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Abstract:  For designing and evaluating reinforced concrete structures, it is essential to predict 

the punching shear strength (PSS) of fiber-reinforced polymer reinforced concrete (FRP-RC) 

beams. This study utilized three meta-heuristic improvement calculations — insect lion 

enhancer (ALO), moth fire analyzer (MFO), and salp swarm calculation (SSA) — to upgrade 

hyperparameters of an irregular timberland (RF) model for PSS expectation. The types of 

column section (TCS), cross-sectional area of the column (CAC), slab's effective depth (SED), 

span–depth ratio (SDR), compressive strength of concrete (CSC), yield strength of 

reinforcement (YSR), and reinforcement ratio (RR) were the seven characteristics of FRP-RC 

beams that were used as inputs. The ALO-RF model with a populace size of 100 exhibited 

unrivaled expectation execution: MAE of 25.0525, MAPE of 6.5696, R2 of 0.9820 in 

preparing, and MAE of 52.5601, MAPE of 15.5083, R2 of 0.941 in testing. SED's significant 

influence on PSS prediction suggests that it plays a crucial role in adjusting PSS. Additionally, 

the cross-breed AI model streamlined by metaheuristic calculations outperformed customary 

models in exactness and blunder control, featuring its true capacity for upgrading built up 

substantial construction plan and appraisal. 

Keywords: reinforced concrete; punching shear strength; random forest; ant lion optimizer; 

moth flame optimizer; salp swarm algorithm 
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1 . Introduction 

 Due to their low weight, resistance to corrosion, and high strength, fiber-reinforced polymers 

(FRPs) are increasingly being used in civil engineering instead of traditional steel reinforcement. 

Composite structures made of FRP and concrete improve structural resistance and stiffness while 

reducing the susceptibility of concrete to corrosion, making them suitable for projects like retrofitting, 

rehabilitating, and fixing things. However, it is still challenging but essential for structural design to 

accurately assess the shear strength of FRP-reinforced concrete (RC) beams. The shear strength of FRP-

RC beams is determined using a variety of approaches, including experimental analysis, numerical 

simulations, and artificial intelligence (AI) prediction techniques. Though resource-intensive, 

experimental methods provide intuitive evaluations. Mathematical recreations offer successful 

investigations however require presumptions about stacking conditions and significant trial information 

for displaying. When compared to conventional empirical formulas, AI methods like machine learning 

(ML) models have emerged as effective tools in civil engineering [1-3]. For instance, Mansour et al. 

used artificial neural networks (ANNs) to predict the performance of RC beam shear, showing that 

ANNs were more accurate than empirical approaches. Abuodeh et al. investigated the various factors 

that influence FRP's effect on RC beam shear stress with resilient back-propagating neural networks 

(RBPNNs). Support vector regression (SVR), which was optimized by the African vulture’s 

optimization algorithm (AVOA), was used by Kaloop et al. to predict RC deep beam shear strength 

with minimal error. Regardless of progressions, challenges continue. Due to the complex, nonlinear 

nature of predicting FRP-RC beam shear strength, SVR models require precise kernel function and 

hyperparameter selection, whereas ANNs require meticulous structuring. Future exploration should 

address these intricacies to additional improve forecast precision and pertinence in primary designing 

[4-5]. 

The Irregular Backwoods (RF) model, a strong gathering AI (ML) procedure contrived by 

Breiman, consolidates various choice trees to upgrade vigor and moderate overfitting. Predicting 

mechanical properties has been a success in construction engineering, particularly in applications 

involving reinforced concrete (RC). For predicting various aspects of RC strength and performance, 

studies by Mohammed et al., Zhang et al., and Feng et al. have consistently demonstrated that RF is 

superior to other machine learning models like support vector machines (SVM) and back-propagation 

neural networks (BPNN). With regards to foreseeing the punching shear strength (PSS) of fiber-built 

up polymer supported concrete (FRP-RC) radiates, this paper utilizes RF models advanced by three 

metaheuristic calculations: subterranean insect lion enhancer (ALO), moth-fire streamlining (MFO), 

and salp swarm calculation (SSA). As shown by their successful application in civil engineering tasks 

like soil shear strength prediction and damage assessment in concrete beams, these metaheuristic 

algorithms are adept at optimizing hyperparameters to improve ML model performance. The 

construction of this paper is illustrated as follows: Area 2 presents the ALO, MFO, and SSA calculations 

related to the RF model. The PSS database's preparation for FRP-RC beams, the steps involved in data 

preprocessing, and the metrics used to evaluate model performance are all described in detail in Section 

3. Area 4 presents the prescient results of the half and half models and thinks about their adequacy, 

including highlight significance investigation for deciphering expectation execution. At long last, Area 

5 sums up the review's discoveries and proposes roads for future examination in enhancing RF models 

for anticipating FRP-RC shaft PSS, featuring the capability of metaheuristic calculations in progressing 

underlying designing applications [6-7]. 

