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ABSTRACT:  

 

Handling large-scale data is a formidable task for data scientists and 

researchers due to the rapid generation and ever-growing volume of 

data. The sources encompass a wide range of current datasets and 

databases that contain both structured and unstructured data. Hence, 

the utilisation of advanced algorithms is important to effectively 

target the vast amount of data before it becomes inaccessible to the 

current algorithms. Distributed computing has gained popularity as it 

provides superior scalability and performance compared to 

Traditional Computing Systems. This paper analyses the structured 

data with the latest algorithms like Random Forest Classifier, Extra 

Trees Classifier, Gradient Boosting Regressor, Gradient Boosting 

Classifier, voting classifier, Federated Learning, Distributed 

Bagging, Distributed Stochastic Gradient Descent, Communication 

Efficient Ensemble Learning, Model Parallelism algorithms are 

applied to datasets in both Distributed Computing and Traditional 

Environments.  
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1. Introduction 

 

The widespread use of social media, cloud computing, sensor networks, content delivery 

networks, and other new technologies has led to the generation of a significant volume of data 

daily, which is referred to as "Big Data" [1].  Big data refers to a vast amount of data that is 

systematically examined to extract valuable insights. Big data is defined by three primary 

attributes: volume, which refers to the size of the generated data; variety, which encompasses 

the numerous forms of data such as structured, semi-structured, and unstructured; and velocity, 

which pertains to the speed at which data is generated and processed. Furthermore, the 

emergence of big data poses numerous research challenges as conventional computing and 

database systems cannot handle such large volumes of data. To address the difficulties, 

Distributed Data Processing Techniques [2] split the task of processing data across multiple 

less potent computers instead of relying on a single high-powered computer. These algorithms 

are formulated according to the MapReduce paradigm [3]. MapReduce operates on a cluster 

of inexpensive computers, making it suitable for Hadoop operations and functions in the 

processing of massive amounts of data. 

The existing machine learning algorithms are applied [24] and compared in both Distributed 

and Traditional Computing Environments. So, in this paper classifies the structured data with 

the latest algorithms like Random Forest Classifier, Extra Trees Classifier, Gradient Boosting 

Regressor, Gradient Boosting Classifier, voting classifier, Federated Learning, Distributed 

Bagging, Distributed Stochastic Gradient Descent, Communication Efficient Ensemble 

Learning, Model Parallelism are applied in both Distributed Computing and Traditional 

Computing Environments to know the best latest algorithm and to know the best environment 

for the large datasets with less training time.  

 

2. Methodology 

 

In this paper the latest algorithms like Random Forest Classifier, Extra Trees Classifier, 

Gradient Boosting Regressor, Gradient Boosting Classifier, voting classifier, Federated 

Learning, Distributed Bagging, Distributed Stochastic Gradient Descent, Communication 

Efficient Ensemble Learning, Model Parallelism applied on three different structured data to 

classify the best environment by comparing runtime of environment in both Distributed 

Computing and Traditional Computing Environments. The step by step workflow is visualised 

in the figure 1. 
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Figure 1: Workflow 

2.1. About Datasets 

 

2.1.1. Data Set 1: Login Data Set For Risk Base Authentication  

There were almost 33 million login attempts and 3.3 million users on a global scale, and the 

data collected from this service is one terabyte in size. Information was collected from 

February 2020 to February 2021. Research and Development for Risk-Based Authentication 

systems can be accelerated with the use of these data sets. The data was collected from a large-

scale single sign-on online system that has more than 3.3 million users from all around the 

world. 

 

2.1.2. Data Set 2: Internet Traffic Management System  

In order to alleviate internet traffic congestion, systems monitor traffic in real-time and 

implement appropriate measures. Proper maintenance is ensured by capturing the best scores 

of the Unified Traffic Management system and protocols such as IP, UDP, TCP, HTTP, FTP, 

DNS, and TFTP.  

 

2.1.3. Data Set 3: Medical Recommendation System 

Based on patient feedback, a medical recommendation system suggests providers for a specific 

ailment. In today's rapidly evolving technological landscape, it is crucial and has the potential 

to rescue numerous patients' lives. Patients will rate doctors according to how well they 

accomplish their jobs.  

