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1. Introduction 

A queuing theory addresses scenarios where certain items are being serviced while others 

are waiting for their turn. Queues form when the number of items needing service exceeds 

the capacity of the service facilities to process them. Every day, people wait in lines at 

various locations, such as banks, clinics, and food courts. In the literature on queuing 

theory, there is an increased focus and significance on the study of queuing systems with 

server vacation. The server goes on vacation to make use of its idle period. Queuing 

systems with server vacations can simulate real-world queuing scenarios in several 

systems, including manufacturing, communication, and production inventories. 

Abstract 

We examine a two-phase heterogeneous service facility queue 
in this research, considering server vacation, failure, and the 

recommended encouraged queue length distribution. We 

regard client reneging as a result of server vacation in our 
queuing system. Following this, we determined the steady-state 

solutions and examined the expected length of the encouraged 

queue and the expected waiting period for clients by using the 
supplementary variable approach. Using numerical examples, 

we presented the effect of encouraged client arrival on queue 

length and cost analysis. 
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The significance of the Supplementary Variable Technique (SVT) in stochastic models 

with remaining or delayed periods as the supplementary variable was studied in [1]. [2], 

have studied the approaches in various kinds of queuing problems, such as reneging and 

balking. A study has examined a single-server queuing system characterized by a general 

bulk service, non-Markovian group arrivals, multiple vacations, a standby server, balking 

behavior, varying arrival rates, and the option for a second server to perform repairs if the 

primary server fails in [3]. A concept of bulk service queuing model that has a single 

primary server, a backup server, two stages of heterogeneous service, and the ability to 

start failing under several conditions is studied in [4]. Many researchers have shown 

interest in studying client impatience, and several have made significant contributions to 

this field. One of the earliest studies on reneging and balking was done by [13, 14]. The 

initial study on reneging also investigated service rates and deterministic reneging with a 

single server Markovian arrival, as detailed in [5]. As examined in [6], the steady-state 

solutions were obtained through the SVT, which was employed to calculate the expected 

queue size and expected waiting period. Using two service stages, the Bernoulli vacation 

schedule, and failure, it investigated the behavior of a bulk arrival retrial queue model in 

[7]. [8] described an objective to minimize costs by developing an expected cost function 

and formulating an optimization problem, utilizing the direct search method to determine 

optimal service rates during both failure periods and busier periods. [9] analyzed the 

steady-state behavior of group arrival queues with two phases of heterogeneous service. 

The Bernoulli schedules vacations under multiple vacation policies, allowing the server to 

continue taking vacations until a new group of clients arrives after two successive service 

phases or the first vacation. Numerous studies have explored this field, including [10], 

which investigated balking and reneging in vacation queuing models. [11] studied a 

queuing system with two services, deriving transforms for the queue length at departure 

epochs, the steady-state queue length, and the sojourn period of any arbitrary client. The 

first service involves group processing, while the second service provides individual 

attention to each member of the group. A multiple vacation queuing model, in which the 

service station was subject to failure during operation, is described in [12]. The utility and 

efficacy of the Markovian single-channel Bernoulli two-vacation symmetric queue with 

stochastic Markov-renewal process and promoted stationary queue size analysis were 

examined in [15]. A brief summary of recent vacation queuing system research is described 

in [16]. The dynamic behavior of the system and the relaxation period are determined for 

several case studies of interest to authorize steady-state approximations, as explained in 

[17]. [18] have studied the encouraged arrival line with feedback, balking, and maintaining 

reneged clients with quality control policies for the Markovian model. An analysis of a 

group arrival queuing system where the server may have periodic random failures can be 

found in [19]. [20] describes the way supplementary optional service, failures, and 

numerous vacations produced in a group influence encouraged arrival in the Markovian 

queuing model. [21] analyzed a single-server queuing-inventory system controlled by a 

group Markovian arrival process, following which group sizes were used to produce a finite 

first-order Markov chain. [22] developed an overview of bulk arrival and group service 

queues with vacations in queuing models. By using supplementary variables, we can 

implement a bulk arrival queue system on a single server with group size-based services, 

and working vacations [23]. As studied in [24], the single server queue with a distribution 

of service periods, failures, and vacations allows the server to decide to depart the system 
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or continue serving clients after service completion. A multi-server queuing model 

incorporating balking and reneging is explored in [25]. In [26], a single-server bulk arrival 

queuing system with two stages of service is discussed. [27] examines a limited-capacity 

single-server Markovian feedback queuing model that includes reneging, balking, and 

client retention after reneging. Fundamental queuing theory concepts can be found in [28]. 

[29] describes a single-server Markovian queuing system with encouraged arrivals as well 

as a financial analysis of the business. [30] describes the concept of a working vacation 

queue using the 𝑀/𝑀/1 variant with server failures and repairs. An 𝑀/𝑀/1/𝑁 queuing 

system, incorporating reneging, balking, server vacations, and an optimal service rate, is 

discussed in [31]. 

In this study, we describe a service-based queue with encouraged arrivals that occurs in 

two stages simultaneously. This model was developed by including many assumptions, 

such as reneging during system failure and vacation. Impatient clients may renege or leave 

the service after entering, especially during system failures or vacation periods. This is a 

reasonable assumption in certain ways, and in real life, queues are often used in certain 

circumstances. 

This work proposes minimizing system size and operating cost of the cost analysis of a 

two-phase heterogeneous service facility queue with encouraged queue length distribution, 

failure, and vacation. An introduction is described in section 1. The two-phase service with 

encouraged queue length distribution for the mathematical model is described in section 2. 