2. Methodologies 

2.1. Random Forest 

Leo Breiman came up with the random forest algorithm in 2001, which is a popular ensemble 

learning method that improves accuracy and robustness by creating multiple decision trees during 

training that then vote for the final prediction together. It utilizes "stowing," where different choice trees 
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are developed by arbitrarily examining the preparation information with substitution. Further enhancing 

the trees' randomness and diversity is the random selection of a subset of features to split at each node 

of the decision tree. Each tree makes a decision during prediction, and the majority vote determines the 

final prediction, lowering the likelihood of overfitting and improving the model's generalizability [8]. 

2.2. The Ant Lion Optimizer 

The insect lion streamlining agent (ALO), proposed by Mirjalili, is propelled by the hunting 

conduct of insect lions and succeeds in tackling complex advancement issues productively. The 

calculation makes an inquiry space displayed after a subterranean insect lion's pit. In ALO, the 

subterranean insect's development investigates the pursuit space, while the lion's conduct takes 

advantage of it. By restricting the ants' erratic movement to a hypersphere layer surrounding a trap, a 

roulette strategy mimics the hunting process. The ant lion sprays sand to bring an ant closer if it falls 

into the trap. Every emphasis holds the best arrangement, impacting future emphasess and guaranteeing 

ideal outcomes through a tip top system [9]. 

2.3. The Moth–Flame Optimization 

Seyedali Mirjalili's 2015 invention of the moth–flame optimization (MFO) algorithm is based 

on the way moths navigate at night by keeping a fixed angle with the moon for straight flight. Moths 

are guided toward the global optimum by the MFO algorithm, which employs a distance-based sorting 

mechanism and logarithmic spirals. In this calculation, every moth refreshes its position comparative 

with a remarkable fire, assisting with staying away from nearby optima. Moths consistently move inside 

the pursuit space, focusing on the place of their relating fire [10]. 

2.4. The Salp Swarm Algorithm 

In 2014, Mirjalili et al. proposed the salp swarm algorithm (SSA), a bio-inspired optimization 

technique. SSA is roused by the swimming way of behaving of salps, which are barrel-formed 

planktonic tunicates that move by contracting and extending their bodies. During the scavenging and 

development in the sea, salps frequently follow each other in a chain-like way, with people associated 

head-to-tail. In such a "chain" bunch, there are pioneers and supporters, with the pioneers liable for 

following food and every devotee just impacted by the salp before it. 

3. Data Manipulation and Performance Evaluation 

3.1. Punching Shear Strength of FRP-RC Beams 

A crucial mechanical property of fiber-reinforced polymer-reinforced concrete (FRP-RC) 

beams is their punching shear strength (PSS), which indicates their capacity to resist shear force at 

concentrated load points like columns. PSS is affected by variables, for example, segment area types, 

segment cross-sectional region, piece viable profundity, length profundity proportion, concrete 

compressive strength, support yield strength, and support proportion. To get the most out of the 

performance and design of FRP-RC structures, it's important to know these things. AI (ML) models 

have arisen as compelling instruments for anticipating PSS, offering more exact and proficient 

expectations than customary techniques by gaining designs from broad exploratory information [11]. 