 

3. Methods 

 

i. Random Forest Classifier 

A Random Forest is an ensemble of trees that rely on a set of random factors. In a more formal 

manner, let's consider a random vector X = (X1,...,Xp)T with p dimensions, which represents 

the input or predictor variables, and a random variable Y, which represents the response. We 
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will suppose that there is an unknown joint distribution PXY (X,Y). The objective is to 

determine a prediction function f(X) that can accurately forecast Y. The prediction function is 

determined by a loss function, denoted as L(Y,f(X)), and is defined to minimise the expected 

value of the loss[4].  

𝐸𝑋𝑌(𝐿(𝑌, 𝑓(𝑋))) 
The subscripts indicate the expected value based on the joint distribution of X and Y. L(Y,f(X)) 

can be understood as a quantitative assessment of the proximity between f(X) and Y. It imposes 

a penalty on values of f(X) that deviate significantly from Y. Common options for loss 

functions include squared error loss. The loss function for regression is defined as the squared 

difference between the predicted value (f(X)) and the actual value (Y), denoted as L(Y,f(X)) = 

(Y−f(X))2. For classification, the loss function is the zero-one loss.  

L(Y, f(X)) = I(Y ≠ f(X)) = {
0 𝑖𝑓 𝑌 = 𝑓(𝑋
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Minimising EXY (L(Y,f(X))) using squared error loss yields the conditional expectation, also 

referred to as the regression function. 

f(x) = E(Y|X =x) 

In a classification scenario, if the range of potential values for Y is represented as Y, the 

objective of minimising the expected value of the loss function EXY (L(Y,f(X))) for zero-one 

loss is achieved. 𝑦𝜖𝓎 

f(x) = arg max P(Y = y |X = x) 

 

ii. Extra Trees Classifier 

The Extra-Trees Algorithm is designed to address the basic batch-mode supervised learning 

problem, with a specific focus on learning problems that involve a potentially high number of 

numerical input variables and a single target variable, which can be either categorical or 

numerical. Next, we proceeded with a methodical empirical assessment using a wide range of 

classification and regression tasks. We compared this new approach with conventional tree-

based methods, evaluating both accuracy and computing efficiency. In the remainder of the 

paper, the term "attribute" refers to a specific input variable utilised in a supervised learning 

issue. The candidate characteristics refer to the input variables that are accessible for a specific 

task. The term "output" is used to refer to the goal variable that describes the problem in 

supervised learning. When the output variable consists of categories, it is referred to as a 

classification problem. On the other hand, when the output variable is numerical, it is known 

as a regression problem [5,6]. The word "learning sample" refers to the observations that are 

utilised to construct a model, while the term "test sample" refers to the data that are used to 

calculate the correctness of the model, such as the error rate or mean square error. The variable 

N represents the size of the learning sample, namely the number of observations. On the other 

hand, the variable n represents the number of candidate characteristics, which corresponds to 

the dimensionality of the input space. 

 

iii. Gradient Boosting  

The gradient boost approach aids in reducing the bias error of the model. The fundamental 

concept underlying this technique is to construct models in a sequential manner, with each 

succeeding model aiming to minimise the errors made by the prior model. However, what is 

the method by which we accomplish that? What strategies can be employed to minimise the 

occurrence of errors? This is accomplished by constructing a novel model based on the errors 

or residuals of the preceding model [7].  

 



M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380                               Page 6367 to 18 

For continuous target columns, Gradient Boosting Regressor is employed, whereas for 

classification problems, Gradient Boosting Classifier is utilised. The sole distinction between 

the two lies in the "Loss function". The goal is to reduce this loss function by incorporating 

weak learners through the use of gradient descent. Regression problems utilise various loss 

functions such as Mean Squared Error (MSE), which is based on the loss function. On the other 

hand, classification issues employ distinct functions like log-likelihood. 

 

1.Gradient Boosting Regressor 

The Gradient Boosting Regressor (GBR) is an ensemble model that consists of a series of tree 

models placed in a sequential manner. Each subsequent model learns from the errors made by 

the previous model through an iterative process. This machine learning model use the 

technique of "boosting" to combine weak prediction models, typically decision trees, in order 

to create a more resilient and effective model [8]. A GBR with M trees can be defined as 

follows: hm represents a weak learner that has low individual performance, whereas γm is a 

scaling factor that determines the contribution of each tree to the overall model. GBR employs 

the gradient descent loss function to minimise errors by iteratively updating the starting 

estimation with the new estimation. Therefore, a conclusive model is constructed by combining 

all initial estimations with appropriate weights. The GBR model utilised in this study is based 

on the Gradient Boosting Regressor technique proposed by [9].  

