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1. Introduction 

 With the rapid development of information technology, all kinds of data break the restrictions of time 

and space and accumulate in different fields to form data treasures [1-3]. It breeds huge commercial value and 

unlimited potential. Therefore, the intelligent use of data and the maximization of data value have become the 

focus of competition in various industries. But, in the face of the complex network environment, it must ensure 

data security while exploiting the value of data. Therefore, the research on data sharing based on privacy protection 

has become a major challenge [4-5]. At present, there are many data sharing schemes, the most widely used of 

which are the centralized processing mode and distributed processing mode. In the centralized processing mode, 

all participants need to share their data, that is to say, this kind of centralized mode requires the participant to 

upload their data to the server, and all of the data are applied for centralized learning or training on the server. If 

the server is malicious or the server is vulnerable to external attacks, then there is a risk of data privacy leakage 

[6]. So, this kind of sharing mode undoubtedly reduces the possibility of data sharing among different participants. 

To solve the above problems of the centralized processing mode and avoid privacy leakage, a new distributed 

processing mode has emerged.  

 To deliver results that are sufficiently reliable to be considered in clinical routines, machine learning-

based solutions have to heavily rely on available medical data records [7-8]. However, as patient health 

information has some of the highest privacy requirements among all data types associated with an individual, its 

usability is greatly hindered. Moreover, given the fact that machine learning-based solutions require access to 
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such sensitive information, concerns have recently been raised regarding data privacy and security. Usually, a 

proper anonymization must be done in order to export sensitive data without violating confidentiality. Through 

data masking, some of the information properties are thus changed, resulting in a trade-off between confidentiality 

and utility [9]. In certain cases, e.g., genomic data, the use of anonymized data limits the neural network’s ability 

to gain valuable information and insight from the data. Herein, a method based on homomorphic encryption (HE) 

is employed as a way to address the limitations imposed by conventional methods, and to maintain confidentiality 

of biometric data.  

 HE is a specific form of encryption which allows data to be encrypted while it is being manipulated. By 

preserving the mathematical structures that underline the data, HE represents a promising solution for 

guaranteeing privacy while still maintaining full utility [10-11]. The chosen HE scheme (MORE) allows for a 

limited set of operations to be conducted directly on encrypted data without exposing the underlying information 

or the encryption key. In the context of optimized based learning, this property is especially useful as it ensures 

that both data and predictions are kept private while data are processed. Taking into account the practical 

difficulties arising from the use of networks on encrypted data and the inefficiency of current approaches, propose 

a method that improves the effectiveness of encryption models in real-world applications by facilitating 

calculations over rational numbers, faster operations, and performance close to that achieved with an unencrypted 

model. This research work introduced a novel Hybrid Fuzzy Neural Network (FNN) with Modified Deer Hunt 

Optimization (HMDH) based Pallier Homomorphic Encryption (PHE) scheme for enhancing the data security of 

the cloud from malware and attacks. 

 The rest of the research work is structured as follows, section 2 reviews the some of the recent techniques 

for the encryption over medical data for the prediction of patient health data. section 3 presents the process of the 

proposed methodology. section 4 provides the results and discussion. section 5 deals with the conclusion and 

future work. 

2. Literature Review 

 In this section, reviews the some of the recent techniques for the encryption over medical data for the 

prediction of patient health data. 

 Li et al [12] proposed two Secure and Efficient Dynamic Searchable Symmetric Encryption (SEDSSE) 

schemes over medical cloud data. First, we utilize the secure k-Nearest Neighbor (kNN) and Attribute-Based 

Encryption (ABE) techniques to construct a dynamic searchable symmetric encryption scheme, which can achieve 

forward privacy and backward privacy simultaneously. These tow security properties are vital and very 

challenging in the area of dynamic searchable symmetric encryption. Then, we propose an enhanced scheme to 

solve the key sharing problem which widely exists in the kNN based searchable encryption scheme. Compared 

with existing proposals, our schemes are better in terms of storage, search and updating complexity. Extensive 

experiments demonstrate the efficiency of our schemes on storage overhead, index building, trapdoor generating 

and query. 

 Denis et al [13] developed 2D Discrete Wavelet Transform 1 Level (2D-DWT-1 L) or 2D Discrete 

Wavelet Transform 2 Level (2D-DWT-2 L) steganography with the proposed hybrid encryption scheme. The 

hybrid encryption scheme is built by strategically applying Advanced Encryption Standard (AES) and Rivest–

Shamir–Adleman (RSA) algorithms to secure diagnosis data to be embedded with the RGB channels of medical 

cover image. One of the key novelties is the use of an Adaptive Genetic Algorithm for Optimal Pixel Adjustment 

Process (AGA-OPAP) that enriches data hiding ability as well as imperceptibility features. To evaluate the 

efficiency of the proposed model, numerical tests are performed. The results show that the proposed algorithm is 

capable of safely transmitting medical data. Comparison of results is carried out concerning the datasets with the 

state-of-the-art algorithm.  

 Pushpa et al [14] presented a new hybridization of data encryption model to shelter the diagnosis data in 

medical images. The proposed model is presented by the integration of 2D discrete wavelet transform technique 

with a proposed hybrid encryption scheme. The presented hybrid encryption scheme is derived by the integration 

of Blowfish and Two fish encryption algorithms. The presented model begins with the encryption of secrecy data 

and then concealed the outcome by the use of outcome in a cover image and 2D-DWT-1L or 2D-DWT-2L. The 

color images are utilized as cover images for concealing various text sizes.  

 Abdelfattah et al [15] developed an efficient search scheme over encrypted data for a multi-data-owner 

setting. To secure our scheme, the cloud server obtains noisy similarity scores and doctors de-noise them to 

download the most relevant documents. Our scheme enables doctors to prescribe search conditions to customize 
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the search without revealing the conditions to the server. Our formal proof and analysis indicate that our scheme 

can preserve privacy and is secure against known-plaintext/background and linkability attacks, and the results of 

extensive experiments demonstrate the efficiency of our scheme compared to the existing works. 

