurate predictions of molecular properties and interactions. This integration allows 

researchers to optimize compounds more efficiently and predict their behavior in biological 

systems with higher precision[39]. Insilico Medicine is another leader in the field, using AI to 

accelerate every stage of the drug discovery process. Its platforms, such as Chemistry42 and 

PandaOmics, apply DL and reinforcement learning (RL) to tasks ranging from target 

identification to de novo drug design[40]. Insilico Medicine has been successful in generating 

novel compounds with high potential for therapeutic applications, demonstrating the power of 

AI in innovating and speeding up drug development[1,21]. 

 

IBM Watson for Drug Discovery leverages natural language processing (NLP) and ML to 

analyze scientific literature and biomedical data, uncovering new insights and identifying 

potential drug targets[29,5]. This AI-powered platform helps researchers prioritize compounds 

and understand mechanisms of action, thereby accelerating the drug development pipeline. By 

sifting through vast amounts of data, Watson for Drug Discovery can highlight promising areas 

for research that might otherwise be overlooked[41]. These tools and platforms exemplify how 

AI technologies are integrated into the drug discovery process, enhancing efficiency and 

accuracy while reducing time and costs[18]. By leveraging AI, researchers can more effectively 

identify bioactive compounds, predict their properties, and optimize their therapeutic potential, 

ultimately leading to faster and more precise drug development[42]. 
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Fig.1 Leading pharmaceutical companies and their association with Artificial Intelligence 

(AI) 

 

Applications of AI in Drug Discovery 

Specific techniques used for predicting anticancer properties 

AI techniques for predicting the anticancer properties of compounds involve several 

specialized approaches that enhance the efficiency and accuracy of drug discovery. One such 

approach is virtual screening, which employs machine learning (ML) and deep learning (DL) 

models to predict the activity of compounds against cancer targets[43]. By evaluating large 

chemical libraries, AI models can identify compounds with potential anticancer activity. These 

models are trained on datasets of known active and inactive compounds, enabling them to 

distinguish promising candidates effectively[44]. 



Ashu Mittal/ Afr.J.Bio.Sc. 6(Si3) (2024) 2509-2526                                       Page 2516 to 18 

Quantitative Structure-Activity Relationship (QSAR) models are another critical technique in 

AI-guided drug discovery. QSAR models correlate chemical structure with biological activity, 

using ML algorithms like random forests and support vector machines to predict the anticancer 

activity of new compounds based on their molecular descriptors[45]. This approach helps 

prioritize compounds for experimental validation, thereby streamlining the drug development 

process[46]. 

 

AI-driven molecular docking and simulation techniques predict how small molecules interact 

with target proteins. DL models, such as convolutional neural networks (CNNs), analyze the 

3D structures of proteins and ligands to predict binding affinities[3,9]. When coupled with 

molecular dynamics simulations, these models provide insights into the stability and dynamics 

of protein-ligand interactions, aiding in the identification of potent anticancer compounds. This 

method allows researchers to understand better and optimize interactions critical for drug 

efficacy[47]. Omics data integration is another powerful AI application in drug discovery. AI 

models integrate multi-omics data, including genomics, transcriptomics, proteomics, and 

metabolomics, to identify biomarkers and therapeutic targets[48]. By analyzing cancer-specific 

omics profiles, AI can predict which compounds are likely to be effective against particular 

cancer subtypes[22]. This personalized approach enhances the precision of anticancer drug 

discovery, ensuring that treatments are tailored to the unique molecular characteristics of 

different cancer types[49]. Ensuring the safety of anticancer compounds is crucial, and AI 

models play a vital role in predictive toxicology. These models analyze chemical structures and 

biological data to predict potential toxicity, helping identify compounds with favorable safety 

profiles. This predictive capability reduces the risk of adverse effects in clinical trials, making 

the drug development process safer and more efficient[50]. AI technologies and methodologies 

are transforming drug discovery by enhancing the efficiency and accuracy of identifying 

bioactive compounds[52]. From virtual screening to predictive toxicology, AI applications in 

drug discovery are paving the way for the development of new and effective anticancer 

therapies. The integration of AI-driven tools and platforms continues to accelerate the drug 

discovery process, offering hope for faster and more targeted treatment options for cancer and 

other diseases[53]. 

 

AI-Guided Discovery of Anticancer Compounds from Sargassum spp. 