𝑓𝑀(𝑥𝑗) =  ∑ 𝛾𝑚ℎ𝑚(𝑥𝑗)

𝑀

𝑚

 

The model's error in regression analysis refers to the discrepancy between the observed data 

points and the line of best fit generated by the algorithm. The array contains the elements. The 

inaccuracy of the model will be determined based on the following criteria. 

 

1. Mean Absolute Error (MAE): is a statistical measure that calculates the average of the 

absolute values of the mistakes, which reflect the extent of divergence from the real 

probability. The mathematical expression for Mean Absolute Error (MAE) is given by the 

formula:  

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
 

 

2. Root Mean Squared Error (RMSE): is a widely used metric for evaluating the 

performance of models. It is valuable because it can be understood as the standard deviation 

of the prediction errors. The expression is represented as follows: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 −  𝑦𝑖)2𝑛

𝑖=1

𝑛
 

3. Execution Time: refers to the duration it takes for the model to learn from the input logs 

and provide predictions. 

 

2. Gradient Boosting Classifier 

Both the loss function and the base-learner models can be specified at will. Obtaining the 

parameter estimates can be challenging in practice, especially when dealing with a customised 

loss function Ψ(y, f) and/or a customised base-learner h(x, θ). In order to address this issue, a 

suggestion was made to select a new function h(x, θt) that is most closely aligned with the 

negative gradient {gt(xi)}
N

i = 1 .The value of Ni is equal to 1 for the observed data[10]. 
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                          gt(x) =  𝐸𝑦 [
𝜕Ψ(𝑦,𝑓(𝑥))

𝜕𝑓(𝑥)
 | 𝑥]

𝑓(𝑥)= �̂�𝑡−1(𝑥)
 

 

Instead of seeking the overall solution for the increase in boost in the function space, one can 

opt for the new function increment that is most closely related to gt(x). This allows for the 

substitution of a potentially challenging optimisation problem with the traditional least-squares 

minimization problem: 

(𝜌𝑡,   𝜃𝑡
) = arg 𝑚𝑖𝑛𝜌,𝜃  ∑[−𝑔𝑡(𝑥𝑖)  +  𝑝ℎ(𝑥𝑖, 𝜃)]2

𝑁

𝑖=1

 

iv. Voting Classifier 

This approach is the most straightforward strategy in which each voter is entitled to select only 

one option, specifically their most desired one. The victor is the contender who possesses the 

highest aggregate number of votes. The given text is the list [11, 12]. In this scenario, if 45% 

of voters select alternative A, 25% choose B, and 30% choose C, then alternative A is the 

victor. Condorcet's July theorem states that if there are m Voters who make decisions through 

simple majority voting, and each has a probability p of making the correct decision, then the 

probability of the entire jury making the correct decision is: 

 

𝑝𝑚 =  ∑ (
𝑚!

(𝑚 − 𝑖)!  ∙  𝑖!
) ∙ 𝑝𝑖 ∙ (1 − 𝑝)𝑚−𝑖 

𝑚

𝑖= [𝑚 2⁄ ]

 

 

Therefore, if the value of p is greater than 0.5, then the value of 𝑝𝑚 > 𝑝 will be greater than p. 

This implies that the collective has a greater likelihood of making the accurate determination 

compared to any individual voter. As the number of voters’ increases, the likelihood of the 

ensemble making the correct decision also increases. When the value of m approaches infinity, 

the probability 𝑚 → ∞, 𝑝𝑚 → 1.  

 

v. Federated Learning 

Federated Learning (FL) is a secure and decentralised learning framework that allows the 

creation of a virtual model to handle the issue of scattered clients working together without the 

need to share sensitive raw data [13]. The virtual model is an efficient global model that 

combines data from all participants, allowing each person to achieve their individual goals 

utilising the model. FL can ensure that the results of this modelling closely resemble the usual 

centralised training paradigm [14], where data from numerous clients are consolidated in a 

central server for modelling [15]. Within a federated system, it is commonly presumed that 

members possess identical identities and endorse the implementation of mutually agreed-upon 

data policies. As the data is not transmitted directly, it does not impact data standards or 

endanger user privacy. 