 Vizitiu et al [16] proposed a fully homomorphic encryption (FHE) for the processing of sensitive health 

information without disclosing the underlying data. The considered encryption scheme, MORE (Matrix Operation 

for Randomization or Encryption), enables the computations within a neural network model to be directly 

performed on floating point data with a relatively small computational overhead. We consider the well-known 

MNIST digit recognition problem to evaluate the feasibility of the proposed method and show that performance 

does not decrease when deep learning is applied on MORE homomorphic data. To further evaluate the suitability 

of the method for healthcare applications, we first train a model on encrypted data to estimate the outputs of a 

whole-body circulation (WBC) hemodynamic model and then provide a solution for classifying encrypted X-ray 

coronary angiography medical images. The findings highlight the potential of the proposed privacy-preserving 

deep learning methods to outperform existing approaches by providing, within a reasonable amount of time, 

results equivalent to those achieved by unencrypted models. 

 Alzubi et al [17] presented a new privacy-preserving encryption with DL based medical data transmission 

and classification (PPEDL-MDTC) model. The presented model derives multiple key-based homomorphic 

encryption (MHE) technique with sailfish optimization (SFO), called MHE-SFO algorithm-based encryption 

process. In addition, the cross-entropy based artificial butterfly optimization-based feature selection technique and 

optimal deep neural network (ODNN) based classification is carried out. In ODNN model, the hyperparameter 

optimization of the DNN model is carried out utilizing the use of chemical reaction optimization (CRO) algorithm. 

The proposed method has been simulated utilizing Python 3.6.5 tool, which is tested using activity recognition 

and sleep stage dataset. A detailed comparative outcomes analysis makes sure the higher efficiency of the PPEDL-

MDTC on the state of art techniques with the detection accuracy of 0.9813 and 0.9650 on the applied activity 

recognition and University College Dublin Sleep Stage dataset. 

 Pandey et al [18] presented a bit mask oriented genetic algorithm based secure medical data transmission 

mechanism. A bit mask oriented genetic algorithm (BMOGA) is utilized to reduce the replication of medical tests 

data which are transferred across organizations. The encrypted data is embedded into the medical images through 

1-level and 2-level Discrete Wavelet Transform (DWT). The reverse process of the BMOGA is implemented for 

the extraction of secret message from the encrypted one. Numerical experiments are conducted to determine the 

performance of the proposed algorithm. Results reveals that the proposed algorithm is capable of secure data 

transmission. Performance comparison is done with the state-of-the-art algorithm with respect to the datasets. 

Comparative results indicated the superiority of the proposed algorithm in terms of various statistical measures 

such as peak signal to noise ratio (PSNR), correlation, structural content (SC), structure similarity (SSIM) and 

mean square error (MSE) to report the results. 

 Hesamifard et al [19] developed a new techniques to provide solutions for running deep neural networks 

over encrypted data. In this paper, we develop new techniques to adopt deep neural networks within the practical 

limitation of current homomorphic encryption schemes. More specifically, we focus on classification of the well-

known convolutional neural networks (CNN). First, we design methods for approximation of the activation 

functions commonly used in CNNs (i.e. ReLU, Sigmoid, and Tanh) with low degree polynomials which is 

essential for efficient homomorphic encryption schemes. Then, we train convolutional neural networks with the 

approximation polynomials instead of original activation functions and analyze the performance of the models. 

Finally, we implement convolutional neural networks over encrypted data and measure performance of the 

models. Our experimental results validate the soundness of our approach with several convolutional neural 

networks with varying number of layers and structures. When applied to the MNIST optical character recognition 

tasks, our approach achieves 99.52\% accuracy which significantly outperforms the state-of-the-art solutions and 

is very close to the accuracy of the best non-private version, 99.77\%. 

 Bost et al [20] constructed three major classification protocols that satisfy this privacy constraint: 

hyperplane decision, Naïve Bayes, and decision trees. These protocols may also be combined with AdaBoost. 

They rely on a library of building blocks for constructing classifiers securely, and we demonstrate the versatility 

of this library by constructing a face detection classifier. Our protocols are efficient, taking milliseconds to a few 

seconds to perform a classification when running on real medical datasets. 

 Bokhari et al [21] used K nearest neighbors algorithm to decide whether the data is normal sensitive or 

high sensitive, and then according to the level of sensitivity we proposed a framework to do data encryption. In 

order to ensure user authentication, we used one time password to authenticate the user, and for the data which 

belong to normal sensitivity level we have applied AES (advanced encryption standard)-192 algorithm. Finally, 
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for the data which belong to high sensitivity level, AES-256 algorithm has been applied, and RSA (Rivest–

Shamir–Adleman) algorithm is used to encrypt the key of AES 256, then we use hash-based massage 

authentication code to be attached in the end of message to ensure integrity and authenticity of message. 

 Jäschke et al [22] introduced an unsupervised learning, which is an important area in Machine Learning 

and has many real-world applications, by addressing the clustering problem. To this end, we show how to 

implement the K-Means-Algorithm. This algorithm poses several challenges in the FHE context, including a 

division, which we tackle by using a natural encoding that allows division and may be of independent interest. 

While this theoretically solves the problem, performance in practice is not optimal, so we then propose some 

changes to the clustering algorithm to make it executable under more conventional encodings. We show that our 

new algorithm achieves a clustering accuracy comparable to the original K-Means-Algorithm, but has less 

than 5% of its runtime. 

