
M. Bhargavi Krishna/Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 ISSN: 2663-2187

https://doi.org/10.33472/AFJBS.6.6.2024.6363-6380

Performance Evaluation of Deep Learning Techniques in

Distributed Computing and Traditional Computing

Environments for Structured Data Analysis

M. Bhargavi Krishna1, Prof. S. Jyothi2, Dr. P. Bhargavi3

1Research Scholar, Dept. of. CSE, SOET, Sri Padmavathi Mahila Visvavidyalayam,

Tirupati
2 Professor, Dept. of. Computer Science, Sri Padmavathi Mahila Visvavidyalayam, Tirupati
3Assistant Professor, Dept. of. Computer Science, Sri Padmavathi Mahila Visvavidyalayam,

Tirupati

Article Info

Volume 6, Issue 6, June 2024

Received: 26 April 2024

Accepted: 02 June 2024

Published: 28 June 2024

doi: 10.33472/AFJBS.6.6.2024.6363-6380

ABSTRACT:

Handling large-scale data is a formidable task for data scientists and

researchers due to the rapid generation and ever-growing volume of

data. The sources encompass a wide range of current datasets and

databases that contain both structured and unstructured data. Hence,

the utilisation of advanced algorithms is important to effectively

target the vast amount of data before it becomes inaccessible to the

current algorithms. Distributed computing has gained popularity as it

provides superior scalability and performance compared to

Traditional Computing Systems. This paper analyses the structured

data with the latest algorithms like Random Forest Classifier, Extra

Trees Classifier, Gradient Boosting Regressor, Gradient Boosting

Classifier, voting classifier, Federated Learning, Distributed

Bagging, Distributed Stochastic Gradient Descent, Communication

Efficient Ensemble Learning, Model Parallelism algorithms are

applied to datasets in both Distributed Computing and Traditional

Environments.

Keywords: BigData, Distributed Computing, Traditional Computing

Environment, Random Forest Classifier, Extra Trees Classifier,

Gradient Boosting Regressor, Gradient Boosting Classifier, Voting

Classifier, Federated Learning, Distributed Bagging, Distributed

Stochastic Gradient Descent, Communication Efficient Ensemble

Learning, Model Parallelism.

© 2024 M. Bhargavi Krishna, This is an open access article under

the CC BY license (https://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and reproduction in any

medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Creative

Commons license, and indicate if changes were made

https://doi.org/10.33472/AFJBS.6.6.2024.6363-6380

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6364 to 18

1. Introduction

The widespread use of social media, cloud computing, sensor networks, content delivery

networks, and other new technologies has led to the generation of a significant volume of data

daily, which is referred to as "Big Data" [1]. Big data refers to a vast amount of data that is

systematically examined to extract valuable insights. Big data is defined by three primary

attributes: volume, which refers to the size of the generated data; variety, which encompasses

the numerous forms of data such as structured, semi-structured, and unstructured; and velocity,

which pertains to the speed at which data is generated and processed. Furthermore, the

emergence of big data poses numerous research challenges as conventional computing and

database systems cannot handle such large volumes of data. To address the difficulties,

Distributed Data Processing Techniques [2] split the task of processing data across multiple

less potent computers instead of relying on a single high-powered computer. These algorithms

are formulated according to the MapReduce paradigm [3]. MapReduce operates on a cluster

of inexpensive computers, making it suitable for Hadoop operations and functions in the

processing of massive amounts of data.

The existing machine learning algorithms are applied [24] and compared in both Distributed

and Traditional Computing Environments. So, in this paper classifies the structured data with

the latest algorithms like Random Forest Classifier, Extra Trees Classifier, Gradient Boosting

Regressor, Gradient Boosting Classifier, voting classifier, Federated Learning, Distributed

Bagging, Distributed Stochastic Gradient Descent, Communication Efficient Ensemble

Learning, Model Parallelism are applied in both Distributed Computing and Traditional

Computing Environments to know the best latest algorithm and to know the best environment

for the large datasets with less training time.

2. Methodology

In this paper the latest algorithms like Random Forest Classifier, Extra Trees Classifier,

Gradient Boosting Regressor, Gradient Boosting Classifier, voting classifier, Federated

Learning, Distributed Bagging, Distributed Stochastic Gradient Descent, Communication

Efficient Ensemble Learning, Model Parallelism applied on three different structured data to

classify the best environment by comparing runtime of environment in both Distributed

Computing and Traditional Computing Environments. The step by step workflow is visualised

in the figure 1.

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6365 to 18

Figure 1: Workflow

2.1. About Datasets

2.1.1. Data Set 1: Login Data Set For Risk Base Authentication

There were almost 33 million login attempts and 3.3 million users on a global scale, and the

data collected from this service is one terabyte in size. Information was collected from

February 2020 to February 2021. Research and Development for Risk-Based Authentication

systems can be accelerated with the use of these data sets. The data was collected from a large-

scale single sign-on online system that has more than 3.3 million users from all around the

world.

2.1.2. Data Set 2: Internet Traffic Management System

In order to alleviate internet traffic congestion, systems monitor traffic in real-time and

implement appropriate measures. Proper maintenance is ensured by capturing the best scores

of the Unified Traffic Management system and protocols such as IP, UDP, TCP, HTTP, FTP,

DNS, and TFTP.