Notations are provided in section 3. The system of governing equations is derived in section 

4. Random period queue length distribution and performance measures are described in 

sections 5 and 6. Numerical illustrations are provided in section 7. Comparison tables are 

provided in section 8. To optimize the system's operating cost, the cost analysis is explained 

with an example in section 9. Results and discussion are given in section 10. Section 11 

contains the conclusion. 

2. The Mathematical Model 

We are analyzing a queuing system where arrivals occur in groups. The system features a 

two-phase heterogeneous service facility with a queue length distribution, failures, and 

vacations. The server attends to one client at a period, following a 'first come, first served' 

approach. Using the following assumptions, we can describe the general distribution model 

of the queuing system: 

• In a stochastic arrival process, clients arrive in groups of changing lengths. Let 

Ω𝑜𝑖 d𝑡(𝑖 = 1,2,3, … ) represent the probability that 𝑖 clients arrive during the period 

interval (𝑡, 𝑡 + d𝑡], where 0 ≤ 𝑜𝑖 ≤ 1. The sum of all probabilities over all group 

lengths is equal to 1, and Ω > 0 denotes the expected group arrival rate. 

• The service period, modeled by the general distribution 𝑍(𝑠) with density function 

𝑧(𝑠), corresponds to the probability density function 𝜁(𝑦0)d𝑦 for finishing service 

within the period interval (𝑦0, 𝑦0 + d𝑦0 ], where 𝑦0 represents the delayed period, 

such that: 
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𝜁(𝑦0) =
𝑧(𝑦0)

1 − 𝑍(𝑦0)
 

Therefore: 

𝑧(𝑠) = 𝜁(𝑠)𝑒− ∫  
𝑠

0  𝜁(𝑦0)d𝑦0 

• After completing service, the server can either take a vacation with probability 𝑝 or 

remain available to provide service with a probability of 1 − 𝑝, where 0 ≤ 𝑝 ≤ 1. 

• The duration of vacations follows an exponential distribution with rate 𝜔 > 0, 

resulting in an expected vacation period of 1/𝜔. 

• The system experiences random failures, following a Poisson process with an 

expected failure rate of 𝜅 > 0. When a failure occurs, the interrupted client is 

placed back at the front of the queue. 

• After a failure, the system promptly initiates the revamp process. Let Φ(𝑟) 

represent the general distribution function of revamp periods, and 𝜑(𝑟) denote the 

corresponding density function. The quantity 𝜂(𝑦0)d𝑦0 represents the conditional 

probability that the revamp is finishing within the period interval (𝑦0, 𝑦0 + d𝑦0], 
where 𝑦0 is the delayed revamp period, such that: 

‘𝜂(𝑦0) =
𝜑(𝑦0)

1 − Φ(𝑦0)
 

Therefore: 

𝜑(𝑟) = 𝜂(𝑟)𝑒− ∫  
𝑟

0  𝜂(𝑦0)d𝑦0 

3. Notations 

We establish the following probabilities to describe various system conditions. 

• 𝑃𝑙(𝑦0, 𝑡) represents the probability of that period 𝑡, the server is actively determined 

by service to 𝑙 clients (where 𝑙 ≥ 0 ) who are waiting in line, including the one 

currently being served. The delayed service period for this client is denoted by 𝑦0. 

Consequently, 𝑃𝑙(𝑡) = ∫
0

∞
 𝑃𝑙(𝑦0, 𝑡)d𝑦0 represents the probability of that period 𝑡, 

there are 𝑙 clients in the line, all expecting service, regardless of the specific value 

of 𝑦0. 

• 𝐻𝑙(𝑦0, 𝑡) denotes the probability of that period 𝑡, the system is under revamp with 

a delayed revamp period of 𝑦0, and there are 𝑙 clients (where 𝑙 ≥ 0 ) waiting in the 

queue for service. Thus, 𝐻𝑙(𝑡) = ∫
0

∞
 𝐻𝑙(𝑦0, 𝑡) d 𝑦0 represents the probability of 

that period 𝑡, there are 𝑙 clients in the queue while the system is under revamp, 

regardless of the value of 𝑦0. 
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• 𝑀𝑙(𝑡) is the probability of that period 𝑡, the server is on vacation and there are 𝑙 
clients (where 𝑙 ≥ 0 ) waiting in the queue for service. 

• 𝑄(𝑡) denotes the probability that at a period 𝑡, there are no clients in the system and 

the server is free and available for service. 

𝑃𝑗(𝑦0, 𝑔) = ∑  

∞

𝑙=1

  = 𝑔𝑙𝑃𝑙,𝑗(𝑦0); 𝑃𝑗(𝑔) = ∑  

∞

𝑙=1

 𝑔𝑙𝑃𝑙,𝑗|𝑔| ≤ 1; 𝑗 = 1,2 (3.1)

𝐻(𝑦0, 𝑔) = ∑  

∞

𝑙=1

 𝑔𝑙𝑅𝑙(𝑦0); 𝐻(𝑔) = ∑  

∞

𝑙=1

 𝑔𝑙𝐻𝑙|𝑔| ≤ 1 (3.2)

𝑀(𝑦0, 𝑔) = ∑  

∞

𝑙=1

 𝑔𝑙𝑀𝑙(𝑦0); 𝑀(𝑔) = ∑  

∞

𝑙=1

 𝑔𝑙𝑀𝑙|𝑔| ≤ 1 (3.3)

𝑂(𝑔) = ∑  

𝑙

𝑖=1

 𝑔𝑖𝑜𝑖 (3.4)

 