3. Proposed Methodology 

 This research work introduced a novel Hybrid Fuzzy Neural Network (FNN) with Modified Deer Hunt 

Optimization (HMDH) based Pallier Homomorphic Encryption (PHE) scheme for enhancing the data security of 

the cloud from malware and attacks. Initially, collected datasets are stored in the cloud using the cloud sim tool, 

and collected datasets are transferred into the developed FNNHMDH-PHE framework. At first, generate the key 

for each dataset and separate the private key for all datasets. Moreover, convert the plain text into ciphertext using 

the FNN and deer fitness function in PHE. Finally, cloud-stored data are encrypted successfully and the attained 

performance outcomes of the developed framework are associated with other existing techniques in terms of 

decryption time, encryption time, efficiency, and throughput. The figure 1. illustrate the process of the proposed 

methodology. 

 

Figure 1. the process of the proposed methodology 

3.1. Security Model  

 The entire system security structure model has been separated into three layers, which are depicted in 

Figure 1. 

 (a)  Level of the End User 

 This level includes both the owner and those who make use of the data. The data owner uploads encrypted 

data together with a list of all authorised users to the security environment. 

 (b) Security Level 

Cloud storage 

 PHE Encryption 
Fuzzy neural network 

with modified Deer Hunt 

optimization 

PHE Decryption 

Data Owner User 

Security 

framework 

Cloud storage 

level 

Security Level 

End User 

Level 

Retrieval of 

Encrypted File 

Authentication 

and request for 

file 

Encrypted File 

Uploading 

Data to be uploaded on 

cloud & list of authorized 

users 



 D Kalpana /Afr.J.Bio.Sc. 6(14) (2024)                           Page 7965 of 16 
 

 The security level of the proposed system includes SM-PHC security framework, which operates using 

the following workflow: 

 1. File uploading: The user initiates the process by selecting a file from their local machine and uploading 

it through the interface of the security framework. This file is then stored in the local database for safekeeping. 

 2.File Encryption: The security framework employs Pallier Homomorphic Encryption (PHE) to convert 

the plain text of the uploaded file to cipher text. This conversion process happens during the encryption phase, 

and the resultant cypher text is secure and unreadable to any unauthorized parties. 

 3.Secure File Uploading: The encrypted file is then uploaded to the public cloud, where it is stored 

securely to ensure that no unauthorized persons can access it. 

 4.File downloading: When a user needs to retrieve a file, they submit the file name to the cloud. The 

cloud system searches for the file and returns it to the user in an encrypted form. 

 5.File decryption: The encrypted file is decrypted using the PHE decryption algorithm. This algorithm 

requires the private key that was used during the encryption phase to convert the cypher text back to plain text. 

 6.Optimal Key generation: The security framework generates a pair of keys optimized by the spider 

monkey optimization method (SMO). These keys are used to ensure secure encryption and decryption of files, 

and the optimization process helps to improve the efficiency of the encryption algorithm. 

 (c) Cloud storage level 

 The highest level element of the security concept outlined in this study is a storage cloud. The security 

framework uploads encrypted user data via the cloud interface, where it is then stored. Users can use the security 

framework to download an encrypted file when they need it. The file is sent to the user after being decrypted by 

the security framework. This system concept can also be applied to a multi-cloud setting. However, the spider 

monkey-Paillier homomorphic encryption algorithm is the primary emphasis of the study. This technique encrypts 

and decrypts data before it is uploaded to the cloud in order to offer the best possible solution for data security in 

cloud computing. 

3.2. Pallier Homomorphic Encryption (PHE) 

 HE is a method that can process ciphertext information. It is an encryption technology that allows 

computing operations on ciphertext and generates encryption results [23]. The calculation result obtained in the 

ciphertext is decrypted and matched with that in plaintext as if the same calculation operation has been performed 

on plaintext. The processing flow in encrypted and unencrypted states is shown in Figure 2. 

 

Figure 2. Process of PHE 

 As a method that can process ciphertext without decrypting ciphertext, HE is the most commonly used 

privacy protection mechanism nowadays. HE mechanism can compute the ciphertext without decrypting the 

ciphertext so that the computation party does not need to know the contents of the plaintext, but only needs to 

obtain the ciphertext, which is a good way to protect sensitive data and information while performing computation 

operations. HE can efficiently process cryptographic information and achieve specific algebraic operations on the 

encrypted content. The HE cryptosystem is composed of quaternions, as shown in Eq (1). 

𝐻 = {𝐻𝑜𝑘𝑒𝑦 , 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙}      (1) 
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 where 𝐻𝑜𝑘𝑒𝑦  represents the key generation function, 𝐸𝑛𝑐 represents the encryption function, 𝐷𝑒𝑐 

represents the decryption function and 𝐸𝑣𝑎𝑙 represents the evaluation function.  𝐸𝑛𝑐𝑝𝑢𝑏(. ). A secure cryptosystem 

such as Eq (2) can be called a homomorphic operation. Using  represents the encryption function that uses the 

public key pub as the encryption key, M represents the plaintext space and C represents the ciphertext space. 

∀𝑚1, 𝑚2 ∈ 𝑀, 𝐸𝑛𝑐𝑝𝑢𝑏(𝑚1⨀𝑀𝑀2) ← 𝐸𝑛𝑐𝑝𝑢𝑏(𝑚1) ⨀𝑐𝐸𝑛𝑐𝑝𝑢𝑏(𝑚2)       (2) 

 ⨀𝑀 and ⨀𝑐  represent the operator on the plaintext space M and the ciphertext space C,  respectively. 

Eq (2) shows that, for any two elements 𝑚1 and 𝑚2 in the plaintext space M, after performing the 

⨀𝑀 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 on them, the obtained result is encrypted; the result is the same as if 𝑚1 and 𝑚2 were encrypted 

first and then the operators were executed. The symbol “” indicates that the left-hand term is equal to or can be 

computed directly from the right-hand term without any intermediate decryption operation. To simplify the 

expression, we can use [[v]] to represent the result of HE for the plaintext v. The two basic operations of HE are 

defined below, namely, addition HE and multiplication HE.  