 

To begin, we establish the fundamental notion of FL: Consider a scenario where there are N 

participants in Federated Learning (FL), denoted as {𝑃1, 𝑃2,⋅⋅⋅,𝑃𝑁}, who all like to combine 

their data in order to build a unified model. An often employed method involves aggregating 

all the data into a single set, denoted as total data 𝑃=𝑃1∪𝑃2∪⋅⋅⋅∪𝑃𝑁, to train a model 𝑀𝑠𝑢𝑚 

with a performance of 𝑉𝑠𝑢𝑚. Federated Learning (FL) is a framework in which participants 

collaboratively train a shared model 𝑀𝑓𝑒𝑑 while maintaining the privacy of their individual 

data. The performance of the model is evaluated using 𝑉𝑓𝑒𝑑. Assuming ε is a non-negative 

value, the performance loss of the FL model can be represented by 
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|𝑉𝑓𝑒𝑑 −  𝑉𝑠𝑢𝑚| <  𝜖 

 

The process of learning in federated learning is accomplished by minimising a loss function, 

which is computed on each client using a weighted aggregation technique. The objective of FL 

is to minimise the following function:  

min 𝑓(𝜔) =  ∑
𝑛𝑘

𝑛

𝑛

𝑘=1

 𝐹𝑘(𝜔) 

Where N is the number of clients, 𝑛𝑘 is the amount of data on the 𝑘th client, and 𝐹𝑘(𝑤) is the 

local objective function of the 𝑘th client. 

 

vi. Distributed Stochastic Gradient Descent 

Gradient descent is a highly favoured approach for optimisation and is widely used for 

optimising neural networks. Simultaneously, many modern Deep Learning libraries provide 

implementations of different methods to optimise gradient descent [16]. These algorithms are 

frequently employed as black-box optimizers, as it is difficult to find practical explanations of 

their advantages and disadvantages.  

 

Let K be a positive integer representing discrete time steps. The variable x_n(k) represents 

agent n's estimate of the minimizer of equation at iteration k. The D-SGD algorithm is defined 

on a per-agent basis using recursion. 

 

𝑥𝑛(𝑘 + 1) =  𝑥𝑛(𝑘) − ∝𝑘 (∇ 𝑓𝑛(𝑥𝑛(𝑘)) +  𝜉𝑛 (𝑘 + 1)) +  𝛽𝑘  ∑ (𝑥ℓ(𝑘) − 𝑥𝑛(𝑘)

ℓ∈Ω𝑛

) 

For n =1,..…N, where {∝𝑘}𝑘 ≥1, {𝛽𝑘}𝑘 ≥1  ⊂ (0, 1] are scalar weight parameters, 𝜉𝑛(𝑘) 

represents zero-mean noise, and Ω𝑛 denotes the set of neighbors of agent n in the graph G. The 

method is initialized by setting the vector ((𝑥𝑛(0))𝑛=1
𝑁 ) to a specified point 𝑥0 ∈  ℝ𝑁 𝑑 . 

 

vii. Communication Efficient Ensemble Learning 

Let's consider a set H consisting of q pre-trained hypotheses H = (h1, ..., hq) which can be 

either predictors or estimators depending on the job. It is preferable to have a reliable predictor 

for each domain k. However, these predictors can be trained using many methods, such as user 

data or public data [17]. The objective is to acquire a collection of weights α = {α1, ..., αq} in 

order to create an ensemble ∑ ∝𝑘 ℎ𝑘
𝑞
𝑘=1  that reduces the standard or agnostic loss 

to a minimum. In addition, we place primary emphasis on density estimate, assuming that the 

set of hypotheses, denoted as H, is defined as follows: 

 

     H = {∑ 𝛼𝑘ℎ𝑘 : 𝛼𝑘
𝑞
𝑘=1 ≥ 0,   ∀𝑘, ∑ ∝𝑘= 1𝑞

𝑘=1 }. 

By considering this particular collection of assumptions will minimise both the standard loss 

and the agnostic loss.  

 

viii. Model Parallelism  

Model parallelism in neural networks involves dividing the model into parts and distributing 

those parts across many computing resources. This technique has the potential to provide 

advantages in terms of both model throughput and reducing memory needs per device [18]. In 

order to provide a clearer understanding of model parallelism, we will begin by presenting a 

computational framework for analysing neural networks. This framework will serve as a 

foundation for discussing model parallelism, which involves neural networks functioning in 

the Single Instruction Multiple Data (SIMD) format. Subsequently, we address the initial study 



M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380                               Page 6370 to 18 

inquiry, namely, "What are the various forms of model parallelism?" taking into account both 

theoretical and implementation aspects. This algorithm differentiates between two distinct 

phases: training and inference. During the training phase, we develop a model using a specific 

dataset known as the learning set [19]. During inference, we assign the trained model the 

responsibility of making predictions on new, previously unknown data. A neural network is 

one example of such models, and they are highly effective at handling difficult prediction tasks, 

surpassing other existing methods. The input tensor 𝐗 and the output tensor 𝐘. Furthermore, 

we make a clear distinction between parameter tensors and activation tensors. Parameter 

tensors are fixed inputs to operators, whereas activation tensors are the output of such 

operators. Operators serve as the functional components of the neural network. The user's text 

is [20]. 