1. Data Collection and Preprocessing 

Sources of Data for AI Models 

AI-guided discovery of anticancer compounds from Sargassum spp. relies heavily on extensive 

and high-quality data, with the primary sources of data for AI models including chemical 

databases, bioactivity assays, and scientific literature[54]. Chemical databases serve as 

repositories of chemical information, encompassing molecular structures, properties, and 

activities. Key databases in this context include PubChem, ChEMBL, and ZINC[55]. PubChem 

provides a vast collection of information on chemical compounds, including their bioactivity 

data, while ChEMBL contains data on bioactive molecules with drug-like properties[56]. ZINC 

offers a comprehensive catalog of commercially available compounds for virtual screening, 

making it a valuable resource for identifying potential anticancer agents. Bioactivity assays 

provide experimental data on the biological activity of compounds, which is crucial for 

understanding their potential efficacy and toxicity[57]. High-throughput screening (HTS) 

assays are particularly valuable in this regard, as they test large libraries of compounds against 

various biological targets. The data generated from these assays can be used to train AI models 

to recognize patterns associated with anticancer activity, enhancing the models' ability to 

predict the efficacy of new compounds[58]. Scientific literature, including published research 

articles and patents, is another rich source of information on the bioactivity of compounds 
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derived from marine plants, including Sargassum spp. Natural language processing (NLP) 

techniques can be employed to mine this literature for relevant data, such as previously 

identified bioactive compounds and their mechanisms of action[23]. By leveraging these 

diverse sources of data, AI models can be developed and refined to identify promising 

anticancer compounds with greater accuracy and efficiency[59]. 

 

Methods for Preprocessing and Curating Data for AI Analysis 

Preprocessing and curating data are critical steps to ensure the accuracy and effectiveness of 

AI models in the discovery of anticancer compounds. This process involves several stages, 

each aimed at refining and optimizing the dataset for reliable analysis[12]. The first stage, data 

cleaning, addresses the common issues found in raw data, such as errors, missing values, and 

inconsistencies[60]. To produce a reliable dataset, chemical structures may need to be 

standardized to a common format, duplicate entries must be removed, and any erroneous data 

should be corrected. This step ensures that the data used for AI model training is accurate and 

consistent[61]. 

 

After cleansing, data normalization is performed to ensure consistency across the dataset. 

Molecular descriptors, such as molecular weights and hydrophobicities, might be scaled to 

between zero and one[62]. Normalization is crucial for machine learning algorithms to perform 

well, as it ensures all features contribute equally to the training process and prevents any single 

feature from disproportionately affecting the model results. Feature selection is another 

important step in data preprocessing[63]. Not every feature is equally informative for 

predicting anticancer activity. Feature selection identifies and retains the most relevant features 

that significantly contribute to the prediction task. Techniques like principal component 

analysis (PCA) and recursive feature elimination (RFE) are commonly used to reduce the 

dataset's dimensionality[64]. These methods help to focus the model on the most informative 

variables, improving its predictive accuracy and efficiency while discarding irrelevant or 

redundant data[65]. To address the issue of limited data, especially in the context of rare 

compounds from marine plants, data augmentation techniques can be employed. Data 

augmentation involves generating synthetic data points to expand the dataset[32]. Methods 

such as the Synthetic Minority Over-sampling Technique (SMOTE) create additional synthetic 

examples by interpolating between existing data points, thus balancing the dataset[18]. 

Additionally, generative adversarial networks (GANs) can be used to create new molecular 

structures based on existing data, further enhancing the dataset's diversity and 

comprehensiveness[66]. The final stage in data preprocessing is splitting the data for model 

training and evaluation.  

 

Typically, the dataset is divided into three subsets: training, validation, and test sets. The 

training set is used to train the AI model, enabling it to learn the underlying patterns in the 

data[31]. The validation set is used to tune hyperparameters and prevent overfitting, ensuring 

that the model generalizes well to new data. Finally, the test set assesses the model's 

performance on unseen data, providing an unbiased evaluation of its predictive capabilities[28]. 

This systematic approach to data preprocessing and curation ensures that the AI models 

developed are robust, accurate, and effective in identifying potential anticancer compounds 

from Sargassum spp. 
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Fig.2   Artificial intelligence guided discovery of anticancer lead compound 

 

AI Model Development 

selection of AI Algorithms and Their Rationale 

It is possible to handle different types of data and analytical requirements using various 

machine learning and deep learning algorithms. A number of machine learning algorithms are 

commonly used to model quantitative structure-activity relationships (QSARs) such as random 

forests, support vector machines (SVMs), and gradient boosting [67]. Using these algorithms, 

chemical structures and biological activities can be modeled in complex ways thanks to their 

ability to handle structured data. As a result of their robustness and capability to handle large 

datasets, they can be used to identify patterns and predict the efficacy of new compounds[68]. 