 Definition 1: Additive homomorphic operation. For any two elements u and v in the plaintext space, with 

the encryption results are respectively  [[u]] and v]], with 𝐷𝑒𝑐𝑝𝑟𝑖  indicating that the private key is used for 

decryption if Eq (3) is satisfied: 

𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢]] + [[𝑣]]) = 𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢 + 𝑣]]) = 𝑢 + 𝑣                   (3) 

 Definition 2: Multiplicative homomorphic operation. For any two elements u and v in the plaintext space, 

with the encryption results are respectively  [[u]] and v]], with 𝐷𝑒𝑐𝑝𝑟𝑖  indicating that the private key is used for 

decryption if Eq (4) is satisfied: 

𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢]] × [[𝑣]]) = 𝐷𝑒𝑐𝑝𝑟𝑖([[𝑢 × 𝑣]]) = 𝑢 × 𝑣                (4) 

3.2. Paillier algorithm  

 In the Paillier algorithm, the generation steps of the public-private key pair and the principle of encryption 

and decryption are as follows.  

 Key generation: First, randomly select two large prime numbers a and b (ensure that a and b are of equal 

length, Next, calculate n=ab and 𝜆 = 𝑙𝑐𝑚(𝑎 − 1, 𝑏 − 1),  where lcm is a function to find the least common 

multiple. Define 𝐿(𝑥) =
𝑥−1

𝑛
  , and then randomly select a positive integer g less than 𝑛2to satisfy Eq (5): 

𝑔𝑐𝑑 𝑔𝑐𝑑 (𝐿(𝑔𝜆𝑚𝑜𝑑 𝑛2), 𝑛)  = 1, 𝑢 = (𝐿(𝑔𝜆𝑚𝑜𝑑 𝑛2))−1, 𝑚𝑜𝑑 𝑛)                       (5) 

 𝑔𝑐𝑑 is a function to find the maximum common divisor. By the above operation, we can get the public 

key (n,g) and private key (𝜆, 𝑢).   

 Encryption process: For any plaintext message m , choose any random number r satisfying  0<r< n ; the 

ciphertext c is calculated by Eq (6):   

𝑐 = 𝑔𝑚𝑟𝑛𝑚𝑜𝑑𝑛2                         (6) 

Decryption process: For the ciphertext c, the plaintext message m is obtained from Eq (7): 

𝑚 = 𝐿(𝑐𝜆𝑚𝑜𝑑𝑛2) ∗ 𝑢 𝑚𝑜𝑑 𝑛                          (7) 

 The Paillier algorithm is an implementation of an asymmetric encryption algorithm, which can operate 

on encrypted data under encryption and then decrypt the encrypted result. The obtained result is the same as the 

result of directly operating on the plaintext. However, the Paillier algorithm does not satisfy the multiplicative 

homomorphic operation. Although the Paillier algorithm is not fully HE, its computational efficiency is high, so 

it is widely used in the industry. In this paper, the Paillier algorithm is used as the simulation algorithm of HE. 

● Calculation of the encryption loss function  

 In the machine learning model that uses the Paillier algorithm to protect the training parameters, the 

public and private keys are generally generated randomly on the server side. The public key is mainly for 
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encrypting data, and the private key is for decrypting data. In machine learning models, a loss function is usually 

first defined, and then an optimization algorithm such as a stochastic gradient   that minimizes the value L(;x). 

The parameter * descent is used to find the minimum value of L(;x) is optimal. Taking logistic regression as an 

example, let the current set of n sample data points be 𝑇 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), ……… (𝑥𝑛 , 𝑦𝑛), and use the 

logarithmic loss function as its target loss function as shown in Eq (8): 

𝐿 =
1

𝑛
∑ ⬚𝑛

𝑖=1 𝑙𝑜𝑔 (1 + 𝑒−𝑦𝑖𝜃
𝑟𝑥𝑖)                  (8) 

 The model parameters are updated by taking the partial derivative  in the above Eq (8) and bringing the 

obtained gradient values into the gradient descent equation as shown in Eq (9) 

𝜃 = 𝜃 − 𝑙𝑟 ∗
𝜕𝐿

𝜕𝜃
                        (9) 

 The above computation process is repeated until the value of the loss function L(;)  x is no longer 

decreasing or the maximum number of iterations is reached; then, the iteration is stopped. The above computation 

process, including the parameters and data information, is computed in the explicit state, and there is a risk of data 

leakage in the machine learning scenario. Machine learning based on HE requires that the parameters are solved 

in the encrypted state, i.e., ; the transmitted parameter  is usually an encrypted value [[]]  the loss function is 

shown in Eq (10).  

𝐿 =
1

𝑛
∑ ⬚𝑛

𝑖=1 𝑙𝑜𝑔 (1 + 𝑒−𝑦𝑖[[𝜃]]𝑟𝑥𝑖)                       (10) 

 The calculation of the loss function involves exponential and logarithmic operations on the encrypted 

data, but the Paillier algorithm only supports addition homomorphism and scalar multiplication homomorphism; 

it does not support multiplication homomorphism and complex exponential and logarithmic operations. Therefore, 

it is not possible to solve the above Eq (10) in the encrypted state. Here, we use the Taylor loss function to 

approximate the original logarithmic loss function instead, i.e., by Taylor expansion of the original logarithmic 

loss function, the logarithmic loss function is approximated by polynomials, and after Taylor expansion, the loss 

function is transformed into only scalar multiplication and addition operations so that Paillier can be applied 

directly to the cryptographic solution. 