3.2. Construct Database 

This study expected to make an extensive data set of punching shear strength (PSS) for FRP-

RC sections by gathering information from 26 distributed works. The data set contains data on a few 

boundaries, which can be ordered as follows: (1) mathematical boundaries, including the kind of 

segment area (TCS) addressed by 1, 2, and 3 for roundabout, rectangular, and square sections, 

individually, cross-sectional region of the segment (CAC), piece's powerful profundity (SED), and 

range profundity proportion (SDR); (2) substantial strength data, including the compressive strength of 

cement (CSC); and (3) steel support data, including the yield strength of support (YSR) and support 

proportion (RR) [12]. 
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3.3. Parameter Correlation Analysis 

Before creating a machine learning (ML) model, performing a correlation analysis on the 

parameters helps determine the strength and direction of relationships between input variables. The 

Pearson connection coefficient is a factual measure that assesses the direct connection between two 

persistent factors, going from −1 to +1. A value of 1 indicates a linear relationship that is completely 

negative, 0 indicates no linear relationship, and +1 indicates a linear relationship that is completely 

positive. This examination is usually utilized in ML models to evaluate the relationship between's 

feedback boundaries. In order to avoid data redundancy, it may be necessary to select or eliminate 

particular parameters if the correlation coefficient between the input parameters is high (typically 

greater than 0.8) [13]. 

3.4. Evaluation Indicators 

The selection of appropriate evaluation metrics is a crucial factor in determining the models' 

accuracy and reliability when building various machine learning (ML) models. Evaluation metrics for 

regression models include the coefficient of determination (R2), the root mean square error (RMSE), 

the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the mean absolute 

error (MAE) for solving regression problems. The MAE estimates the typical outright contrast between 

the anticipated qualities and the deliberate qualities, which gives a proportion of the precision of the 

model in foreseeing the objective variable; the MAPE estimates the typical rate distinction between the 

anticipated qualities and the deliberate qualities; and the R2 is a factual measure that addresses the 

extent of the difference in the objective variable that can be made sense of by the free factors in the 

model. It goes from 0 to 1, with higher qualities showing a superior fit between the model and the 

information; the RMSE estimates the root mean squared contrast between the anticipated qualities and 

the deliberate qualities. In this review, MAE, MAPE, R2, and RMSE are chosen as assessment 

measurements for the ML model [14]. 

4. Results and Discussion 

4.1. Model Validity Judgment 

Because it takes into account both the magnitude and direction of errors, the root mean square 

error (RMSE) is a widely used evaluation metric in machine learning. This makes RMSE reasonable as 

the wellness or goal capability in improvement calculations, which mean to find the ideal arrangement 

of model boundaries that limit expectation blunders. Hyperparameters in the RF model was optimized 

using three optimization algorithms—ALO, MFO, and SSA—in this study to predict the punching shear 

strength (PSS) based on FRP-RC beam characteristics. RMSE was utilized as the wellness worth to 

look for the best hyperparameter mix, with the objective of ceaselessly limiting this wellness esteem. 

Although convergence results were comparable for population sizes of 50, 100, and 200, the ALO-RF 

model converged the fastest with a population size of 200. A population size of 100 produced superior 

convergence results for the MFO-RF models. The SSA-RF models with populace sizes of 100 or 200 

accomplished lower last union wellness values contrasted with different models. ALO-RF and MFO-

RF demonstrated faster convergence speeds than SSA-RF among the three hybrid models, indicating 

that ALO and MFO have more sensitive search capabilities for optimizing RF hyperparameters for 

predicting PSS. However, the fact that none of the three hybrid models' final convergence fitness values 

were significantly different suggests that additional research is required to determine how well they can 

predict PSS in FRP-RC beams [15]. 

4.2. Hybrid Models Performance Evaluation 

This study determined four evaluation metrics—MAE, MAPE, R2, and RMSE—for each 

model in order to provide a comprehensive evaluation of the predictive capabilities of ALO-RF, MFO-

RF, and SSA-RF for PSS. The models were ranked according to how well they did in each metric, with 

the best model getting four points and the worst one. The best model was chosen because it had the 

highest overall score. ALO-RF (population = 100), MFO-RF (population = 10), and SSA-RF 
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(population = 50) were also compared to an unoptimized RF model that was trained and tested on the 

same dataset in the study. Plots were used to illustrate the comparison, with points closer to the diagonal 

dashed line indicating superior prediction performance. The distribution of differences between 

predicted and measured values was depicted in the difference distribution plot in the upper right corner. 

The blunder circulation uncovered that ALO-RF (Pop = 100) had mistaken fundamentally inside the 

scope of [-20, 20], MFO-RF (Pop = 10) inside [-40, 40], and SSA-RF (Pop = 50) inside [-60, 60], 

showing that ALO-RF (Pop = 100) had a more modest mistake range in foreseeing the PSS for FRP-

RC radiates [16]. 

Table 1. Parameter setting of RF model. 