4. The set differential difference equation of the model 

Assuming the system reaches a stable equilibrium, we can analyze its various states by 

considering the limits as the period t approaches infinity (i.e., 𝑡 → ∞ ). For different system 

states, we define the following steady-state probabilities, lim𝑡→∞  𝑃𝑙(𝑦0, 𝑡) =
𝑃𝑙(𝑦0), lim𝑡→∞  𝑃𝑙(𝑡) = 

lim𝑡→∞  ∫
0

∞
 𝑃𝑙(𝑦0, 𝑡)d𝑦 = 𝑃𝑙 , lim𝑡→∞  𝐻𝑙(𝑦0, 𝑡) = 𝐻𝑙(𝑦0), lim𝑡→∞  𝐻𝑙(𝑡) =

lim𝑡→∞  ∫
0

∞
 𝐻𝑙(𝑦0, 𝑡)d𝑦0 = 𝐻𝑙 , lim𝑡→∞  𝑀𝑙(𝑡) = 𝑀𝑙 , lim𝑡→∞  𝑄(𝑡) = 𝑄 By linking the 

system's states at period 𝑡 + d𝑡 to those 𝑡 and then taking the limit as 𝑡 approaches infinity, 

we derive the following equations describing the system's steady-state behavior. 
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d

d𝑦0
𝑃𝑙,1(𝑦0) + {((Υ + 1)Ω) + 𝜁1(𝑦0) + 𝜅}𝑃𝑙,2(𝑦0) = ((Υ + 1)Ω) ∑  

𝑙

𝑖=1

 𝑜𝑖𝑃𝑙−𝑖,1(𝑦0) 𝑙 ≥ 1 (4.1)

d

d𝑦0
𝑃𝑙,2(𝑦0) + {((Υ + 1)Ω) + 𝜁2(𝑦0) + 𝜅}𝑃𝑙,2(𝑦0) = ((Υ + 1)Ω) ∑  

𝑙

𝑖=1

 𝑜𝑖𝑃𝑙−𝑖,2(𝑦0) 𝑙 ≥ 1 (4.2)

d

d𝑦0
𝐻𝑙,((𝑦0) + {((Υ + 1)Ω) + 𝜂(𝑦0) + 𝜔}𝐻𝑙(𝑦0) = ((Υ + 1)Ω) ∑  

∞

𝑖=1

 𝑜𝑖𝐻𝑙−𝑖(𝑦0) + 𝜔𝐻𝑙+1𝑙 ≥ 1(4.2)

d

d𝑦0
𝐻0(𝑦0) + (((Υ + 1)Ω) + 𝜂(𝑦0))𝐻0(𝑦0) = 𝜔𝐻1(𝑦0) (4.3)

d

d𝑦0
𝑀𝑙(𝑦0) + {((Υ + 1)Ω) + 𝜙(𝑦0) + 𝜔}𝑀𝑙(𝑦0) = ((Υ + 1)Ω) ∑  

𝑙

𝑖=1

 𝑜𝑖𝑀𝑙−𝑖(𝑦0) + 𝜔𝑀𝑙+1𝑙 ≥ 1(4.5)

d

d𝑦0
𝑀0(𝑦0) + (((Υ + 1)Ω) + 𝜙(𝑦0))𝑀0(𝑦0) = 𝜔𝑀0(𝑦0) (4.6)

 ((Υ + 1)Ω)𝑄 = (1 − 𝑝) ∫  
∞

0

 𝑃0,2(𝑦0)𝜁2(𝑦0)d𝑦0 + ∫  
∞

0

 𝑀0(𝑦0)𝜙(𝑦0)d𝑦0

+ ∫  
∞

0

 𝐻0(𝑦0)𝜂(𝑦0)d𝑦0 (4.7)

 

As a result of solving these differential equations, the following results are satisfied: 

𝑃𝑙,1(0)= ((Υ + 1)Ω)𝑜𝑙𝑄 + (1 − 𝑝) ∫  
∞

0

 𝑃𝑙+1,2(𝑦0)𝜁2(𝑦0)d𝑦0 + ∫  
∞

0

𝐻𝑙+1,(𝑦0)η(𝑦0)d𝑦0 

   + ∫  
∞

0

𝑀𝑙(𝑦0)ϕ(𝑦0)𝑑𝑦0,                 𝑙 ≥ 1                                                                               (4.8) 

𝑃𝑙,2(0) = ∫  
∞

0

 𝑃𝑙,(𝑦0)𝜁1(𝑦0)d𝑦0           𝑙 ≥ 1                                                                          (4.9) 

𝑀𝑙(0) = 𝑝 ∫  
∞

0

 𝑃𝑙+1,2(𝑦0)𝜁2(𝑦0)d𝑦0,             𝑛 ≥ 0                                                           (4.10) 

𝐻𝑙+1(0) = 𝜅 ∫  
∞

0

 𝑃𝑙,1(𝑦0)d𝑦0 + 𝜅 ∫  
∞

0

 𝑃𝑙,2(𝑦0)d𝑦0, = 𝜅𝑃𝑙,1 + 𝑃𝑙,2     𝑙 ≥ 0                 (4.11) 

𝐻0(0) = 0                                                                                                                                 (4.12) 

5. Random Period Queue Size Distribution 

After summing over 𝑙 from 1 to ∞ and multiplying Equations (4.1) - (4.6), by 𝑔𝑙, the result 

is 
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d

d𝑦0
𝑃1(𝑦0, 𝑔) + {(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔)) + 𝜁1(𝑦0) + 𝜅}𝑃1(𝑦0, 𝑔) = 0 (5.1)

d

d𝑦0
𝑃2(𝑦0, 𝑔) + {(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔)) + 𝜁2(𝑦0) + 𝜅}𝑃2(𝑦0, 𝑔) = 0 (5.2)

 

d

d𝑦
𝐻(𝑦0, 𝑔) + {((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜂(𝑦0) + 𝜔 −