2.1.3. Data Set 3: Medical Recommendation System

Based on patient feedback, a medical recommendation system suggests providers for a specific

ailment. In today's rapidly evolving technological landscape, it is crucial and has the potential

to rescue numerous patients' lives. Patients will rate doctors according to how well they

accomplish their jobs.

3. Methods

i. Random Forest Classifier

A Random Forest is an ensemble of trees that rely on a set of random factors. In a more formal

manner, let's consider a random vector X = (X1,...,Xp)T with p dimensions, which represents

the input or predictor variables, and a random variable Y, which represents the response. We

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6366 to 18

will suppose that there is an unknown joint distribution PXY (X,Y). The objective is to

determine a prediction function f(X) that can accurately forecast Y. The prediction function is

determined by a loss function, denoted as L(Y,f(X)), and is defined to minimise the expected

value of the loss[4].

𝐸𝑋𝑌(𝐿(𝑌, 𝑓(𝑋)))
The subscripts indicate the expected value based on the joint distribution of X and Y. L(Y,f(X))

can be understood as a quantitative assessment of the proximity between f(X) and Y. It imposes

a penalty on values of f(X) that deviate significantly from Y. Common options for loss

functions include squared error loss. The loss function for regression is defined as the squared

difference between the predicted value (f(X)) and the actual value (Y), denoted as L(Y,f(X)) =

(Y−f(X))2. For classification, the loss function is the zero-one loss.

L(Y, f(X)) = I(Y ≠ f(X)) = {
0 𝑖𝑓 𝑌 = 𝑓(𝑋
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Minimising EXY (L(Y,f(X))) using squared error loss yields the conditional expectation, also

referred to as the regression function.

f(x) = E(Y|X =x)

In a classification scenario, if the range of potential values for Y is represented as Y, the

objective of minimising the expected value of the loss function EXY (L(Y,f(X))) for zero-one

loss is achieved. 𝑦𝜖𝓎

f(x) = arg max P(Y = y |X = x)

ii. Extra Trees Classifier

The Extra-Trees Algorithm is designed to address the basic batch-mode supervised learning

problem, with a specific focus on learning problems that involve a potentially high number of

numerical input variables and a single target variable, which can be either categorical or

numerical. Next, we proceeded with a methodical empirical assessment using a wide range of

classification and regression tasks. We compared this new approach with conventional tree-

based methods, evaluating both accuracy and computing efficiency. In the remainder of the

paper, the term "attribute" refers to a specific input variable utilised in a supervised learning

issue. The candidate characteristics refer to the input variables that are accessible for a specific

task. The term "output" is used to refer to the goal variable that describes the problem in

supervised learning. When the output variable consists of categories, it is referred to as a

classification problem. On the other hand, when the output variable is numerical, it is known

as a regression problem [5,6]. The word "learning sample" refers to the observations that are

utilised to construct a model, while the term "test sample" refers to the data that are used to

calculate the correctness of the model, such as the error rate or mean square error. The variable

N represents the size of the learning sample, namely the number of observations. On the other

hand, the variable n represents the number of candidate characteristics, which corresponds to

the dimensionality of the input space.

iii. Gradient Boosting

The gradient boost approach aids in reducing the bias error of the model. The fundamental

concept underlying this technique is to construct models in a sequential manner, with each

succeeding model aiming to minimise the errors made by the prior model. However, what is

the method by which we accomplish that? What strategies can be employed to minimise the

occurrence of errors? This is accomplished by constructing a novel model based on the errors

or residuals of the preceding model [7].

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6367 to 18

For continuous target columns, Gradient Boosting Regressor is employed, whereas for

classification problems, Gradient Boosting Classifier is utilised. The sole distinction between

the two lies in the "Loss function". The goal is to reduce this loss function by incorporating

weak learners through the use of gradient descent. Regression problems utilise various loss

functions such as Mean Squared Error (MSE), which is based on the loss function. On the other

hand, classification issues employ distinct functions like log-likelihood.

1.Gradient Boosting Regressor

The Gradient Boosting Regressor (GBR) is an ensemble model that consists of a series of tree

models placed in a sequential manner. Each subsequent model learns from the errors made by

the previous model through an iterative process. This machine learning model use the

technique of "boosting" to combine weak prediction models, typically decision trees, in order

to create a more resilient and effective model [8]. A GBR with M trees can be defined as

follows: hm represents a weak learner that has low individual performance, whereas γm is a

scaling factor that determines the contribution of each tree to the overall model. GBR employs

the gradient descent loss function to minimise errors by iteratively updating the starting

estimation with the new estimation. Therefore, a conclusive model is constructed by combining

all initial estimations with appropriate weights. The GBR model utilised in this study is based

on the Gradient Boosting Regressor technique proposed by [9].

𝑓𝑀(𝑥𝑗) = ∑ 𝛾𝑚ℎ𝑚(𝑥𝑗)

𝑀

𝑚

The model's error in regression analysis refers to the discrepancy between the observed data

points and the line of best fit generated by the algorithm. The array contains the elements. The

inaccuracy of the model will be determined based on the following criteria.