In the operator graph 𝒪=(𝑉, 𝐸) of a given neural network, each node 𝑣𝑖∈𝑉 can be classified as 

either an operator 𝑜𝑖, which is accompanied by an activation tensor 𝐓𝑜𝑖, or a tensor 𝐓𝑖. Each 

edge represents the tensor linked to 𝑣𝑖 and serves as an input for the operator node 𝑜j.  

 

 

Based on this representation, we establish two workloads: the forward pass and the backward 

pass. The forward pass involves taking the input tensor 𝐗 and calculating all the activations, 

which leads to the output tensor 𝐘. The backward pass modifies the parameter tensors by 

utilizing the back-propagation process.  

 The backward pass begins at the output 𝐘 and progresses towards 𝐗, establishing its 

dependence on the outcome of the forward pass.  

 It necessitates the activation tensor of each operator to determine the appropriate 

parameter updates.  

The training process involves 𝑏 iterations of forward passes followed by 𝑏 iterations of 

backward passes, where 𝑏 is the batch size. Inference solely involves doing forward passes 

[21-23]. 

 

3.Experimental Analysis 

In this work experimental analysis is done in two environments like distributed environment 

and traditional computing environment. For distributed environment Spark runtime 

environment is used whereas for traditional computing environment python programing 

environment is used. Here the analysis is done for three different types of structured datasets: 

Login Data Set for Risk Base Authentication, Internet Traffic Management System, Medical 

Recommendations System. The datasets have terabytes of data so; in distributed environment 

the data is divided into chunks of volumes for easy access. Whereas in traditional computing 

environment the Google Colab Python platform is used for easy access of data. 

At initial step the pre-processing is done for three datasets individually with procedure.  

 First, data cleaning with multiple sub categories like: renaming the columns, to find and 

remove the null columns in dataset, then checking the duplicate records, later changing the 

data frame from strings to numeric for easy training and testing dataset.  

 Next feature Engineering is performed to find the input features because to know which data 

is suitable for each column and is passed to the different deep learning algorithms. 

 After pre-processing, the three datasets are individually spited into 70% training and 30% 

testing to overcome the overfitting problems in both environments. 

 Then latest deep learning algorithms like Random Forest Classifier, Gradient Boost 

Regressor, Gradient Boost Classifier, Voting Classifier, Extra Tree Classifier, Federated 

Learning, Distributed Bagging, Distributed Stochastic Gradient Descent, Communication 

Efficient Ensemble Learning, Model Parallelism on this dataset in both the environments to 
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know the best environment for processing of large structured datasets and the best proposed 

algorithm.  

  

The results of three datasets are: 

 

3.1. Data Set: LOGIN DATA SET FOR RISK BASE AUTHENTICATION  

After applying different latest Deep Learning Algorithms on login data set for risk base 

authentication in both Distributed Computing Environment and Traditional Computing 

Environment, the Accuracy, Time to Train, predict in both Distributed Environment and 

Traditional Computing Environment as shown in table 1&2. 

 

Table 1: Comparison of Algorithms in Distributed Computing Environment 

Algorithms 
Accurac

y 
Recall 

Precisio

n 

F1-

Score 

Time 

to 

train 

in sec 

Time to 

predictio

n in sec 

Total 

time in 

sec 

Random 

Forest 

Classifier 

93.06% 93.06% 93.86% 93.06% 13.0 16.0 29.0 

Gradient Boost 

Regressor 
95.06% 95.06% 95.86% 95.06% 6.0 14.0 20.0 

Gradient Boost 

Classifier 
89.51% 89.51% 89.59% 89.61% 9.0 14.0 23.0 

Voting 

classifier 
66.26% 66.15% 66.95% 61.37% 7.4 12.4 19.8 

Extra Tree 

Classifier 
81.51% 81.95% 81.96% 81.95% 46.0 9.0 55.0 

Federated 

Learning 
89.63% 89.65% 89.56% 87.26% 5.9 8.4 14.2 

Distributed 

Bagging 
98.96% 98.97% 98.96% 97.87% 8.8 10.6 19.4 

Distributed 

Stochastic 

Gradient 

Descent 

91.34% 91.69% 91.32% 88.65% 12.0 6.2 18.3 

Communicatio

n-Efficient 

Ensemble 

Learning 

97.78% 97.78% 97.96% 95.27% 15.0 14.0 29.0 

Model 

Parallelism 
98.95% 98.59% 98.96% 98.06% 7.3 4.3 11.6 

     

By observing table 1, in Distributed Environment Model Parallelism is the best algorithm with 

the Accuracy of 98.95% and Time to Train 7.3 Sec, Time to Predict 4.3 Sec. 