𝜔

𝑔
} 𝐻(𝑦0, 𝑔) = 0 (5.3)

d

d𝑦0
𝑀(𝑦0, 𝑔) + (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜙(𝑦0) + 𝜔 −

𝜔

𝑔
) = 0 (5.4)

 

From the equations (5.1)-(5.4) were further integrated throughout the limits of 0 to 𝑦0, 

obtaining the following results: 

𝑃1(𝑦0, 𝑔) = 𝑃1(0, 𝑔)exp [(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅)𝑦0 − ∫  
∞

0

  𝜁1(𝑡)d𝑡] (5.5)

𝑃2(𝑦0, 𝑔) = 𝑃2(0, 𝑔)exp [(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅)𝑦0 − ∫  
∞

0

  𝜁2(𝑡)d𝑡] (5.6)

𝐻(𝑦0, 𝑔) = 𝐻(0, 𝑔)exp [(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
) 𝑦0 − ∫  

∞

0

 𝜂(𝑡)d𝑡] (5.7)

𝑀(𝑦0, 𝑔) = 𝑀(0, 𝑔)exp [(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
) 𝑦0 − ∫  

∞

0

 𝜙(𝑡)d𝑡] (5.8)

 

We multiply the boundary values of 𝑔𝑙+1 and use the (PGFs). 

𝑔𝑃1(0, 𝑔)= (((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝑄 + (1 − 𝑝) ∫  
∞

0

 𝑃2(𝑦0, 𝑔)𝜁2(𝑦0)d𝑦0 

∫  
∞

0

H(𝑦0, 𝑔)η(𝑦0)d𝑦0  + ∫  
∞

0

M(𝑦0, 𝑔)ϕ(𝑦0)𝑑𝑦0,                                                              (5.9) 

𝑃2(0, 𝑔) = ∫  
∞

0

 𝑃1(𝑦0, 𝑔)𝜁1(𝑦0)d𝑦0                                                                                      (5.10) 

𝑔M(0, 𝑔) = 𝑝 ∫  
∞

0

 𝑃2(𝑦0)𝜁2(𝑦0)d𝑦0,                                                                                    (5.11) 

𝐻(0, 𝑔) =  𝜅𝑔[𝑃1(𝑔) + 𝑃2(𝑔)]                                                                                             (5.12) 

We integrate the equations of (5.5) to 𝑦0 provides us 
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𝑃1(𝑔) = 𝑃1(0, 𝑔) [
1 − 𝐴1(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅)

((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅
] (5.13)

𝑃2(𝑔) = 𝑃2(0, 𝑔) [
1 − 𝐴2(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅)

((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅
] (5.14)

𝑀(𝑔) = 𝑀(0, 𝑔) [
1 − 𝐹 (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −

𝜔
𝑔

)

((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔
𝑔

] (5.15)

𝐻(𝑔) = 𝐻(0, 𝑔) [
1 − 𝐵 (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −

𝜔
𝑔

)

((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔
𝑔

] (5.16)

 

where 

𝐴1(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅)= ∫  
∞

0

  e−(((Υ+1)Ω)−((Υ+1)Ω)𝑂(𝑔)+𝜅)𝑦0 d𝐴1(𝑦0)

𝐴2(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅)= ∫  
∞

0

  e−(((Υ+1)Ω)−((Υ+1)Ω)𝑂(𝑔)+𝜅)𝑦0 d𝐴2(𝑦0)

𝐵 (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
)= ∫  

∞

0

  e
−(((Υ+1)Ω)−((Υ+1)Ω)𝑂(𝑔)+𝜔−

𝜔
𝑔

)𝑦0
 d𝐵(𝑦0)

𝐹 (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
)= ∫  

∞

0

  e
−(((Υ+1)Ω)−((Υ+1)Ω)𝑂(𝑔)+𝜔−

𝜔
𝑔

)𝑦0
 d𝐹(𝑦0)

 

We multiply the boundary values of 𝑔𝑙+1, and use the PGFs. 

∫  
∞

0

 𝑃1(𝑦0, 𝑔)𝜁1(𝑦0)d𝑦0 

∫  
∞

0

 𝑃2(𝑦0, 𝑔)𝜁2(𝑦0)d𝑦0 

∫  
∞

0

 𝐻(𝑦0, 𝑔)𝜂(𝑦0)d𝑦0 

∫  
∞

0

 𝑀(𝑦0, 𝑔)𝜙(𝑦0)d𝑦0 

 

by combining the RHS of equations to (5.5 - 5.8) with 𝜁1(𝑦0), 𝜁2(𝑦0), 𝜂(𝑦0), and 𝜙(𝑦0) 

respectively, and integrating to 𝑦0, we obtain 



 Immaculate Samuel /Afr.J.Bio.Sc. 6(13) (2024)                     Page 7482 of 21 
 

 ∫  
∞

0

 𝑃1(𝑦0, 𝑔)𝜁1(𝑦0)d𝑦 = 𝑃1(0, 𝑔)𝐴1(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅) (5.17)

 ∫  
∞

0

 𝑃2(𝑦0, 𝑔)𝜁2(𝑦0)d𝑦 = 𝑃2(0, 𝑔)𝐴2(((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅) (5.18)

 ∫  
∞

0

 𝐻(𝑦0, 𝑔)𝜂(𝑦0)d𝑦 = 𝐻(0, 𝑔)𝐵 (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
) (5.19)

 ∫  
∞

0

 𝑀(𝑦0, 𝑔)𝜙(𝑦0)d𝑦0 = 𝑀(0, 𝑔)𝐹 (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
) (5.20)

 

Let us define, 

((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅 = 𝑛; ((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
= 𝑘 