1. Mean Absolute Error (MAE): is a statistical measure that calculates the average of the

absolute values of the mistakes, which reflect the extent of divergence from the real

probability. The mathematical expression for Mean Absolute Error (MAE) is given by the

formula:

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛

2. Root Mean Squared Error (RMSE): is a widely used metric for evaluating the

performance of models. It is valuable because it can be understood as the standard deviation

of the prediction errors. The expression is represented as follows:

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛

3. Execution Time: refers to the duration it takes for the model to learn from the input logs

and provide predictions.

2. Gradient Boosting Classifier

Both the loss function and the base-learner models can be specified at will. Obtaining the

parameter estimates can be challenging in practice, especially when dealing with a customised

loss function Ψ(y, f) and/or a customised base-learner h(x, θ). In order to address this issue, a

suggestion was made to select a new function h(x, θt) that is most closely aligned with the

negative gradient {gt(xi)}
N

i = 1 .The value of Ni is equal to 1 for the observed data[10].

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6368 to 18

 gt(x) = 𝐸𝑦 [
𝜕Ψ(𝑦,𝑓(𝑥))

𝜕𝑓(𝑥)
 | 𝑥]

𝑓(𝑥)= 𝑓̂𝑡−1(𝑥)

Instead of seeking the overall solution for the increase in boost in the function space, one can

opt for the new function increment that is most closely related to gt(x). This allows for the

substitution of a potentially challenging optimisation problem with the traditional least-squares

minimization problem:

(𝜌𝑡, 𝜃𝑡
) = arg 𝑚𝑖𝑛𝜌,𝜃 ∑[−𝑔𝑡(𝑥𝑖) + 𝑝ℎ(𝑥𝑖, 𝜃)]2

𝑁

𝑖=1

iv. Voting Classifier

This approach is the most straightforward strategy in which each voter is entitled to select only

one option, specifically their most desired one. The victor is the contender who possesses the

highest aggregate number of votes. The given text is the list [11, 12]. In this scenario, if 45%

of voters select alternative A, 25% choose B, and 30% choose C, then alternative A is the

victor. Condorcet's July theorem states that if there are m Voters who make decisions through

simple majority voting, and each has a probability p of making the correct decision, then the

probability of the entire jury making the correct decision is:

𝑝𝑚 = ∑ (
𝑚!

(𝑚 − 𝑖)! ∙ 𝑖!
) ∙ 𝑝𝑖 ∙ (1 − 𝑝)𝑚−𝑖

𝑚

𝑖= [𝑚 2⁄]

Therefore, if the value of p is greater than 0.5, then the value of 𝑝𝑚 > 𝑝 will be greater than p.

This implies that the collective has a greater likelihood of making the accurate determination

compared to any individual voter. As the number of voters’ increases, the likelihood of the

ensemble making the correct decision also increases. When the value of m approaches infinity,

the probability 𝑚 → ∞, 𝑝𝑚 → 1.

v. Federated Learning

Federated Learning (FL) is a secure and decentralised learning framework that allows the

creation of a virtual model to handle the issue of scattered clients working together without the

need to share sensitive raw data [13]. The virtual model is an efficient global model that

combines data from all participants, allowing each person to achieve their individual goals

utilising the model. FL can ensure that the results of this modelling closely resemble the usual

centralised training paradigm [14], where data from numerous clients are consolidated in a

central server for modelling [15]. Within a federated system, it is commonly presumed that

members possess identical identities and endorse the implementation of mutually agreed-upon

data policies. As the data is not transmitted directly, it does not impact data standards or

endanger user privacy.

To begin, we establish the fundamental notion of FL: Consider a scenario where there are N

participants in Federated Learning (FL), denoted as {𝑃1, 𝑃2,⋅⋅⋅,𝑃𝑁}, who all like to combine

their data in order to build a unified model. An often employed method involves aggregating

all the data into a single set, denoted as total data 𝑃=𝑃1∪𝑃2∪⋅⋅⋅∪𝑃𝑁, to train a model 𝑀𝑠𝑢𝑚

with a performance of 𝑉𝑠𝑢𝑚. Federated Learning (FL) is a framework in which participants

collaboratively train a shared model 𝑀𝑓𝑒𝑑 while maintaining the privacy of their individual

data. The performance of the model is evaluated using 𝑉𝑓𝑒𝑑. Assuming ε is a non-negative

value, the performance loss of the FL model can be represented by

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6369 to 18

|𝑉𝑓𝑒𝑑 − 𝑉𝑠𝑢𝑚| < 𝜖

The process of learning in federated learning is accomplished by minimising a loss function,

which is computed on each client using a weighted aggregation technique. The objective of FL

is to minimise the following function:

min 𝑓(𝜔) = ∑
𝑛𝑘

𝑛

𝑛

𝑘=1

 𝐹𝑘(𝜔)

Where N is the number of clients, 𝑛𝑘 is the amount of data on the 𝑘th client, and 𝐹𝑘(𝑤) is the

local objective function of the 𝑘th client.

vi. Distributed Stochastic Gradient Descent

Gradient descent is a highly favoured approach for optimisation and is widely used for

optimising neural networks. Simultaneously, many modern Deep Learning libraries provide

implementations of different methods to optimise gradient descent [16]. These algorithms are

frequently employed as black-box optimizers, as it is difficult to find practical explanations of

their advantages and disadvantages.