Unstructured data, such as images and sequences, can be easily analyzed with deep learning 

algorithms, such as convolutional neural networks and recurrent neural networks. CNNs are 

especially useful in molecular docking studies, where the 3D structures of molecules are 

analyzed to predict binding affinities[69]. This capability is crucial for understanding how 

compounds interact with target proteins at a molecular level. Autoencoders and generative 

adversarial networks (GANs) also play a significant role in generating new compounds and 

optimizing molecular properties, thereby expanding the potential chemical space for 

discovering novel anticancer agents[70]. Natural language processing (NLP) techniques, 

including models like BERT and GPT, are employed to mine scientific literature and patents 

for relevant information[18]. These NLP models are designed to extract valuable insights from 

textual data, such as known interactions between compounds and cancer targets. By processing 

and interpreting vast amounts of textual information, NLP models help identify promising 

compounds and elucidate their mechanisms of action, thereby guiding experimental efforts in 

a more targeted manner[71]. 

 

Training, Validation, and Testing of AI Models 

In order to develop effective AI models for drug discovery, a rigorous training, validation, and 

testing process is required. A training dataset is used to train the chosen AI model. In order to 

minimize the prediction error, the model parameters are adjusted [72,5]. To ensure the model 

generalizes well to new data, cross-validation is used. In cross-validation, data are partitioned 

into subsets, the model is trained on some of these subsets while it is validated on others, and 

this process is repeated repeatedly to ensure robust performance across different data splits. 

Hyperparameters are tuned during validation and overfitting is prevented. Overfitting occurs 

when the model performs well on training data but poorly on unknown data. Regularization 

techniques in neural networks, such as L1/L2 regularization and dropout, are used to reduce 

overfitting. By penalizing large coefficients, L1/L2 regularization encourages simpler models, 
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while dropout eliminates neurons from training randomly to enhance generalization [73]. Test 

sets represent unseen data that were not used during training and validation and are used for 

final evaluation of AI models. An unbiased evaluation of the model's performance is provided 

by this assessment, which examines key metrics such as accuracy, precision, recall, F1 score, 

and area under receiver operating characteristic curves. The accuracy of a model determines 

whether or not it is accurate in its predictions, whereas its precision and recall tell us how 

accurate it is in predicting true positives and false positives[18,9]. An AUC-ROC curve shows 

the model's discriminatory ability at various threshold settings when comparing true positive 

rate and false positive rate. F1 scores provide a balanced measure of the model's prediction 

capability[74]. 

 

Identification and Screening of Compounds 

Process of Virtual Screening and Identification of Potential Anticancer Compounds 

Virtual screening is a pivotal process in AI-guided drug discovery, leveraging AI models to 

evaluate extensive libraries of compounds and pinpoint those with potential anticancer activity. 

The process begins with library preparation, where a virtual library of compounds is 

assembled[33]. These compounds are often sourced from chemical databases like ZINC, which 

provides a comprehensive collection of commercially available compounds. Additionally, 

novel structures can be generated in silico through AI techniques, expanding the library with 

potential new drug candidates[54]. This combination of known and novel compounds ensures 

a broad scope for identifying promising anticancer agents[75]. The next step is target selection, 

which involves identifying biological targets such as specific cancer-related proteins for 

screening. These targets are chosen based on their relevance to cancer pathways and their 

potential as drug targets, ensuring that the screening process is focused on the most promising 

areas for therapeutic intervention[22]. Docking simulations are then conducted using AI-driven 

molecular docking techniques to predict the binding affinities of compounds to the selected 

targets. Deep learning models, particularly convolutional neural networks (CNNs), analyze the 

3D structures of the compounds and targets to identify potential interactions[29]. Compounds 

that demonstrate high predicted binding affinities are prioritized for further evaluation, as these 

interactions suggest a stronger potential for therapeutic efficacy. The identified compounds are 

then subjected to scoring and ranking based on their predicted binding affinities and other 

crucial properties, such as drug-likeness and toxicity[30]. The compounds are scored to reflect 

their overall potential as drug candidates, and the highest-ranking compounds are selected for 

subsequent experimental validation. This prioritization ensures that resources are focused on 

the most promising candidates, streamlining the development process[76]. 