 When using the Paillier algorithm for encryption and decryption operations, a large number of large 

prime power operations are involved, so intermediate results may be out of bounds and usually result in overflow 

errors. Therefore, we design the Hybrid Fuzzy Neural Network (FNN) with Modified Deer Hunt Optimization 

(HMDH) algorithm to re-encrypt the data using the server-side key when the number of local training iterations 

reaches a certain number of rounds. 

3.3. Hybrid Fuzzy Neural Network (FNN) and Modified Deer Hunt Optimization (HMDH)) 

3.3.1. Fuzzy Neural Network (FNN) 

 Neural networks and fuzzy logic are rapidly growing technologies that could be applied to the 

formulation and processing of health data for the prediction of breast cancer. Evolutionary algorithms are 

effectively used in combination with artificial neural networks (ANNs) for predicting and optimizing the 

formulation conditions. Fuzzy logic provides a natural bridge between first-order logic and neural networks, and 

indeed fuzzy-neural systems seem to have flourished perhaps more than other approaches to symbolic 

connectionism. A fuzzy neural network can be viewed as a three-layer feed forward network, with a fuzzy input 

layer (fuzzification), a hidden layer containing the fuzzy rules, and a final fuzzy output layer (defuzzification) 

[24]. Fuzzy sets are contained within the (fuzzy) connections between layers, though sometimes a five-layer 

network with sets contained in the second and fourth layers can be found. The input layer represents the input 

membership functions for the fuzzy rules, with sufficient input causing a rule in the hidden layer to fire. The 

weights between the layers represent the fuzzy sets, with membership in each set determined by the relative 

weights – these can be altered using particular training algorithms as per a normal neural system. Transfer 

functions are usually continuous and pass real values through the network to the output layer to be interpreted as 

degrees of membership in fuzzy sets based on the firing of fuzzy rules in the hidden layer. 

 One of the most popular neural networks is the layered feed forward neural network with a Back 

Propagation (BP) least mean- square learning algorithm. Its topology is shown in Fig. 3. The network edges 

connect the processing units called neurons. With each neuron input there is associated a weight, representing its 

relative importance in the set of the neuron's inputs. The inputs' values to each neuron are accumulated through 
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the net function to yield the net value: the net value is a weighted linear combination of the neuron's inputs' values. 

For the purpose of multicriteria analysis a hierarchy of criteria is used to determine an overall pattern evaluation. 

The hierarchy can be encoded into a hierarchical neural network where each neuron corresponds to a criterion. 

The input neurons of the network correspond to single criterion. The hidden and output neurons correspond to 

complex criteria. As evaluation function it can be used as the net function of the neurons. However, the criteria 

can be combined linearly when it is assumed that they are independent.  

 But in practice the criteria are correlated to some degree. The linear evaluation function is unable to 

capture relationship between the criteria. In order to overcome this drawback of Standard Back Propagation (SBP) 

algorithm 

 

Fig.3. Example neural network with single-output neuron and a hidden layer. 

 In this work propose a fuzzy extension called Fuzzy Backpropagation (FBP) algorithm. It determines the 

net value through the LR type fuzzy number and thus does not assume independence between the criteria. Another 

advantage of FBP algorithm is that it reaches always forward to the target value without oscillations and there is 

no possibility to fall into local minimum. Necessary and sufficient conditions for convergence of FBP algorithm 

for single-output networks in case of single- and multiple-training patterns are proved. 

● Fuzzy Back propagation algorithm (FBP algorithm)  

 Recently, many neuro-fuzzy models is introduced for yielding the net value net i the inputs values of the 

ith neuron are aggregated. The mapping is mathematically described by the fuzzy integral of Sugeno that relies on 

psychological background  

 Step1: Randomly generate the initial weight sets w for the input hidden layer where each 𝑤𝑗𝑖 =

(𝑤𝑚𝑗𝑖 , 𝑤𝛼𝑗𝑖 , 𝑤𝛽𝑗𝑖) is an LR type fuzzy number. Also generate the weight set w’ for the hidden output layer 

  Where 𝑤𝑘𝑗
′ = (𝑤𝑚𝑘𝑗

′ , 𝑤𝛼𝑘𝑗
′ , 𝑤𝛽𝑘𝑗

′ ) 

𝑤𝑗𝑖 = (𝑤𝑚𝑗𝑖 , 𝑤𝛼𝑗𝑖 , 𝑤𝛽𝑗𝑖) 

𝑤𝑘𝑗
′ = (𝑤𝑚𝑘𝑗

′ , 𝑤𝛼𝑘𝑗
′ , 𝑤𝛽𝑘𝑗

′ ) 

 Step2: Let (𝐼𝑝 , 𝐷𝑝) 𝑝 = 1, 20…𝑁 input-output pattern set, that fuzzy back propagation needs to be 

trained with. Here 𝐼𝑝 = (𝐼𝑝0, 𝐼𝑝1, 𝐼𝑝1) where each 𝐼𝑝𝑖 is an LR-type fuzzy number. 

 Step3: Assign values for α and η; Alpha=0.1 Neta =0.9 

 Step4: Get next pattern set (𝐼𝑝 , 𝐷𝑝) Assign (𝑂𝑝𝑖 =  𝐼𝑝𝑖 , i=1,2,3..1  
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 Step5: Compute the input to hidden neurons  

𝑂𝑝𝑗
′ = 𝑓(𝑁𝐸𝑇𝑝𝑗), 𝑗 = 1,2… . ,𝑚; 𝑂𝑝0

′ = 1 

   Where 𝑁𝐸𝑇𝑝𝑗 = 𝐶𝐸 (∑ ⬚⬚
⬚ 𝑊𝑗𝑖𝑂𝑝𝑖) 

 Step6: compute the hidden to output neurons  

𝑂’’𝑝𝑘 = 𝑓 (𝑁𝐸𝑇’𝑝𝑘) , 𝑘 = 1,2, . . 𝑛; 