Let K be a positive integer representing discrete time steps. The variable x_n(k) represents

agent n's estimate of the minimizer of equation at iteration k. The D-SGD algorithm is defined

on a per-agent basis using recursion.

𝑥𝑛(𝑘 + 1) = 𝑥𝑛(𝑘) − ∝𝑘 (∇ 𝑓𝑛(𝑥𝑛(𝑘)) + 𝜉𝑛 (𝑘 + 1)) + 𝛽𝑘 ∑ (𝑥ℓ(𝑘) − 𝑥𝑛(𝑘)

ℓ∈Ω𝑛

)

For n =1,..…N, where {∝𝑘}𝑘 ≥1, {𝛽𝑘}𝑘 ≥1 ⊂ (0, 1] are scalar weight parameters, 𝜉𝑛(𝑘)

represents zero-mean noise, and Ω𝑛 denotes the set of neighbors of agent n in the graph G. The

method is initialized by setting the vector ((𝑥𝑛(0))𝑛=1
𝑁) to a specified point 𝑥0 ∈ ℝ𝑁 𝑑 .

vii. Communication Efficient Ensemble Learning

Let's consider a set H consisting of q pre-trained hypotheses H = (h1, ..., hq) which can be

either predictors or estimators depending on the job. It is preferable to have a reliable predictor

for each domain k. However, these predictors can be trained using many methods, such as user

data or public data [17]. The objective is to acquire a collection of weights α = {α1, ..., αq} in

order to create an ensemble ∑ ∝𝑘 ℎ𝑘
𝑞
𝑘=1 that reduces the standard or agnostic loss

to a minimum. In addition, we place primary emphasis on density estimate, assuming that the

set of hypotheses, denoted as H, is defined as follows:

 H = {∑ 𝛼𝑘ℎ𝑘 : 𝛼𝑘
𝑞
𝑘=1 ≥ 0, ∀𝑘, ∑ ∝𝑘= 1𝑞

𝑘=1 }.

By considering this particular collection of assumptions will minimise both the standard loss

and the agnostic loss.

viii. Model Parallelism

Model parallelism in neural networks involves dividing the model into parts and distributing

those parts across many computing resources. This technique has the potential to provide

advantages in terms of both model throughput and reducing memory needs per device [18]. In

order to provide a clearer understanding of model parallelism, we will begin by presenting a

computational framework for analysing neural networks. This framework will serve as a

foundation for discussing model parallelism, which involves neural networks functioning in

the Single Instruction Multiple Data (SIMD) format. Subsequently, we address the initial study

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6370 to 18

inquiry, namely, "What are the various forms of model parallelism?" taking into account both

theoretical and implementation aspects. This algorithm differentiates between two distinct

phases: training and inference. During the training phase, we develop a model using a specific

dataset known as the learning set [19]. During inference, we assign the trained model the

responsibility of making predictions on new, previously unknown data. A neural network is

one example of such models, and they are highly effective at handling difficult prediction tasks,

surpassing other existing methods. The input tensor 𝐗 and the output tensor 𝐘. Furthermore,

we make a clear distinction between parameter tensors and activation tensors. Parameter

tensors are fixed inputs to operators, whereas activation tensors are the output of such

operators. Operators serve as the functional components of the neural network. The user's text

is [20].

In the operator graph 𝒪=(𝑉, 𝐸) of a given neural network, each node 𝑣𝑖∈𝑉 can be classified as

either an operator 𝑜𝑖, which is accompanied by an activation tensor 𝐓𝑜𝑖, or a tensor 𝐓𝑖. Each

edge represents the tensor linked to 𝑣𝑖 and serves as an input for the operator node 𝑜j.

Based on this representation, we establish two workloads: the forward pass and the backward

pass. The forward pass involves taking the input tensor 𝐗 and calculating all the activations,

which leads to the output tensor 𝐘. The backward pass modifies the parameter tensors by

utilizing the back-propagation process.

 The backward pass begins at the output 𝐘 and progresses towards 𝐗, establishing its

dependence on the outcome of the forward pass.

 It necessitates the activation tensor of each operator to determine the appropriate

parameter updates.

The training process involves 𝑏 iterations of forward passes followed by 𝑏 iterations of

backward passes, where 𝑏 is the batch size. Inference solely involves doing forward passes

[21-23].

3.Experimental Analysis

In this work experimental analysis is done in two environments like distributed environment

and traditional computing environment. For distributed environment Spark runtime

environment is used whereas for traditional computing environment python programing

environment is used. Here the analysis is done for three different types of structured datasets:

Login Data Set for Risk Base Authentication, Internet Traffic Management System, Medical

Recommendations System. The datasets have terabytes of data so; in distributed environment

the data is divided into chunks of volumes for easy access. Whereas in traditional computing

environment the Google Colab Python platform is used for easy access of data.

At initial step the pre-processing is done for three datasets individually with procedure.

 First, data cleaning with multiple sub categories like: renaming the columns, to find and

remove the null columns in dataset, then checking the duplicate records, later changing the

data frame from strings to numeric for easy training and testing dataset.