Utilizing (5.17) - (5.20) in equations (5.9) - (5.11) we obtain 

𝑔𝑃1(0, 𝑔)= (((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝑄 + (1 − 𝑝)𝐴2(𝑛)𝑃2(0, 𝑔)          
+  𝐻(0, 𝑔)𝐵(𝑘) + 𝑔𝑀(0, 𝑔)𝐹(𝑘)                                                     (5.21) 

𝑃2(0, 𝑔) = 𝑃1(0, 𝑔)𝐴1(𝑛)                                                                                               (5.22) 

𝑀(0, 𝑔) = 𝑝𝑃2(0, 𝑔)𝐴2(𝑛)                                                                                         (5.23) 

Using (5.22) in (5.23) we get, 

𝑔𝑀(0, 𝑔) = 𝑝𝑃1(0, 𝑔)𝐴1(𝑛)𝐴2(𝑛) (5.24) 

Again from (5.12) using (5.13) and (5.14) we get 

𝐻(0, 𝑔) =
𝜅𝑔

𝑛
[𝑃1(0, 𝑔)[1 − 𝐴1(𝑛)] + 𝑃2(0, 𝑔)[1 − 𝐴2(𝑛)]] (5.25) 

Now using (5.22), (5.24), and (5.25) in Equation (5.21), we solve for 𝑃1(0, 𝑔) 

𝑃1(0, 𝑔) =
𝑛(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝑄

𝐸(𝑔)
(5.26)

𝑃2(0, 𝑔) =
𝑛(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝐴1(𝑛)𝑄

𝐸(𝑔)
(5.27)

𝐻(𝑔) =
𝜅𝑔(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))[1 − 𝐴1(𝑛)𝐴2(𝑛)]𝑄

𝐸(𝑔)
(5.28)

𝑀(0, 𝑔) =
𝑝𝑛(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝐴1(𝑛)𝐴2(𝑛)𝑄

𝐸(𝑔)
(5.29)

 

Where, 

𝐸(𝑔) = 𝑛[𝑧 − (1 − 𝑝)𝐴1(𝑛)𝐴2(𝑛) − 𝑝𝐴1(𝑛)𝐴2(𝑛)𝐹(𝑘)] − 𝜅𝑔𝐵(𝑘){1 − 𝐴1(𝑛)𝐴2(𝑛)} 
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Substituting the values from (5.26 - 5.29) in (5.13 - 5.16), we obtain 

𝑃1(𝑔) =
(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))[1 − 𝐴1(𝑛)]𝑄

𝐸(𝑔)
(5.30)

𝑃2(𝑔) =
(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝐴1(𝑛)[1 − 𝐴2(𝑛)]𝑄

𝐸(𝑔)
(5.31)

𝐻(𝑔) =
𝜅𝑔(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))[1 − 𝐴1(𝑛)𝐴2(𝑛)]𝑄

𝐸(𝑔)
⋅ [

1 − 𝐵(𝑘)

𝑘
] (5.32)

𝑀(𝑔) =
𝑝𝑛(((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω))𝐴1(𝑛)𝐴2(𝑛)𝑄

𝐸(𝑔)
⋅ [

1 − 𝐹(𝑘)

𝑘
] (5.33)

 

The queue length is characterized by the probability-generating function 𝑃𝑞(𝑔), which 

remains independent of the system's behavior. 

𝑃𝑞(𝑔) = 𝑃1(𝑔) + 𝑃2(𝑔) + 𝐻(𝑔) + 𝑀(𝑔) =
𝑉(𝑔)

𝐸(𝑔)
                                                      (5.34) 

By applying the normalization condition 𝑃𝑞(1) + 𝑄 = 1, we can calculate the probability 

of the idle period 𝑄. Furthermore, we employ L'Hopital's Rule once more on equation 

(5.31) because it is indeterminate of the type 
0

0
 at 𝑔 = 1. 

𝑃1(1) =
((Υ + 1)Ω)𝐷(𝐼)(1 − 𝐴1(𝜅))𝑄

−(((Υ + 1)Ω)𝐷(𝐼) + 𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)𝐷(𝐻))
(5.35)

 +[𝜅 + ((Υ + 1)Ω)𝐷(𝐼) + 𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)𝐷(𝐻)
 −𝑝𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)𝐷(𝑀)]𝐴1(𝜅)𝐴2(𝜅)

 

The equation (5.35) denotes the probability of the server being busy in the first stage under 

a steady state behavior. The probability in a steady-state equation that the server is 

operating in the second stage is 

𝑃2(1) =
((Υ + 1)Ω)𝐷(𝐼)𝐴1(𝜅)(1 − 𝐴2(𝜅))𝑄

−(((Υ + 1)Ω)𝐷(𝐼) + 𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)𝐷(𝐻))
(5.36)

 +[𝜅 + ((Υ + 1)Ω)𝐷(𝐼) + 𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)𝐷(𝐻)
 −𝑝𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)𝐷(𝑀)]𝐴1(𝜅)𝐴2(𝜅)

 

where the expected of the arriving client group is 𝑂(1) = 1, 𝑂′(1) = 𝐷(𝐼), and −𝐵′(0) = 

𝐷(𝐻) represents the expected revamp period and the expected vacation period is −𝐹′(0) = 

𝐷(𝑀). 