 

Validation Techniques for the Identified Compounds 

Following the virtual screening, potential anticancer compounds undergo rigorous validation 

to confirm their efficacy and safety. The initial validation is conducted through in vitro studies, 

where the compounds are tested on cancer cell lines. These assays assess various parameters, 

including the compounds' cytotoxicity, ability to induce apoptosis, and effects on cell 

proliferation[74,34]. High-throughput screening techniques facilitate the rapid evaluation of a 

large number of compounds, allowing researchers to identify those with significant anticancer 

activity. Compounds that show promise in vitro are further evaluated through in vivo studies 

using animal models[29]. These studies provide a more comprehensive assessment of the 

compounds' pharmacokinetics, bioavailability, and therapeutic efficacy within a complex 

biological system[2,8]. In vivo studies also offer valuable insights into the potential toxicity 

and side effects of the compounds, which are critical for determining their suitability for further 

development[18,32]. To gain a deeper understanding of the compounds' mechanisms of action, 

detailed mechanistic studies are conducted. These studies investigate how the compounds 
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interact with their targets and influence cancer pathways[77]. Techniques such as RNA 

sequencing and proteomics are employed to examine changes in gene and protein expression 

in response to the treatment. This information helps elucidate the biological processes affected 

by the compounds, providing a clearer picture of their therapeutic potential[29]. The most 

promising compounds advance to clinical trials, where they are tested in humans. Clinical trials 

are conducted in multiple phases, beginning with Phase I trials to assess safety and dosage[24]. 

Phase II and III trials follow, focusing on evaluating efficacy and monitoring for adverse 

effects. AI models play a significant role in designing and optimizing these trials by predicting 

patient responses and identifying potential biomarkers for treatment stratification[12,45]. This 

integration of AI ensures that clinical trials are more efficient and targeted, increasing the 

likelihood of successful outcomes[78]. 

 

Future Perspectives 

Advancements in AI and Drug Discovery 

Artificial Intelligence (AI) is continually evolving, introducing new technologies that hold 

promise for revolutionizing drug discovery. Among the most impactful emerging AI 

technologies are quantum computing, federated learning, and reinforcement learning[54]. 

 

Quantum Computing: Quantum computing is poised to significantly accelerate AI's 

capabilities in drug discovery. Unlike classical computers, which use bits as the smallest unit 

of information, quantum computers use quantum bits or qubits, which can represent and 

process more complex data sets simultaneously[4]. This enables quantum computers to solve 

optimization problems and simulate molecular structures far more efficiently than classical 

computers[42]. In the context of drug discovery, quantum computing can expedite the process 

of molecular docking and interaction studies, allowing researchers to explore vast chemical 

spaces more comprehensively and rapidly[34,28]. 

 

Federated Learning: Federated learning is an emerging AI technique that enables multiple 

institutions to collaborate on model training without sharing their data directly. This approach 

addresses privacy concerns and enables the utilization of diverse datasets from different 

sources, leading to more robust and generalizable AI models[13,19]. In drug discovery, 

federated learning can facilitate collaboration between pharmaceutical companies, research 

institutions, and hospitals, combining their data to enhance the identification of potential 

anticancer compounds without compromising data privacy[20]. 

 

Reinforcement Learning (RL): Reinforcement learning is another promising AI technology, 

particularly useful in de novo drug design. RL algorithms learn optimal strategies through trial 

and error by interacting with an environment[22]. In drug discovery, RL can be used to design 

novel compounds by iteratively generating and testing new molecular structures, optimizing 

for desired properties such as high binding affinity and low toxicity. This approach can 

significantly enhance the efficiency of discovering new drug candidates[79]. 

 

Future Trends in AI-Guided Discovery of Marine Natural Products 

The integration of AI into the discovery of marine natural products, including those derived 

from Sargassum spp., is expected to grow. Key trends include the increasing use of multi-omics 

data, the development of AI-driven natural product libraries, and enhanced AI models for 

predicting bioactivity[12,5]. 

 

Multi-Omics Integration: Future trends will likely see a deeper integration of multi-omics 

data (genomics, proteomics, metabolomics) into AI models. By combining data from various 
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biological layers, researchers can gain a holistic understanding of how marine natural products 

interact with biological systems. This comprehensive approach can lead to the discovery of 

novel anticancer compounds with unique mechanisms of action[19,3]. 

 

AI-Driven Natural Product Libraries: The creation of AI-driven natural product libraries is 

another anticipated trend. These libraries will utilize AI to predict the bioactivity of marine 

natural products, enabling more efficient screening and prioritization of compounds for 

experimental validation. By leveraging AI, these libraries can continuously evolve, 

incorporating new data to refine predictions and enhance the discovery process[33,2]. 