 Next feature Engineering is performed to find the input features because to know which data

is suitable for each column and is passed to the different deep learning algorithms.

 After pre-processing, the three datasets are individually spited into 70% training and 30%

testing to overcome the overfitting problems in both environments.

 Then latest deep learning algorithms like Random Forest Classifier, Gradient Boost

Regressor, Gradient Boost Classifier, Voting Classifier, Extra Tree Classifier, Federated

Learning, Distributed Bagging, Distributed Stochastic Gradient Descent, Communication

Efficient Ensemble Learning, Model Parallelism on this dataset in both the environments to

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6371 to 18

know the best environment for processing of large structured datasets and the best proposed

algorithm.

The results of three datasets are:

3.1. Data Set: LOGIN DATA SET FOR RISK BASE AUTHENTICATION

After applying different latest Deep Learning Algorithms on login data set for risk base

authentication in both Distributed Computing Environment and Traditional Computing

Environment, the Accuracy, Time to Train, predict in both Distributed Environment and

Traditional Computing Environment as shown in table 1&2.

Table 1: Comparison of Algorithms in Distributed Computing Environment

Algorithms
Accurac

y
Recall

Precisio

n

F1-

Score

Time

to

train

in sec

Time to

predictio

n in sec

Total

time in

sec

Random

Forest

Classifier

93.06% 93.06% 93.86% 93.06% 13.0 16.0 29.0

Gradient Boost

Regressor
95.06% 95.06% 95.86% 95.06% 6.0 14.0 20.0

Gradient Boost

Classifier
89.51% 89.51% 89.59% 89.61% 9.0 14.0 23.0

Voting

classifier
66.26% 66.15% 66.95% 61.37% 7.4 12.4 19.8

Extra Tree

Classifier
81.51% 81.95% 81.96% 81.95% 46.0 9.0 55.0

Federated

Learning
89.63% 89.65% 89.56% 87.26% 5.9 8.4 14.2

Distributed

Bagging
98.96% 98.97% 98.96% 97.87% 8.8 10.6 19.4

Distributed

Stochastic

Gradient

Descent

91.34% 91.69% 91.32% 88.65% 12.0 6.2 18.3

Communicatio

n-Efficient

Ensemble

Learning

97.78% 97.78% 97.96% 95.27% 15.0 14.0 29.0

Model

Parallelism
98.95% 98.59% 98.96% 98.06% 7.3 4.3 11.6

By observing table 1, in Distributed Environment Model Parallelism is the best algorithm with

the Accuracy of 98.95% and Time to Train 7.3 Sec, Time to Predict 4.3 Sec.

Table 2: Comparison of Algorithms in Traditional Computing Environment

By observing Table 2, in Traditional Computing Model Parallelism is the best algorithm with

the Accuracy of 96.91% and Time to Train 10.3 Sec, Time to Predict 6.1Sec.

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6372 to 18

So, by comparing both Distributed Computing and Traditional Computing Environments, the

Distributed Environment is the best because the total runtime of training the dataset is less 11.6

Sec while compared to the traditional computing Environment 16.4.

The prediction of dataset analysed in both environments is:

 At first predicted likelihood of attacks for each timestamp is visualised in figure 6.

Figure 6: Predicted Likelihood of Attacks for Each Timestamp

In figure 6, X-axis is Time and Y-axis is Prediction likelihood by observing the figure across

the globe at every 15seconds the internet attacks are happening.

Next predicted the distribution of attacks by OS name and OS version is visualised in figure 7.

Figure 7: Distribution of Attacks by OS Name and OS Version

In figure 7, X-axis is name of the software, version of the software and Y-axis is attacks

occurring at timestamp the two separate pie charts are shown the distribution of attacks by OS

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6373 to 18

name and OS version. In distributed OS name Windows has high rate of attacks and in OS

version windows 8 has the highest attacks.

a.DATA SET: INTERNET TRAFFIC MANAGEMENT SYSTEM

After applying different latest Deep Learning Algorithms on the Internet Traffic Management

System in both Distributed Computing Environment and Traditional Computing Environment.

Observed the Accuracy, Time to Train, predict in both Distributed Environment and

Traditional Computing Environment as shown in Table 3&4.

Table 3: Comparison of Algorithms in Distributed Computing Environment

Algorithms
Accura

cy

Reca

ll

Precisi

on

F1-

Score

Ti

me

to

trai

n in

sec

Time

to

predi

ct in

sec

Tot

al

tim

e in

sec

Random Forest Classifier 95.06%
95.06

%
95.86%

95.06

%
6.0 14.0

20.

0

Algorithms Accuracy
Recal

l

Precisi

on

F1-

Score

Ti

me

to

trai

n in

sec

Time

to

predi

ct in

sec

Tot

al

tim

e in

sec

RandomFore

st Classifier
97.95%

97.70

%
97.70%

96.60

%

13.

1
23.9 37.0

Extra Tree

Classifier
95.80 %

95.77

%
95.77%

94.66

%

10.