Thus, the normalization condition yields 

𝑄 = 1 −
((Υ + 1)Ω)𝐷(𝐼)[{1 + 𝜅𝐷(𝐻)} − {1 + 𝜅𝐷(𝐻) − 𝑝𝜅𝐷(𝑀)}𝐴1(𝜅)𝐴2(𝜅)]

𝜅𝜔𝐷(𝐻){1 − 𝐴1(𝜅)𝐴2(𝜅)} + 𝑝𝜅𝜔𝐴1(𝜅)𝐴2(𝜅)
(5.39) 

Where, 
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𝜌 =
((Υ + 1)Ω)𝐷(𝐼)[{1 + 𝜅𝐷(𝐻)} − {1 + 𝜅𝐷(𝐻) − 𝑝𝜅𝐷(𝑀)}𝐴1(𝜅)𝐴2(𝜅)]

𝜅𝜔𝐷(𝐻)[1 − 𝐴1(𝜅)𝐴2(𝜅)] + 𝑝𝜅𝜔𝐴1(𝜅)𝐴2(𝜅)
< 1 (5.40) 

6. Performance Measures 

Given that the expected queue length is of the indeterminate form 
0

0
, we can apply L'Ho 

pital's Rule twice to calculate 𝐿𝑞, which is the derivative of the probability-generating 

function 𝑃𝑞(𝑔) for 𝑔 evaluated at 𝑔 = 1. 

𝐿𝑞 = lim
𝑔→1

 
𝐸′(𝑔)𝑉′′(𝑔) − 𝑉′(𝑔)𝐸′′(𝑔)

2(𝐸′(𝑔))2
(6.1) 

At a random epoch, the expected queue length, denoted as 𝐿𝑞, can be determined. We can 

then use 𝑊𝑞 =
𝐿𝑞

𝜆
 to calculate the expected waiting period of the queue. Alternatively, we 

can compute the expected waiting period in the system using 𝑊 =
𝐿

(Υ+1)Ω
 and the expected 

queue length of the system using 𝐿 = 𝐿𝑞 + 𝜌. 

6.1 Exponentially distributed vacation and service periods 

In this scenario, we take the service period is exponentially distributed for the two service 

stages with service rates of 𝜁1 > 0 and 𝜁2 > 0, respectively. Additionally, the distribution 

of revamp period and vacation period are exponential, with revamp rates of 𝜂 > 0 and 

vacation rates of 𝜙 > 0, respectively. 

Thus 

𝐴1(𝑛) =
𝜁1

𝜁1 + 𝑛
; 𝐴2(𝑛) =

𝜁2

𝜁2 + 𝑛

𝐵(𝑘)=
𝜂

𝜂 + 𝑘
; 𝐹(𝑘) =

𝜙

𝜙 + 𝑘

𝐷(𝐻)=
1

𝜂
; 𝐷(𝐻2) =

2

𝜂2

𝐷(𝑀)=
1

𝜙
; 𝐷(𝑀2) =

2

𝜙2

 

where 

𝑛= ((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅; 𝑘 = ((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜔 −
𝜔

𝑔
  where 

𝐸(𝑔)= (((Υ + 1)Ω) − ((Υ + 1)Ω)𝑂(𝑔) + 𝜅) [𝑔 − {(1 − 𝑝) + 𝑝
𝜙

𝜙 + 𝑘
}

𝜁1𝜁2

(𝜁1 + 𝑛)(𝜁2 + 𝑛)
]

− 𝜅𝑔 {1 −
𝜁1𝜁2

(𝜁1 + 𝑛)(𝜁2 + 𝑛)
}

𝜂

𝜂 + 𝑘
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Utilizing the above relations in equations (5.30) - (5.33), we obtain 

𝑃1(𝑔) =
[((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω)] [1 −

𝜁1

𝜁1 + 𝑛] 𝑄

𝐸(𝑔)
(6.2)

𝑃2(𝑔) =
[((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω)]

𝜁1

𝜁1 + 𝑛 [1 −
𝜁2

𝜁2 + 𝑛] 𝑄

𝐸(𝑔)
(6.3)

𝐻(𝑔) =
𝜅[((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω)] [1 −

𝜁1𝜁2

(𝜁1 + 𝑛)(𝜁2 + 𝑛)
]

1
(𝜂 + 𝑘)

𝑄

𝐸(𝑔)
(6.4)

𝑀(𝑔) =
𝑝𝑛[((Υ + 1)Ω)𝑂(𝑔) − ((Υ + 1)Ω)]

𝜁1𝜁2

(𝜁1 + 𝑛)(𝜁2 + 𝑛)(𝜙 + 𝑘)
𝑄

𝐸(𝑔)
(6.5)

 

Consequently, the probability that the server will be offering first-stage services at an 

arbitrary period is 

𝑃1(1) =
((Υ + 1)Ω)𝐷(𝐼) [1 −

𝜁1
𝜁1 + 𝜅] 𝑄

− [((Υ + 1)Ω)𝐷(𝐼) +
𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜂 ]
(6.6)

 +[𝜅 + ((Υ + 1)Ω)𝐸(𝐼)

+𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔) {
1

𝜂
−

𝑝

𝜙
}]

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)

 

Consequently, the probability that the server will be offering second-stage services at an 

arbitrary 

period is 

𝑃2(1) =
((Υ + 1)Ω)𝐸(𝐼)

𝜁1

(𝜁1 + 𝜅)
{1 −

𝜁2
𝜁2 + 𝜅

} 𝑄

− [((Υ + 1)Ω)𝐷(𝐼) +
𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜂 ]
(6.7)

 +[𝜅 + ((Υ + 1)Ω)𝐸(𝐼)

+𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔) {
1

𝜂
−

𝑝

𝜙
}]

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)

 

The server may need maintenance at some random moment. 
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𝐻(1) =
[
𝜅((Υ + 1)Ω)𝐷(𝐼)

𝜂 ] [1 −
𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
] 𝑄

− [((Υ + 1)Ω)𝐷(𝐼) +
𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜂 ]
(6.8)