  Where 𝑁𝐸𝑇’𝑝𝑘 = 𝐶𝐸 (∑ ⬚⬚
⬚ 𝑊𝑗𝑖𝑂’𝑝𝑗) 

 Step7: compute change of weights ∆ w’(t) for the hidden output layer as follows  

  Compute  

   ∆𝐸𝑝(𝑡) = (𝜕𝐸𝑝/𝜕𝑤’𝑚𝑘𝑗  , 𝜕𝐸𝑝/𝜕𝑤𝛼𝑘𝑗, 𝜕𝐸𝑝/𝜕𝑤’𝛽𝑘𝑗)  

  Compute  

   ∆𝑤’(𝑡)  =  −𝜂∆𝐸𝑝(𝑡) + 𝛼∆𝑤’(𝑡 − 1)  

  The update weight i of hidden to output neuron is  

  𝑊’(𝑡)  = 𝑊’(𝑡 − 1)  + ∆𝑊’(𝑡) 

 Step 8: Compute change of the weights ∆ w’(t) for the input hidden layer as follows 

  Let 

𝛿𝑝𝑚𝑘 = −(𝐷𝑝𝑘 − 𝑂’’𝑝𝑘)𝑂’’𝑝𝑘(1 − 𝑂’’𝑝𝑘).1 

𝛿𝑝𝑚𝑘 = −(𝐷𝑝𝑘 − 𝑂’’𝑝𝑘)𝑂’’𝑝𝑘(1 − 𝑂’’𝑝𝑘). (−
1

3
) 

𝛿𝑝𝑚𝑘 = −(𝐷𝑝𝑘 − 𝑂’’𝑝𝑘)𝑂’’𝑝𝑘(1 − 𝑂’’𝑝𝑘). (
1

3
) 

  Compute 

∆𝐸𝑝(𝑡) = (𝜕𝐸𝑝/𝜕𝑤’𝑚𝑗𝑖  , 𝜕𝐸𝑝/𝜕𝑤𝛼𝑗𝑖 , 𝜕𝐸𝑝/𝜕𝑤’𝛽𝑗𝑖) 

  Compute 

∆𝑤’(𝑡)  =  −𝜂∆𝐸𝑝(𝑡) + 𝛼∆𝑤’(𝑡 − 1) 

  Step 9: updateweight for the input-hidden-output layer as 

𝑊(𝑡)  = 𝑊(𝑡 − 1) + ∆𝑊(𝑡) 

𝑊’(𝑡)  = 𝑊’(𝑡 − 1)  + ∆𝑊’(𝑡) 

  𝑆𝑡𝑒𝑝10: 𝑝 = 𝑝 + 1; 

if (p<=N) go to step 5 

  Step 11: count_of_itrns=count_of_itrns+1; 

   if count_of_itrns<itrns 

   { 
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   Reset pointer of first pattern in the training set; 

   P=1; 

   Go to step 5; 

   } 

 The value of a weight, which is multiplied with the input, decides whether a certain input needs to be 

taken seriously or not. No change in value means the network isn’t learning anything. In short, there is no point 

in training. So this research work introduced a modified deer hunt optimization for solving this problem. The 

below section describes the modified deer hunt optimization based improvement for enhancing the performance 

of the prediction rate. 

3.3.2. Modified Deer Hunt Optimization algorithm 

 Deer has special features that make the hunting process difficult for the predators. The visual sense is a 

prominent feature in a deer. This sense is five times stronger than the human visual sense. Another feature is its 

olfactory sense. The olfactory sense is sixty times stronger than humans [25]. Once a deer senses danger, it alerts 

other deer by sniffing loudly and treading heavily. Another specific feature of a deer is its ability in the detection 

of ultra-high-frequency sounds. In the following, the method of deer hunting is illustrated in detail. 

● initialization 

 Like any meta-heuristic algorithm, deer hunting optimization starts with a set of the random population 

called hunters. This initializing can be determined as follows: 

𝑋 = [𝑦1, 𝑦2, … . . 𝑦𝑚],              1 < 𝑖 ≤ 𝑚            (11) 

 where, m describes the number of hunters population (solutions) and X is the total population. 

● Initializing the Parameters 

 In the second step, the deer’s position angle (position angle) and wind angle as the main parameters of 

the algorithm should be initialized. Because the search space is assumed as a circle, the wind angle is formulated 

in the circumference of a circle. 

𝜃𝑖 = 2𝜋𝜆           (12) 

 where, 𝜆 describes a random value between 0 and 1 and i is at the present iteration. In addition, the 

position angle of the deer is modeled as follows: 

𝜙
𝑖
= 𝜋 + 𝜃               (13) 

 where, 𝜃 represents the wind angle. 

● Position propagation 

 Finding the best solution to the algorithm at the first iteration is almost impossible. However, after 

evaluating the value of the cost function based on the randomly generated values, the best value is assumed as the 

candidate optimum solution value. In this part, two parameters are considered; the first one is the leader position 

(𝑋𝐿) that describes the first best position of the hunter and the second parameter is the successor position (𝑋𝑆) 

that is the succeeding hunter position. 

(a) Propagation based on the leader’s position: 

 By applying the first iteration for achieving the best positions, all the population attempts to obtain the 

best position by updating the position of them. Therefore, encircling behavior can be formulated as follows: 

𝑋𝑖+1 = 𝑋𝐿 − 𝑌 × 𝑆𝑤 × |𝐿 × 𝑋𝐿 − 𝑋𝑖|                           (14) 

 where, 𝑋𝑖 and 𝑋𝑖+1 describe the current and the next positions, 𝑆𝑤 describes a random value based on the 

wind speed in the range [0, 2], and L and Y illustrate the coefficient vectors which can be formulated as follows: 

𝑌 = 0.25 ×𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐼 +
1

𝐼𝑚𝑎𝑥
)  𝛽                 (15) 

𝐿 = 2 × 𝜏                     (16) 
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 where, 𝐼𝑚𝑎𝑥 describes the maximum iteration, 𝛽 and is a random parameter in the range −1 and 1, and 𝜏 

is a random value in the range [0, 1]. Fig. 4. shows the position updating, where (X, Z) describes the initial position 

of the hunter which can be updated based on the prey position. The position updating will be continuing once the 

best position (𝑋∗, 𝑍∗) is achieved based on L and Y. Hunters move to the direction where the leader is positioned. 