4
23.8 34.2

GradientBoo

st Classifier
81.90%

81.90

%
81.89%

79.89

%
8.7 22.4 31.1

Voting

classifier
98.90%

98.90

%
98.90%

96.89

%
5.7 38.4 44.1

GradientBoo

st Regressor

92.12

%

93.35

%

94.56

%

89.45

%
16.6 19.2 35.8

Federated

Learning

86.18

%

86.12

%

86.25

%

84.98

%
15.0 14.2 29.2

Distributed

Bagging

91.78

%

91.76

%

91.39

%

89.56

%
8.9 9.4 18.2

Distributed

Stohastic

Gradient

Descent

85.41

%

85.41

%

85.41

%

83.65

%
16.0 6.1 22.1

Communicati

on-Efficient

Ensemble

Learning

69.14

%

69.78

%

69.52

%

66.89

%
8.0 11.4 19.3

Model

Parallelism

96.91

%

96.98

%

96.95

%

92.67

%
10.3 6.1 16.4

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6374 to 18

Gradient Boost Regressor 88.06%
88.06

%
88.56%

88.06

%

14.

0
12.0

26.

0

Gradient Boost Classifier 86.95%
86.95

%
86.96%

86.95

%

15.

0
11.0

26.

0

Voting classifier 97.51%
97.51

%
97.59%

97.51

%

10.

0
14.0

14.

0

Extra Tree Classifier 79.51%
79.51

%
79.59%

79.51

%

46.

0
19.0

65.

0

Federated Learning 82.32%
82.56

%
82.45%

80.56

%
2.7 2.3 5.0

Distributed Bagging 94.15%
94.16

%
94.55%

96.32

%
4.9 1.6 6.4

Distributed

Stohastic

Gradient

Descent

98.47

%

89.84

%
82.45%

80.56

%
2.0 3.3 5.4

Communicat

ion-Efficient

Ensemble

Learning

88.78

%

88.84

%
88.45%

86.56

%
1.7 1.4 3.1

Model

Parallelism

98.45

%

98.12

%
98.44%

95.23

%
1.6 1.1 2.7

By observing table 1, in Distributed Environment Model Parallelism is the best algorithm with

an Accuracy of 98.45% and Time to Train 1.6 Sec, Time to Predict 1.1 Sec.

Table 4: Comparison of Algorithms in Traditional Computing Environment

By observing table 2, In Traditional Computing Model Parallelism is the best algorithm with

the Accuracy of 93.13% and Time to Train 5.7 Sec, Time to Predict 4.1 Sec.

So, by comparing both Distributed Environment and Traditional Computing Environments,

the Distributed Environment is the best because the total runtime of training the dataset is less

2.7 sec while compared to the Traditional Computing Environment is 9.8 sec.

The prediction of dataset analysed in both environments is:

At first predicated the of average drops happening in service within an Internet Traffic

Management System is visualised in figure 8.

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6375 to 18

Figure 8: Average Drops Happening in Service Within an Internet Traffic Management

System

In figure 8, X-axis is Service Time and Y-axis is Average Drop count by observing while data

browsing and playing games internet drops is high.

Next predicted the distribution and density of the data, providing insights into the variability

of user logins for each service is visualised in figure 9.

Figure 9: The Distribution and Density of the Data, Providing Insights into the

Variability of User Logins for Each Service

In figure 9, X-axis is service type and Y-axis is number of logins visualizes that while data

browsing and voice connection calls the distribution and density of user logins are high for

each service.

b. DATA SET: MEDICAL RECOMMENDATIONS SYSTEM

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6376 to 18

After applying different latest Deep Learning Algorithms on the Medical Recommendations

systems in both Distributed Computing Environment and Traditional Computing Environment.

Observed the Accuracy, Time to Train, predict in both Distributed Environment and

Traditional Computing Environment as shown in Table 5&6.

Table 5: Comparison of Algorithms in Distributed Computing Environment

By observing table 5, in Distributed Environment Model Parallelism is the best algorithm with

the Accuracy of 98.14% and Time to Train 1.9 Sec, Time to Predict 0.5 Sec

 Table 6: Comparison of Algorithms in Traditional Computing Environment

By observing 6, in Traditional Computing Model Parallelism is the best algorithm with the

Accuracy of 91.76% and Time to Train 10.1 Sec, Time to Predict 12.2 Sec.

So by comparing both Distributed Environment and Traditional Computing Environments, the

Distributed Environment is the best because the total runtime of training the dataset is less 2.4

sec while compared to the Traditional Computing Environment is 22.2 sec.

The prediction of dataset analysed in both environments is:

At first the medical service providers in India is predicated is visualised in figure 10.