 +[𝜅 + ((Υ + 1)Ω)𝐷(𝐼)

+𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔) {
1

𝜂
−

𝑝

𝜙
}]

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)

 

The probability of the server being under vacation at any random epoch in the period is 

expressed as: 

𝑀(1) =
𝑝𝜅 [

((Υ + 1)Ω)𝐷(𝐼)
𝜙

]
𝜁1𝜁2

(𝜁1𝜅)(𝜁2 + 𝜅)
𝑄

− [((Υ + 1)Ω)𝐷(𝐼) +
𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜂 ]
(6.9)

 +[𝜅 + ((Υ + 1)Ω)𝐷(𝐼)

+𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔) {
1

𝜂
−

𝑝

𝜙
}]

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)

 

The probability that the server is free but available within the system is expressed as: 

𝑄 = 1 − ((Υ + 1)Ω)𝐷(𝐼)
[{1 +

𝜅
𝜂} − {1 +

𝜅
𝜂 −

𝑝𝜅
𝜙 }

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
]

𝜅𝜔
𝜂

{1 −
𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
} + 𝑝𝜅𝜔

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)

      (6.10) 

Similar to this, 𝑉′(1), 𝑉′′(1), 𝐸′(1), and 𝐸′′(1) may be identified and utilized in equation 

(6.1). This will provide the expected queue length and expected waiting period. 

𝑉′(1)= 𝑄 [((Υ + 1)Ω)𝐷(𝐼) {1 +
𝜅

𝜂
} − 𝜆𝐷(𝐼) {1 +

𝜅

𝜂
−

𝑝𝜅

𝜙
}

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
]

𝑉′′(1)= [[((Υ + 1)Ω)𝐷(𝐼/(𝐼 − 1)) {(1 +
𝜅

𝜂
) (1 −

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
) +

𝑝𝜅

𝜙

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
}]]

 −2((Υ + 1)Ω)𝐷(𝐼) {
𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜂2
(1 −

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
)}

+ {
𝑝(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜙2

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
}

𝐸′(1)= − [((Υ + 1)Ω)𝐷(𝐼) +
𝜅(𝜆𝐷(𝐼) − 𝜔)

𝜂
]

+ {𝜅 + ((Υ + 1)Ω)𝐷(𝐼) +
𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜂
−

𝑝𝜅(((Υ + 1)Ω)𝐷(𝐼) − 𝜔)

𝜙
}

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)

𝐸′′(1)= −((Υ + 1)Ω)𝐷(𝐼/(𝐼 − 1)) {(1 +
𝜅

𝜂
) +

𝜁1𝜁2

(𝜁1 + 𝜅)(𝜁2 + 𝜅)
(1 −

𝜅

𝜂
+

𝑝𝜅

𝜙
)}
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-2 [
𝜅𝜔

𝜂
+

(((Υ+1)Ω)𝐷(𝐼)−𝜔)2

𝜂2
] [1 −

𝜁1𝜁2

(𝜁1+𝜅)(𝜁2+𝜅)
] − 2𝑝𝜅 [

𝜔

𝜙
+

(((Υ+1)Ω)𝐷(𝐼)−𝜔)2

𝜙2
]

𝜁1𝜁2

(𝜁1+𝜅)(𝜁2+𝜅)
−

{((Υ + 1)Ω)𝐷(𝐼) +
𝜅(((Υ+1)Ω)𝐷(𝐼)−𝜔)

𝜂
−

𝑝𝜅(((Υ+1)Ω)𝐷(𝐼)−𝜔)

𝜙
+ 𝜅} {

𝜁1𝜁2

(𝜁1+𝜅)2(𝜁2+𝜅)
+

𝜁1𝜁2

(𝜁1+𝜅)(𝜁2+𝜅)2
} 

7. Numerical Illustration 

Numerical data are generated to observe the impact of various factors, particularly 

parameters related to reneging and failures, on server states such as vacation duration, 

utilization factor, and probability of idle server period. We consider mathematically 

possible solutions by assuming that the exponential distribution follows the service period, 

revamp period, and vacation period. The values of the parameters of this queuing model 

are given. To assess the effects of reneging 

Ω 𝜁 ((Υ + 1)Ω) 𝜁1 𝜁2 𝜂 𝜙 𝑝 𝜔 𝜅 

2 0.1 2.2 4 8 10 7 0.5 5,8,10 1,2,3,4 

 

(𝜔) and failure (𝜅) on the queuing model, we present the results in Table 1. 

𝜔 𝜅 Q 𝜌 𝐿𝑞 𝐿 𝑊𝑞 𝑊 

5 

1 0.5782 0.4218 4.3258 4.7476 1.9663 2.1580 

2 0.5533 0.4467 3.6746 4.1212 1.6703 1.8733 

3 0.5324 0.4676 3.4534 3.9210 1.5697 1.7823 

4 0.5151 0.4849 3.2702 3.7551 1.4864 1.7068 

 1 0.7364 0.2636 2.7143 2.9779 1.2338 1.3536 

8 2 0.7208 0.2792 2.0759 2.3551 0.9436 1.0705 

 3 0.7078 0.2922 1.7564 2.0486 0.7984 0.9312 

 4 0.6969 0.3031 1.5385 1.8415 0.6993 0.8371 

 1 0.7891 0.2109 2.2956 2.5065 1.0435 1.1393 

10 2 0.7767 0.2233 1.7035 1.9269 0.7743 0.8758 
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 3 0.7662 0.2338 1.3959 1.6297 0.6345 0.7408 

 4 0.7576 0.2424 1.1936 1.4361 0.5426 0.6528 

 

Table 1: The table illustrates that the parameter representing client impatience 𝜔 increases, 

the utilization factor also increases for various values of failure 𝜅. Simultaneously, the 

server's idle period probability decreases, resulting in a decrease in both the expected queue 

length 𝐿𝑞 and the expected waiting period 𝑊𝑞. 