If the leader has an unsuccessful movement, the hunter will remain in the prior position. Position update follows 

Eq. (16) only when 𝑆𝑤  <  1, i.e. the hunters can randomly move in any direction without respect to the position 

angle. So, based on Eqs. (15) and (16), the hunters can update their position in any random location within the 

space. 

 

Fig. 4. Updating the best position X∗. 

(b) Propagation based on the position angle 

 With considering the position angle in the update rule, we can develop the solution space. The evaluating 

of the angle is important for assigning the position of the hunter such that prey is uninformed of the attack which 

makes the hunting process successful. The angle of visualization for the prey (deer) is formulated as follows: 

𝑎𝑖 =
1

8
× 𝜋 × 𝜆               (17) 

 By considering the difference between the prey visual angle and the wind angle, we can evaluate a 

parameter that helps for updating the position angle. 

𝑑𝑖 = 𝜃𝑖 − 𝑎𝑖        (18) 

where, 𝜃𝑖 represents the wind angle. Afterward, for updating the position angle, 

𝜙
𝑖+1

= 𝜙𝑖 + 𝑑𝑖                  (19) 

 And finally, by using the achieved position angle, the new position is achieved by the following equation, 

𝑋𝑖+1 = 𝑋𝐿 − 𝑆𝑤 × |𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜙
𝑖+1

)  × 𝑋𝐿 − 𝑋𝑖|                  (20) 

 Since the hunter is out of the visual angle of the deer, the hunter is not in the view of it. 

(c) Propagation based on the position of the successor 

 For applying the exploration term to the encircling behavior, the vector L can be adjusted. Based on 

assuming an initial random search, the value of the vector L is not considered more than 1. Hence, the successor 

position is utilized for updating instead of the first achieved best solution. This process makes a global search for 

the algorithm as the following equation: 

𝑋𝑖+1 = 𝑋𝑆 − 𝑌 × 𝑆𝑤 × |𝐿 × 𝑋𝐿 − 𝑋𝑖|                (21) 

 where, 𝑋𝑆 describes the successor position of the hunters from the current population. In each iteration, 

the algorithm updates the position of the hunters by considering the best solution. The best solution has been 

selected when |𝐿|  ≥  1. Once |𝐿|  <  1, a hunter will be chosen randomly. 

 This procedure gives a switch called L which can change the algorithm between exploitation and 

exploration phases. A disadvantage of the original DHOA is it is the problem of premature convergence. In the 

next part, a new mechanism is proposed for removing this shortcoming. 

● The Modified DHOA 
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 In this part, Lévy flight (LF) is adopted to develop the DHOA. Lévy flight is a mechanism for resolving 

the problem of premature convergence drawback. Lévy flight generate a random walk mechanism for suitable 

controlling of the local search as follows: 

𝐿𝑒(𝑤) ≈ 𝑤−1−𝜉              (22) 

𝑤 =
𝐴

|𝐵|
1
𝜉

               (23) 

𝜎2 = {
𝛤(1+𝜉)

𝜉𝛤(
1+𝜉

2
)

𝑠𝑖𝑛𝑠𝑖𝑛 (
𝜋𝜉

2
) 

2
1+𝜉
2

}

2

𝜉

             (24) 

 where, 0 <  𝜏 ≤  2, 𝐴 ∼  𝑁(0, 𝜎2) and 𝐵 ∼  𝑁(0, 𝜎2), 𝛤 (. ) describes the Gamma function, w 

represents the step size, 𝜉 represents Lévy index, 𝐴/𝐵 ∼  𝑁(0, 𝜎2) means that the samples generated from a 

Gaussian distribution in which mean are zero and variance is 𝜎2, respectively. In this work, 𝜉 =  3/2. Based on 

the Lévy flight mechanism, the new improved position for the hunters is: 

𝑋𝑖+1
𝑙 = 𝑋𝑖+1 + (𝑋 ∗ −𝐴𝐷) × 𝐿𝑒(𝛿)                (25) 

where, 𝑋𝑖+1
𝑙  represents the new position of search agent 𝑋𝑖+1 and 

𝐴 = 𝑎(2 × 𝑟 − 1)                (26) 

𝐷 = 𝐶𝑋′(𝑡) − 𝑋(𝑡)                 (27) 

 where, a is in the range 0 and 2, r is a random value in the interval [0, 1], and 𝑋′(𝑡) describes a random 

position vector selected from the present population. To guarantee the best solution candidates, fitter agents are 

kept: 

𝐷⃗⃗ 𝑒𝑙 = {𝑋𝑖+1
𝑙                     𝐹(𝑋𝑖+1

𝑙 ) > 𝐹(𝑋𝑖+1) 𝑋𝑖+1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   (28) 

 So the proposed model provides the best security for the patient medical data using the proposed hybrid 

deep learning with encryption scheme. 