Algorithms Accuracy Recall Precision
F1-

Score

Time

to

train

in

sec

Time to

prediction

in sec

Total

time

in sec

Random Forest

Classifier
75.36% 75.60% 75.69% 73.66% 4.4 19.9 24.3

Gradient Boost

Regressor
65.36% 65.70% 66.76% 64.74% 5.4 13.9 19.3

Gradient Boost

Classifier
97.96% 97.69% 97.69% 96.60% 11.4 21.9 33.2

Voting classifier 71.80% 71.77% 71.77% 69.60% 9.4 32.9 42.3

Extra Tree

Classifier
86.97% 86.77% 86.77% 76.60% 10.4 20.9 31.3

Federated

Learning
93.14% 93.14% 93.25% 90.15% 3.7 4.7 8.4

Distributed

Bagging
97.15% 97.14% 97.20% 95.12% 3.1 1.3 4.4

Distributed

Stohastic

Gradient

Descent

90.65% 90.65% 90.23% 88.54% 2.6 0.6 3.1

Communication-

Efficient

Ensemble

Learning

75.12% 74.57% 74.89% 70.19% 2.8 2.3 5.1

Model

Parallelism
98.14% 98.12% 98.44% 96.23% 1.9 0.5 2.4

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6377 to 18

Figure 10: Medical Service Providers in India

In figure 10, X-axis is count and Y-axis is provider type, state, city, Speciality the hospitals,

Algorithms Accuracy Recall Precision
F1-

Score

Time

to

train

in

sec

Time to

predict

in sec

Total

time in

sec

Random Forest

Classifier
91.03% 65.06% 75.16% 86.25% 8.0 24.0 32.0

Extra Tree

Classifier
82.16% 77.01% 78.26% 70.02% 20.0 33.0 53.0

Gradient Boost

Classifier
66.29% 61.95% 65.16% 63.15% 14.0 21.0 35.0

Voting classifier 93.13% 92.11% 89.29% 88.51% 20.4 24.0 44.4

Gradient Boost

Regressor
73.23 %

70.

12%
69.59% 72.41% 29.0 40.0 69.0

Federated

Learning
74.68% 74.23% 74.12% 71.39% 5.7 4.1 9.8

Distributed

Bagging
86.87% 86.77% 86.77% 76.60% 10.4 20.9 31.3

Distributed

Stohastic

Gradient

Descent

84.52% 89.85% 89.33% 87.46% 10.6 10.9 21.5

Communication-

Efficient

Ensemble

Learning

75.36% 75.76% 75.79% 73.66% 4.4 14.9 19.3

Model

Parallelism
91.76% 91.86% 91.33% 90.23% 10.1 12.2 22.2

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6378 to 18

clinic, doctor, pharmacy’s with speciality are considered by observing medical services are

well established in the main states and city’s so there is need of improving the medical services

in the urban areas.

Next analysed area-wise clinics in India is visualised in figure 11.

Figure 11: Area of Wise Clinics in India

In figure 11, X axis is number of clinics and Y-axis is state, City in every state observed that

the main cities are well equipped with clinics and in urban areas medical services have to be

improved a lot.

So by comparing both Distributed Computing and Traditional Computing Environments

analysis of different structured datasets by applying different latest deep learning algorithms

like: Random Forest Classifier, Gradient Boost Regressor, Gradient Boost Classifier, Voting

Classifier, Extra Tree Classifier, Federated Learning, Distributed Bagging, Distributed

Stochastic Gradient Descent, Communication Efficient Ensemble Learning, Model

Parallelism. By comparing all the algorithms in both Distributed Computing and Traditional

Computing Environments Model Parallelism algorithms is the best algorithm in terms of

accuracy. In terms of training time, Distributed Computing Environment is the best

environment for large datasets.

4. Conclusion

The utilization of big data analysis has become crucial in contemporary company operations,

enabling organizations to acquire valuable insights and make well-informed decisions based

on data. To effectively manage the large quantity, varied categories, and rapid pace of big data.

On the other hand, distributed computing and deep learning algorithms have the promise to

effectively tackle the challenges of analyzing and learning from large amounts of input data.

More precisely, it assists in the automated extraction of intricate data representations from

extensive quantities. So, here three structured datasets are taken and to these latest algorithms

like Random Forest Classifier, Extra Trees Classifier, Gradient Boosting Regressor, Gradient

Boosting Classifier, voting classifier, Federated Learning, Distributed Bagging, Distributed

Stochastic Gradient Descent, Communication, Efficient Ensemble Learning, Model

Parallelism algorithms are applied in both Distributed Computing and Traditional Computing

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6379 to 18

Environments. Then compared the latest deep learning algorithms, Model Parallelism is the

best algorithm in both environments with high accuracy. In terms of training time, distributed

computing environment is the best and efficient environment for running large data.

5. References

1. Wu, C.; Birch, D.; Silva, D.; Lee, C.-H.; Tsinalis, O.; Guo, Y.: Concinnity: (2014) “A

generic platform for big sensor data applications”, IEEE in Cloud Comput. 1(2), 42–50.

2. Chen, T.Y.; Wei, H.W.; Wei, M.F.; Chen, Y.J.; Hsu, T.s.; Shih, W.K.: LaSA: (2013) “A

locality-aware scheduling algorithm for Hadoop-MapReduce resource assignment”, In

International Conference on Collaboration Technologies and Systems (CTS), San.

3. Diego, CA, pp. 342–346 (2015) 11. Krishnan, N.; Baron, D.: A universal parallel two-

pass MDL context tree compression algorithm. IEEE J. Sel. Top. Signal Process. 9(4),

741–748

4. Zhang, H.; Chen, G.; Ooi, B.C.; Tan, K.L.; Zhang, M.: (2015) “In-memory big data

management and processing: a survey”, IEEETrans. Knowl. Data Eng. 27(7), 1920–

1948.