 

Enhanced Predictive Models: As AI technologies advance, we can expect the development 

of more sophisticated predictive models that can accurately forecast the bioactivity and toxicity 

of marine natural products. These models will incorporate advanced algorithms and larger, 

more diverse datasets, leading to improved predictions and a higher success rate in identifying 

viable anticancer compounds[80]. 

 

Research Directions for Sargassum spp. 

Potential Areas of Research for Discovering New Anticancer Compounds 

Research on Sargassum spp. holds considerable potential for uncovering new anticancer 

compounds. Several areas warrant further exploration, including bioactive compound isolation, 

mechanism of action studies, and synergy with existing treatments[4]. 

 

Bioactive Compound Isolation: One crucial area of research is the isolation and 

characterization of bioactive compounds from Sargassum spp. Advanced techniques such as 

high-performance liquid chromatography (HPLC) and mass spectrometry (MS) can be 

employed to identify and purify compounds with potential anticancer activity. Once isolated, 

these compounds can be screened for their efficacy against various cancer cell lines, providing 

a foundation for further drug development[20,3,33]. 

 

Mechanism of Action Studies: Understanding the mechanisms of action of bioactive 

compounds from Sargassum spp. is essential for their development as anticancer agents[44]. 

Research should focus on elucidating how these compounds interact with cellular targets and 

pathways to exert their anticancer effects. Techniques such as RNA sequencing, proteomics, 

and CRISPR-Cas9 gene editing can be used to investigate the molecular mechanisms 

underlying the anticancer activity of Sargassum-derived compounds[18]. 

 

Synergy with Existing Treatments: Another promising area of research is the potential 

synergy between compounds from Sargassum spp. and existing cancer treatments[29]. Studies 

can explore how these compounds enhance the efficacy of conventional therapies, such as 

chemotherapy and radiation, or reduce their side effects. This synergistic approach could lead 

to more effective combination therapies, improving patient outcomes[81]. 

 

Integration of AI with Other Technologies 

The integration of AI with other cutting-edge technologies such as genomics and metabolomics 

can further enhance the discovery of anticancer compounds from Sargassum spp. This 

multidisciplinary approach leverages the strengths of each technology to provide deeper 

insights and more robust predictions[48,2]. 

 

Genomics: The integration of AI with genomics can provide a more comprehensive 

understanding of the genetic basis of cancer and the potential therapeutic targets of Sargassum-
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derived compounds. AI can analyze genomic data to identify mutations and pathways 

associated with cancer, and then predict how Sargassum compounds may interact with these 

targets. This approach can guide the development of personalized therapies based on an 

individual's genetic profile[2,9,11]. 

 

Metabolomics: Metabolomics, the study of small molecules (metabolites) in biological 

systems, can be combined with AI to identify metabolic pathways affected by Sargassum 

compounds[20]. AI algorithms can analyze metabolomic data to uncover changes in metabolic 

profiles in response to treatment, providing insights into the compounds' mechanisms of action. 

This integration can also help identify biomarkers for monitoring treatment response and 

efficacy[12]. 

 

High-Throughput Screening (HTS): AI can enhance high-throughput screening by analyzing 

large datasets generated from HTS assays[38]. By predicting the activity of Sargassum 

compounds based on HTS data, AI can prioritize compounds for further testing, streamlining 

the drug discovery process[3]. Machine learning models can also identify patterns and 

relationships in HTS data that may not be apparent through traditional analysis methods[82]. 

 

2. Conclusion 

 

Research and development opportunities for anticancer compounds from Sargassum spp. are 

bright with emerging AI technologies and multidisciplinary integration. In the near future, 

advances in AI, such as quantum computing, federated learning, and reinforcement learning, 

will revolutionize drug discovery, improving its efficiency and effectiveness. A greater 

emphasis will likely be placed on multi-omics integration, artificial intelligence-driven natural 

product libraries, and enhanced prediction models in the future, all contributing to the discovery 

of new anticancer agents. In parallel, continued research on Sargassum spp., focusing on 

bioactive compound isolation, mechanism of action studies, and synergy with existing 

treatments, will further our understanding of its potential as a source of new cancer therapies. 

By leveraging the power of AI and integrating it with other technologies, researchers can 

accelerate the development of effective anticancer treatments, ultimately improving outcomes 

for patients worldwide. 
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