 

Table 2: Comparison of Algorithms in Traditional Computing Environment      

By observing Table 2, in Traditional Computing Model Parallelism is the best algorithm with 

the Accuracy of 96.91% and Time to Train 10.3 Sec, Time to Predict 6.1Sec. 
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So, by comparing both Distributed Computing and Traditional Computing Environments, the 

Distributed Environment is the best because the total runtime of training the dataset is less 11.6 

Sec while compared to the traditional computing Environment 16.4. 

The prediction of dataset analysed in both environments is:  

 At first predicted likelihood of attacks for each timestamp is visualised in figure 6. 

 

Figure 6: Predicted Likelihood of Attacks for Each Timestamp 

In figure 6, X-axis is Time and Y-axis is Prediction likelihood by observing the figure across 

the globe at every 15seconds the internet attacks are happening. 

Next predicted the distribution of attacks by OS name and OS version is visualised in figure 7.  

 

Figure 7: Distribution of Attacks by OS Name and OS Version 

 

In figure 7, X-axis is name of the software, version of the software and Y-axis is attacks 

occurring at timestamp the two separate pie charts are shown the distribution of attacks by OS 
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name and OS version. In distributed OS name Windows has high rate of attacks and in OS 

version windows 8 has the highest attacks.  

 

a.DATA SET: INTERNET TRAFFIC MANAGEMENT SYSTEM 

After applying different latest Deep Learning Algorithms on the Internet Traffic Management 

System in both Distributed Computing Environment and Traditional Computing Environment. 

Observed the Accuracy, Time to Train, predict in both Distributed Environment and 

Traditional Computing Environment as shown in Table 3&4.  

 

Table 3: Comparison of Algorithms in Distributed Computing Environment 

 

Algorithms 
Accura

cy 

Reca

ll 

Precisi

on 

F1-

Score 

Ti

me 

to 

trai

n in 

sec 

Time 

to 

predi

ct in 

sec 

Tot

al 

tim

e in 

sec 

Random Forest Classifier 95.06% 
95.06

% 
95.86% 

95.06

% 
6.0 14.0 

20.

0 

Algorithms Accuracy 
Recal

l 

Precisi

on 

F1-

Score 

Ti

me 

to 

trai

n in 

sec 

Time 

to 

predi

ct in 

sec 

Tot

al 

tim

e in 

sec 

RandomFore

st Classifier 
97.95% 

97.70

% 
97.70% 

96.60

% 

13.

1 
23.9 37.0 

Extra Tree 

Classifier 
95.80 % 

95.77

% 
95.77% 

94.66

% 

10.

4 
23.8 34.2 

GradientBoo

st Classifier 
81.90% 

81.90

% 
81.89% 

79.89

% 
8.7 22.4 31.1 

Voting 

classifier 
98.90% 

98.90

% 
98.90% 

96.89

% 
5.7 38.4 44.1 

GradientBoo

st Regressor 

92.12

% 

93.35

% 

94.56

% 

89.45

% 
16.6 19.2 35.8 

Federated 

Learning 

86.18

% 

86.12

% 

86.25

% 

84.98

% 
15.0 14.2 29.2 

Distributed 

Bagging 

91.78

% 

91.76

% 

91.39

% 

89.56

% 
8.9 9.4 18.2 

Distributed 

Stohastic 

Gradient 

Descent 

85.41

% 

85.41

% 

85.41

% 

83.65

% 
16.0 6.1 22.1 

Communicati

on-Efficient 

Ensemble 

Learning 

69.14

% 

69.78

% 

69.52

% 

66.89

% 
8.0 11.4 19.3 

Model 

Parallelism 

96.91

% 

96.98

% 

96.95

% 

92.67

% 
10.3 6.1 16.4 
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Gradient Boost Regressor 88.06% 
88.06

% 
88.56% 

88.06

% 

14.