5. Abellán, J., Mantas, C.J., (2014), “Improving experimental studies about

ensembles of classifiers for bankruptcy prediction and credit scoring”,

Expert Syst. Appl. 41 (8), 3825–3830.

6. Alshazly, H., Linse, C., Barth, E., Martinetz, T., (2019), “Ensembles of deep

learning models and transfer learning for ear recognition”, Sensors 19 (19),

4139.

7. Bharathidason, S., Venkataeswaran, C.J., (2014), “Improving classification

accuracy based on random forest model with uncorrelated high performing

trees”, Int. J. Comput. Appl 101 (13), 26–30.

8. Delgado, R., (2022), “A semi-hard voting combiner scheme to ensemble

multi-class probabilistic classifiers”, Appl. Intell. 52 (4), 3653–3677.

9. Anifowose, F., Labadin, J., Abdulraheem, A., (2013), “ Ensemble model

of artificial neural networks with randomized number of hidden neurons”, In

8th International Conference on Information Technology in Asia (CITA).

IEEE, pp. 1– 5.

10. Freund, Y., Schapire, R.E., et al. (1996), “Experiments with a new boosting

algorithm”, pp. 148–156.

11. Haralabopoulos, G., Anagnostopoulos, I., McAuley, D., (2020), “Ensemble

deep learning for multi-label binary classification of user-generated content”,

Algorithms 13 (4), 83.

12. Hormozi, E., Akbari, M.K., Hormozi, H., Javan, M.S., (2013), “Accuracy

evaluation of a credit card fraud detection system on hadoop mapreduce”,

The 5th Conference on Information and Knowledge Technology. IEEE, pp.

35–39.

13. Kanakaraj, M., Guddeti, R.M.R., (2015), “Performance analysis of ensemble

methods on twitter sentiment analysis using NLP techniques”, In:

Proceedings of the 2015 IEEE 9th International Conference on Semantic

Computing (IEEE ICSC 2015). IEEE, pp. 169–170.

14. Kang, S., Kang, P., KO, T., Cho, S., Rhee, S.-J., Yu, K.-S., (2015), “An

efficient and effective ensemble of support vector machines for anti-diabetic

drug failure prediction.” Expert Syst. Appl. 42 (9), 4265–4273.

15. Dai, Q., (2013), “A competitive ensemble pruning approach based on cross-

validation technique”, Knowl.-Based Syst. 37, 394–414.

http://refhub.elsevier.com/S1319-1578(23)00022-8/h0020
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0020
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0020
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0020
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0020
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0060
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0060
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0060
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0060
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0125
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0125
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0125
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0125
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0125
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0270
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0270
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0270
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0410
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0410
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0410
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0410
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0410
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0450
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0450
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0450
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0450
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0450
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0450
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0500
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0500
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0500
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0500
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0500
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0250
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0250
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0250

M. Bhargavi Krishna/ Afr.J.Bio.Sc. 6(6) (2024) 6363-6380 Page 6380 to 18

16. Delgado, R., (2022), “A semi-hard voting combiner scheme to ensemble

multi-class probabilistic classifiers”, Appl. Intell. 52 (4), 3653–3677.

17. Latif-Shabgahi, G.-R., (2004), A novel algorithm for weighted average voting

used in fault tolerant computing systems. Microprocess. Microsyst. 28 (7),

357–361.

18. Livieris, I.E., Iliadis, L., Pintelas, P., (2020), “On ensemble techniques of

weight- constrained neural networks”, Evolv. Syst., 1–13.

19. Onan, A., Korukog˘lu, S., Bulut, H., (2016), “A multi objective weighted

voting ensemble classifier based on differential evolution algorithm for text

sentiment classification”, Expert Syst. Appl. 62, 1–16.

20. Rokach, L., (2019), Ensemble learning: Pattern classification using ensemble

methods. World Sci. 85.

21. Xia, R., Zong, C., Li, S., (2011), “Ensemble of feature sets and classification

algorithms for sentiment classification”, Informat. Sci. 181 (6), 1138–1152.

22. Zhang, J., Zhang, W., Song, R., Ma, L., Li, Y., (2020). “ Grasp for

stacking via deep reinforcement learning”, In IEEE International Conference

on Robotics and Automation (ICRA). IEEE, pp. 2543–2549.

23. Zhang, W., Zou, H., Luo, L., Liu, Q., Wu, W., Xiao, W., (2016), Predicting

potential side effects of drugs by recommender methods and ensemble

learning. Neurocomputing 173, 979–987.

24. M. Bhargavi Krishna, Prof. S. Jyothi (2023) “Performance of Machine

Learning Algorithms in Distributed Environment”, ISSN: 2094-0343 2326-

9865 Published by A Study Mathematical Statistician and Engineering

Applications, vol.72 No.1.

http://refhub.elsevier.com/S1319-1578(23)00022-8/h0270
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0270
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0270
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0590
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0590
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0590
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0590
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0655
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0655
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0655
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0760
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0760
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0760
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0760
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0760
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0830
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0830
http://refhub.elsevier.com/S1319-1578(23)00022-8/h0830
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1055
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1055
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1055
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1090
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1090
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1090
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1090
http://refhub.elsevier.com/S1319-1578(23)00022-8/h1090