4. Results and Discussion 

 Initially, a medical diabetic dataset   is   obtained   from   the   internet and used to train the system using 

800 samples and the key is generated using paillier homomorphic encryption (PHE), which can be optimized 

using optimization. As a result, which gives optimal keys for encryption and decryption. Finally, the selected 

dataset is encrypted using a public key, which is then stored securely in real time database of public cloud for 

further accessing. To maintain confidentiality and to prevent unauthorized access by third parties, the data is 

provided in an encrypted form when accessed from the public cloud by the user and data owner. The proposed 

mechanism established in this study provides protection against malicious activity and unauthorized access 

through the use of encrypted data. Performance metrics are compared with those of other current methods to 

evaluate the effectiveness of the suggested procedure. This section presents a comparison between the proposed 

technique and several existing homomorphic encryption methods, Key  Homomorphic  Encryption  (KHE),  

Energy Efficient Dynamic Homomorphic Security (EE-DHS) spider-monkey wıth Paillier homomorphic 

encryption model (SM-PHE), and proposed Hybrid Fuzzy Neural Network with Modified Deer  Hunt optimization 

based Pallier Homomorphic Encryption (HFNNMDH-PHE). 

 Encryption time: To calculate the encryption time, you can measure the time taken by the encryption 

algorithm to encrypt the plaintext into ciphertext. Generally, the encryption time can be calculated by subtracting 

the start time from the end time of the encryption process. Encryption time is a critical factor in evaluating the 

efficiency of an encryption algorithm, as it reflects the amount of time required to convert plaintext to ciphertext. 

The shorter the encryption time, the more efficient the algorithm. This Section compares the encryption time of 

proposed with that of other homomorphic encryption algorithms. 
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Figure 5. Encryption Time 

 The results of figure1. demonstrate that proposed model takes less time to encrypt the same plaintext 

compared to the other algorithms, indicating its superior efficiency in this aspect. The intended HFNNMDH-PHE 

model achieved 4 ms for 100kb using this metric.  As a result, the EE-DHS and SM-PHE methods achieved 8, 

and 12 ms, respectively, while the KHE approach reached 18 ms for 100kb, as shown in Fig 5. 

Decryption Time: The length of time required to decrypt encrypted data or information is referred to as decryption 

time. Decryption is the process of turning encrypted or encoded material back to its original form so that the 

intended recipient can read and understand it. The amount of time it takes to decrypt data depends on the 

encryption algorithm employed, the size of the data being decrypted, and the computational capability of the 

device used for decryption. In general, more advancedencryption algorithms and higher data volumes will 

necessitate more decoding time. Using this criteria, the proposed model accomplished 5 ms for 100kb. 

 

Fıgure 6. decryption time 

 As a result, for data sizes of 200 kb, 300 kb, 400 kb, and 500 kb,  the decryption time is 7, 9, 11, and 14 

milliseconds.The proposed HFNNMDH-PHE technique gained less decryption time when compared to other 

models expressed in fig 6. 

Execution Time: The execution time of  an  algorithm  is  the  amount  of  time it takes for the algorithm to 

complete its task or solve a problem. Execution time is typically measured in units of time, such as seconds, 

milliseconds, or microseconds. 
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Figure 7. Execution time 

 The specific unit used may depend on the granularity required to accurately measure the execution time 

of the operations, which can be expressed in fig 7. The proposed model takes the less time for the execution 

compared with the other models.The proposed model achieves shorter execution time of 0.06 ms for 100 kB, 0.08 

ms for 200 kB, 0.10 ms for 300 kB, 0.12 ms for 400 kB, and 0.14 ms for 500 kB of data size as a result in fig 3. 

Efficiency: The efficiency of an algorithm can be evaluated based on several factors, including computational 

complexity, memory requirements, power consumption, and communication overhead. These factors determine 

how quickly and efficiently the algorithm can perform its cryptographic operations while using the minimum 

possible resources and proposed model is more efficient than other homomorphic techniques. 

 

Figure 8. efficiency 

 In this case, the suggested model's efficiency was higher than that of the other models, as a consequence, 

proposed model's efficiency is higher than the other models' in the following cases: 98.5% for 100 kb, 98.2% for 

200 kb, 98% for 300 kb, 97.9% for 400 kb, and 97.7% for 500 kb in the fig 8. 

Power consumption: The power consumption can be estimated based on several factors, including the size of the 

public key, the length of the plaintext and ciphertext, and the number of operations required to perform the 

homomorphic computation. The less power consumption leads to secure and energy-efficient system. 
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Figure 9. power consumption 

 The suggested model uses less energy than the current models, such as HFNNMDH-PHE, which uses 

15Wh for 100kb of data and 18Wh, 20Wh, 22Wh, and 25Wh for 200kb, 300kb, 400kb, and 500kb, respectively 

in fig.9. 

5. Conclusion 

 The field of adversarial machine learning has received significant research attention in recent years. In 

particular, many research works have explored adversarial attacks on machine learning models in the context of 

computer vision and image recognition, natural language processing and cybersecurity. Several defense methods 

have also been proposed with research efforts focused on evaluating the effectiveness of these defense methods 

against the continually evolving adversarial attacks. This research work introduced a novel Hybrid Fuzzy Neural 

Network (FNN) with Modified Deer Hunt Optimization (HMDH) based Pallier Homomorphic Encryption (PHE) 

scheme for enhancing the data security of the cloud from malware and attacks. Initially, collected datasets are 

stored in the cloud using the cloud sim tool, and collected datasets are transferred into the developed FNNHMDH-

PHE framework. At first, generate the key for each dataset and separate the private key for all datasets. Moreover, 

convert the plain text into ciphertext using the FNN and deer  fitness function in PHE. Using real-world datasets, 

evaluated the performance of the proposed model and demonstrated its feasibility in encryption, decryption and 

power consumption. For example, it took approximately 116 minutes to obtain the training model from the 

homomorphically encrypted for given dataset. In addition, it gives fairly accurate predictions on the testing 

dataset. While these implementations remain difficult for non-experts to navigate, current and future works will 

provide more high-level, user-friendly technologies. These would enable researchers from a variety of 

backgrounds to utilize FHE for their own research. 
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