0 
12.0 

26.

0 

Gradient Boost Classifier 86.95% 
86.95

% 
86.96% 

86.95

% 

15.

0 
11.0 

26.

0 

Voting classifier 97.51% 
97.51

% 
97.59% 

97.51

% 

10.

0 
14.0 

14.

0 

Extra Tree Classifier 79.51% 
79.51

% 
79.59% 

79.51

% 

46.

0 
19.0 

65.

0 

Federated Learning 82.32% 
82.56

% 
82.45% 

80.56

% 
2.7 2.3 5.0 

Distributed Bagging 94.15% 
94.16

% 
94.55% 

96.32

% 
4.9 1.6 6.4 

Distributed 

Stohastic 

Gradient 

Descent 

98.47

% 

89.84

% 
82.45% 

80.56

% 
2.0 3.3 5.4 

Communicat

ion-Efficient 

Ensemble 

Learning 

88.78

% 

88.84

% 
88.45% 

86.56

% 
1.7 1.4 3.1 

Model 

Parallelism 

98.45

% 

98.12

% 
98.44% 

95.23

% 
1.6 1.1 2.7 

 

By observing table 1, in Distributed Environment Model Parallelism is the best algorithm with 

an Accuracy of 98.45% and Time to Train 1.6 Sec, Time to Predict 1.1 Sec.    

 

Table 4: Comparison of Algorithms in Traditional Computing Environment 

 

By observing table 2, In Traditional Computing Model Parallelism is the best algorithm with 

the Accuracy of 93.13% and Time to Train 5.7 Sec, Time to Predict 4.1 Sec. 

So, by comparing both Distributed Environment and Traditional Computing Environments, 

the Distributed Environment is the best because the total runtime of training the dataset is less 

2.7 sec while compared to the Traditional Computing Environment is 9.8 sec. 

The prediction of dataset analysed in both environments is:  

At first predicated the of average drops happening in service within an Internet Traffic  

Management System is visualised in figure 8. 
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Figure 8: Average Drops Happening in Service Within an Internet Traffic Management 

System 

In figure 8, X-axis is Service Time and Y-axis is Average Drop count by observing while data 

browsing and playing games internet drops is high. 

Next predicted the distribution and density of the data, providing insights into the variability 

of user logins for each service is visualised in figure 9. 

 
Figure 9: The Distribution and Density of the Data, Providing Insights into the 

Variability of User Logins for Each Service 

In figure 9, X-axis is service type and Y-axis is number of logins visualizes that while data 

browsing and voice connection calls the distribution and density of user logins are high for 

each service. 

 

b. DATA SET: MEDICAL RECOMMENDATIONS   SYSTEM 
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After applying different latest Deep Learning Algorithms on the Medical Recommendations 

systems in both Distributed Computing Environment and Traditional Computing Environment. 

Observed the Accuracy, Time to Train, predict in both Distributed Environment and 

Traditional Computing Environment as shown in Table 5&6.  

Table 5: Comparison of Algorithms in Distributed Computing Environment 

 

By observing table 5, in Distributed Environment Model Parallelism is the best algorithm with 

the Accuracy of 98.14% and Time to Train 1.9 Sec, Time to Predict 0.5 Sec 

 

 Table 6: Comparison of Algorithms in Traditional Computing Environment 

By observing 6, in Traditional Computing Model Parallelism is the best algorithm with the 

Accuracy of 91.76% and Time to Train 10.1 Sec, Time to Predict 12.2 Sec. 

So by comparing both Distributed Environment and Traditional Computing Environments, the 

Distributed Environment is the best because the total runtime of training the dataset is less 2.4 

sec while compared to the Traditional Computing Environment is 22.2 sec. 

The prediction of dataset analysed in both environments is:  

At first the medical service providers in India is predicated is visualised in figure 10. 