 

Figure 1: The above figure shows that the effect of reneging takes 5 and failure occurs in 

the ranges from 1 to 4 on the expected queue length 𝐿𝑞, expected waiting period 𝑊𝑞 

decreases. 
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Figure 2: The figure illustrates how the expected queue length 𝐿𝑞 and expected waiting 

period 𝑊𝑞 decreases as the effect of reneging takes 8 , with failure occurring the ranges 

from 1 to 4 . 

 

Figure 3: The figure shows that the effect of reneging takes 10 and failure occurs in the 

ranges from 1 to 4 on the expected queue length 𝐿𝑞, expected waiting period 𝑊𝑞 decreases. 
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8. Comparison Table 

In this section, the encouraged queue length distribution, expected queue length 𝐿𝑞, and 

expected waiting period 𝑊𝑞 demonstrate greater effectiveness compared to Poisson arrival, 

especially with a 10% discount. 

𝜔 𝜅 Poisson arrival Encouraged arrival 

  of 𝐿𝑞 of 𝑊𝑞 of 𝐿𝑞 of 𝑊𝑞 

5 

1 2.8350 1.4175 4.3258 1.9663 

2 2.4236 1.2118 3.6746 1.6703 

3 2.3144 1.1572 3.4534 1.5697 

4 1.1716 0.5858 3.2702 1.4864 

 1 1.9723 0.9861 2.7143 1.2338 

 2 1.5610 0.7805 2.0759 0.9436 

8 3 1.3509 0.7443 1.7564 0.7984 

 4 1.2041 0.6021 1.5385 0.6993 

 1 2.0494 1.0247 4.3258 1.0435 

 2 1.3329 0.6665 3.6746 0.7743 

10 3 1.2210 0.6105 3.4534 0.6345 

 4 1.2170 0.6085 3.2702 0.5426 

 

Table 2: The following table shows the comparison of Poisson and encouraged arrival for 

10% discount. 

9. Cost Analysis 

To optimize the system's operating cost, we established a cost analysis approach. The 

system with encouraged arrivals is characterized by Ω = 2, where Υ = 0.1 denotes the 

expected number of clients arriving for a specific service within a defined period. If the 

payment is processed too slowly, the client will leave the queue. In this situation, the firm 

will be deprived of the amount 's' per cost for the suitable period duration. Let's assume 
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that one server will cost Rs. 25 to operate. As part of our analysis, of the queuing system, 

we evaluated the operating cost (OP) and waiting cost for the encouraged arrival of 10% 

discount. 

𝜔 𝜅 
Encouraged 

arrival Rate 

Waiting 

period 

Waiting 

cost 

Operating 

cost 

Total 

cost 

5 

1 2.2 1.9663 3.9326 25 28.9326 

2 2.2 1.6703 3.3406 25 28.3406 

3 2.2 1.5697 3.1394 25 28.1394 

 4 2.2 1.4864 2.9728 25 27.9728 

 

Table 3: The following table shows the total cost of encouraged arrival for 10% discount 

 

𝜔 𝜅 
Encouraged 

arrival Rate 

Waiting 

period 

Waiting 

cost 

Operating 

cost 

Total 

cost 

8 

1 2.2 1.2338 2.4676 25 27.4676 

2 2.2 0.9436 1.8872 25 26.8872 

3 2.2 0.7984 1.5968 25 26.5968 

 4 2.2 0.6993 1.3986 25 26.3986 

Table 4: The following table shows the total cost of encouraged arrival for 10% discount 

𝜔 𝜅 
Encouraged 

arrival Rate 

Waiting 

period 

Waiting 

cost 

Operating 

cost 

Total 

cost 

10 

1 2.2 1.0435 2.087 25 27.087 

2 2.2 0.7743 1.5486 25 26.5486 

3 2.2 0.6345 1.269 25 26.269 

 4 2.2 0.5426 1.0852 25 26.0852 

Table 5: The following table shows the total cost of encouraged arrival for 10% discount 
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10.  Results and Discussion 

• In Table 1, it is observed that increasing reneging (𝜔), for different values of the 

failure (𝜅) leads to an increase in the utilization factor, while the probability of a 

server-free period decreases. 

• Table 2 compares the Poisson and the encouraged arrival systems for a 10% 

discount. It shows that, compared to the Poisson arrival system, the encouraged 

arrival queuing system experiences increased queue lengths. 

• Figures 1, 2, and 3 depict the impact of failure and failure on the expected queue 

length (𝐿𝑞) and expected waiting period (𝑊𝑞). It is evident that as failure occurs, 

it decreases the expected queue length, the same as the expected waiting period 

decreases because of reneging from the queue. 

• Table 5 indicates the optimal performance that is achieved when the values of 𝜔 

and 𝜅 are minimized to 10 and 4, respectively. This total cost analysis proves to be 

more efficient for optimizing cost analysis. 

11.  Conclusion 

We investigated a two-phase heterogeneous service facility queue with failures, server 

vacations, and a recommended encouraged queue length distribution in this study. By 

employing the supplementary variable approach, we obtained steady-state results and 

analyzed the expected encouraged queue length and expected client waiting period. We 

enhanced the queue size by introducing encouraged arrivals based on queue length 

distribution. The table 5 demonstrates that the optimal performance is achieved when the 

values of 𝜔 and 𝜅 are minimized to 10 and 4 , respectively. Total cost analysis proves to 

be efficient for optimizing cost analysis. 
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