Model Hyperparameter Typical Default Values 

RF 

mtry 

samples size 

node size 

v/3 for regression 

n 

5 (for regression) 

 number of trees 1000 

 splitting rule Gini impurity 

Note: n is the number of observations and v is the number of variables in the dataset. 

In view of the extensive examination, ALO-RF (Pop = 100) exhibited the best prescient 

execution, with MAE of 25.0525, MAPE of 6.5696, R2 of 0.9820, and RMSE of 59.9677 in the 

preparation set, and MAE of 52.5601, MAPE of 15.5083, R2 of 0.941, and RMSE of 101.6494 in the 

testing set. The RF model's ability to capture the intrinsic relationship between the input parameters and 

PSS of FRP-RC beams is enhanced by these findings, which demonstrate that the ALO algorithm with 

a population size of 100 is capable of effectively capturing the optimal combination of hyperparameters. 

For evaluating the PSS of FRP-RC beams, Feng et al. developed various ML algorithms, but these 

models were restricted to conventional, independent ML methods. Interestingly, the current exploration 

utilizes a RF model with upgraded capacity to forestall overfitting and utilizes three metaheuristic 

enhancement calculations to tune the RF model's hyperparameters, further developing forecast 

exactness. To approve the proposed prescient model's adequacy, the best presentation of the ALO-RF 

model was contrasted and different models created utilizing a similar information base. The ALO-RF 

model provides a better explanation of the connection between the input parameters and the PSS of 

FRP-RC beams, as evidenced by higher R2 values, according to the findings. Predictions that are more 

accurate and reliable can be made by adapting and fine-tuning this method to address specific 

difficulties or research questions in various fields [17-18]. 

4.3. Importance Evaluation of Feature Parameters 

An essential step in comprehending the underlying relationships between the target variable 

and the input features is the feature importance analysis, which can be utilized to enhance the model's 

performance and interpretability. RF can give significant experiences into the overall significance of 

various elements in foreseeing the objective variable. Researchers are able to identify the most 

important features for the task at hand thanks to this method's quantitative assessment of each feature's 

contribution to the model's predictive performance. The significance scores of each information 

variable in the RF model, and as per the information in the figure, it very well may be seen that chunk's 

powerful profundity (SED) has the most elevated significance score among all the component 

boundaries of FRP-RC radiates. The outcome features the cozy connection among SED and PSS, which 

assumes an unmistakable part in foreseeing the PSS in light of the ALO-RF model. Albeit the 

significance scores of CAC, CSC, RR, SDR, YSR, and TCS are lower contrasted with SED, they 

actually have a critical hidden relationship with PSS. Overall, of all the parameters, slab's effective 

depth (SED) makes the most contribution to predicting PSS. This suggests that SED and PSS have a 

strong internal relationship, and changing SED can effectively control PSS variation [19-20]. 



Dr. Aala Satyanarayana /Afr.J.Bio.Sc. 6(Si4) (2024)                                     Page 127 of 7 
 

5. Conclusions 

This study investigates the viability of three metaheuristic enhancement calculations (ALO, 

MFO, and SSA) in streamlining arbitrary timberland (RF) model hyperparameters for anticipating the 

punching shear strength (PSS) of FRP-RC radiates. Results show that the ALO-RF model accomplishes 

quicker assembly rates contrasted with MFO-RF and SSA-RF, recommending uplifted responsiveness 

of ALO and MFO in upgrading hyperparameters for PSS expectation utilizing RF. Particularly, the 

ALO-RF model with a population size of 100 demonstrates the highest predictive accuracy thanks to 

its higher correlation coefficient and narrower error distribution range. Slab's effective depth (SED) is 

found to be the input parameter with the greatest influence on PSS prediction, highlighting its role in 

controlling PSS variations. Be that as it may, the shortage of trial information represents a huge test to 

precisely foreseeing FRP-RC bar execution, impeding model turn of events and approval. Prediction 

efforts are further complicated by the intricate interaction between the concrete matrix and the FRP 

reinforcement. While cutting edge AI and improvement calculations offer precise forecasts, they 

frequently require significant computational assets, prompting broadened preparing and expectation 

times. Future examination ought to zero in on growing exploratory datasets for FRP-RC pillars to 

upgrade prescient model quality and pertinence. Additionally, developing prediction models that are 

more accurate and trustworthy will be made easier by expanding our comprehension of the FRP 

reinforcement-concrete matrix interactions. 
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