 

 

 

 

Algorithms Accuracy Recall Precision 
F1-

Score 

Time 

to 

train 

in 

sec 

Time to 

prediction 

in sec 

Total 

time 

in sec 

Random Forest 

Classifier 
75.36% 75.60% 75.69% 73.66% 4.4 19.9 24.3 

Gradient Boost 

Regressor 
65.36% 65.70% 66.76% 64.74% 5.4 13.9 19.3 

Gradient Boost 

Classifier 
97.96% 97.69% 97.69% 96.60% 11.4 21.9 33.2 

Voting classifier 71.80% 71.77% 71.77% 69.60% 9.4 32.9 42.3 

Extra Tree 

Classifier 
86.97% 86.77% 86.77% 76.60% 10.4 20.9 31.3 

Federated 

Learning 
93.14% 93.14% 93.25% 90.15% 3.7 4.7 8.4 

Distributed 

Bagging 
97.15% 97.14% 97.20% 95.12% 3.1 1.3 4.4 

Distributed 

Stohastic 

Gradient 

Descent 

90.65% 90.65% 90.23% 88.54% 2.6 0.6 3.1 

Communication-

Efficient 

Ensemble 

Learning 

75.12% 74.57% 74.89% 70.19% 2.8 2.3 5.1 

Model 

Parallelism 
98.14% 98.12% 98.44% 96.23% 1.9 0.5 2.4 
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Figure 10: Medical Service Providers in India 

In figure 10, X-axis is count and Y-axis is provider type, state, city, Speciality the hospitals,  

Algorithms Accuracy Recall Precision 
F1-

Score 

Time 

to 

train 

in 

sec 

Time to 

predict 

in sec 

Total 

time in 

sec 

Random Forest 

Classifier 
91.03% 65.06% 75.16% 86.25% 8.0 24.0 32.0 

Extra Tree 

Classifier 
82.16% 77.01% 78.26% 70.02% 20.0 33.0 53.0 

Gradient Boost 

Classifier 
66.29% 61.95% 65.16% 63.15% 14.0 21.0 35.0 

Voting classifier 93.13% 92.11% 89.29% 88.51% 20.4 24.0 44.4 

Gradient Boost 

Regressor 
73.23 % 

70. 

12% 
69.59% 72.41% 29.0 40.0 69.0 

Federated 

Learning 
74.68% 74.23% 74.12% 71.39% 5.7 4.1 9.8 

Distributed 

Bagging 
86.87% 86.77% 86.77% 76.60% 10.4 20.9 31.3 

Distributed 

Stohastic 

Gradient 

Descent 

84.52% 89.85% 89.33% 87.46% 10.6 10.9 21.5 

Communication-

Efficient 

Ensemble 

Learning 

75.36% 75.76% 75.79% 73.66% 4.4 14.9 19.3 

Model 

Parallelism 
91.76% 91.86% 91.33% 90.23% 10.1 12.2 22.2 
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clinic, doctor, pharmacy’s with speciality are considered by observing medical services are 

well established in the main states and city’s so there is need of improving the medical services 

in the urban areas.  

Next analysed area-wise clinics in India is visualised in figure 11.  

 

Figure 11: Area of Wise Clinics in India 

In figure 11, X axis is number of clinics and Y-axis is state, City in every state observed that 

the main cities are well equipped with clinics and in urban areas medical services have to be 

improved a lot. 

So by comparing both Distributed Computing and Traditional Computing Environments 

analysis of different structured datasets by applying different latest deep learning algorithms 

like: Random Forest Classifier, Gradient Boost Regressor, Gradient Boost Classifier, Voting 

Classifier, Extra Tree Classifier, Federated Learning, Distributed Bagging, Distributed 

Stochastic Gradient Descent, Communication Efficient Ensemble Learning, Model 

Parallelism. By comparing all the algorithms in both Distributed Computing and Traditional 

Computing Environments Model Parallelism algorithms is the best algorithm in terms of 

accuracy. In terms of training time, Distributed Computing Environment is the best 

environment for large datasets. 

 

4. Conclusion 

 

The utilization of big data analysis has become crucial in contemporary company operations, 

enabling organizations to acquire valuable insights and make well-informed decisions based 

on data. To effectively manage the large quantity, varied categories, and rapid pace of big data. 

On the other hand, distributed computing and deep learning algorithms have the promise to 

effectively tackle the challenges of analyzing and learning from large amounts of input data. 

More precisely, it assists in the automated extraction of intricate data representations from 

extensive quantities. So, here three structured datasets are taken and to these latest algorithms 

like Random Forest Classifier, Extra Trees Classifier, Gradient Boosting Regressor, Gradient 

Boosting Classifier, voting classifier, Federated Learning, Distributed Bagging, Distributed 

Stochastic Gradient Descent, Communication, Efficient Ensemble Learning, Model 

Parallelism algorithms are applied in both Distributed Computing and Traditional Computing 
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Environments. Then compared the latest deep learning algorithms, Model Parallelism is the 

best algorithm in both environments with high accuracy. In terms of training time, distributed 

computing environment is the best and efficient environment for running large data. 
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