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Abstract 

The surge in global seafood production has led to a significant increase in 

marine shell waste, posing economic burdens on waste management systems 

worldwide. In regions heavily reliant on seafood production, such as coastal 

areas of India, shell waste accumulation is particularly pronounced. 

Understanding the composition of marine shell waste is crucial for developing 

effective utilization and management strategies. The current study presents 

insights into the utilization and management of marine shell waste across 

different sectors, including seafood processing, aquaculture, manufacturing, 

biotechnology, and construction. Bivalve shells, crustacean shells, and Mollusc 

shells are identified as major components of marine shell waste, with calcium 

carbonate, chitin, proteins, and aragonite being predominant constituents. 

Various potential applications of these components, such as soil amendments, 

animal feed additives, biodegradable plastics, and construction materials, are 

discussed. Utilization methods for extracting valuable components from marine 

shell waste are explored, including chemical and fermentation processes. 

Overall, this study highlights the transition of marine shell waste from a disposal 

burden to a valuable asset. By adopting innovative technologies and sustainable 

practices, industries can maximize the value and utility of shell waste, 

contributing to both economic prosperity and environmental conservation in 

coastal regions. 
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1. Introduction 

The exploitation of innovative environmental and ecological materials obtained from 

marine wastes has been the subject of fundamental investigations in the past several 

years. The exponential growth of global seafood production, driven by increasing 

consumer demand, has resulted in a substantial surge in marine shell waste. This 

waste poses a considerable economic burden on waste management systems, 

particularly in regions heavily reliant on seafood production. India ranks as one of the 

major seafood processing industries in the world (Sasidharan et al., 2013). Coastal 

cities and regions with a robust seafood export and processing infrastructure also 

contribute significantly to the generation of sea shell waste. Statistical analysis reveals 

that millions of metric tons of discarded shells, primarily from crustaceans and 

molluscs, are generated annually. The shell wastes consist of many commercially 

valuable products, such as, chitin, calcium carbonate, proteins, and carotenoids. 

Processing of shell wastes is a source of wealth (Suryawanshi et al., 2019). 

Geographical disparities accentuate the localized impact, with coastal areas 

experiencing disproportionate waste accumulation. 

Improper disposal practices result in habitat destruction and ecosystem 

degradation, as accumulated shells alter coastal environments and disrupt marine 

biodiversity (Peceño et al., 2021). Addressing the environmental impacts requires 

holistic approaches that prioritize sustainable resource utilization, pollution 

prevention, and ecosystem preservation. Moreover, the utilization of marine shell 

waste for sustainable material development offers a promising avenue for addressing 

both environmental concerns and economic challenges. Researchers and industries 

alike are exploring innovative techniques to harness the potential of these discarded 

shells, thereby mitigating the adverse effects of their accumulation while 

simultaneously creating value-added products.(Islam et al., 2004) Through various 

extraction and processing methods, valuable components such as chitin, calcium 

carbonate, proteins, and carotenoids can be recovered from the waste stream.  

The versatile nature of these components opens up a plethora of applications 

across multiple sectors. Chitin, for instance, has gained attention for its diverse range 

of uses in fields such as biomedical engineering, agriculture, food packaging, and 

wastewater treatment (Peceño et al., 2020). Similarly, calcium carbonate derived from 

marine shells exhibits properties suitable for applications in construction materials, 

paper production, and pharmaceuticals. Furthermore, proteins and carotenoids present 
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in the waste stream offer potential avenues for the development of functional foods, 

nutraceuticals, and cosmetic formulations. However, despite the significant potential 

benefits, challenges persist in the effective utilization of marine shell waste. Technical 

hurdles related to extraction efficiency, scalability, and product quality require careful 

consideration. Moreover, logistical and regulatory barriers may impede the adoption 

of sustainable practices, particularly in regions with inadequate waste management 

infrastructure (Mathew et al., 2020). 

Collaborative efforts involving academia, industry, government agencies, and 

local communities are essential for overcoming these challenges and unlocking the 

full potential of marine shell waste. By fostering innovation, promoting knowledge 

exchange, and implementing supportive policies, stakeholders can work towards 

creating a circular economy model where waste is viewed as a valuable resource 

rather than a burden. Additionally, public awareness and education campaigns can 

play a crucial role in encouraging responsible consumption and waste management 

practices, thereby reducing the environmental footprint of seafood production and 

processing industries. In conclusion, the sustainable utilization of marine shell waste 

represents a multifaceted solution to environmental, economic, and social challenges. 

By harnessing the inherent value of these discarded shells, we can not only alleviate 

the strain on waste management systems but also contribute to the development of 

eco-friendly materials and products. However, realizing this potential requires 

concerted efforts and a collective commitment to embracing innovation and 

sustainability principles. 

2. Environmental impacts of seashell waste 

Seashells are part of the almost 7 million tons of "nuisance waste" that the seafood 

sector discards annually, the majority of which is disposed of in landfills or the 

ocean(Tsai et al., 2021). Such debris can be recycled and reused as a great substitute 

for disposal. The environmental impact of marine shell industrial waste is profound 

and encompasses various interconnected factors. Improper disposal practices result in 

habitat destruction and ecosystem degradation, as accumulated shells alter coastal 

environments and disrupt marine biodiversity (Branigan et al., 2020). Moreover, the 

decomposition of marine shells releases organic matter and nutrients into water 

bodies, leading to eutrophication and the subsequent disruption of aquatic ecosystems. 

The transportation and disposal of this waste contribute to carbon emissions, 

exacerbating climate change. Additionally, the loss of valuable resources like calcium 
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carbonate, inherent in marine shells, perpetuates resource depletion and intensifies the 

strain on natural mineral reserves. As marine shell waste occupies landfill space, it 

exacerbates the challenges of waste management, furthering the urgency for 

sustainable solutions. Furthermore, marine pollution ensues when waste is improperly 

discarded, posing threats to marine life and exacerbating the global issue of ocean 

pollution. 

3. Seashell composition and its potency 

Approximately 50–60% of the total weight is trash, which is produced during the 

industrial processing of shellfish for human consumption, such as shrimp, crab, and 

krill (Islam, 2004). These shells are of different kinds and are used for the extraction 

of valuable products, for human use and supplements. The shell wastes consist of 

many commercially valuable products, such as, chitin, calcium carbonate, proteins, 

and carotenoids. 

Different types of shell wastes are dealt. Bivalve shells are among the most abundant 

types of marine shell waste belonging to mollusc with two hinged shells, such as 

oysters, mussels, clams, and scallops (Hart, 2020). After the edible meat is harvested 

for consumption, the shells are typically discarded. Bivalve shells are composed 

primarily of calcium carbonate and may vary in size, shape, and thickness depending 

on the species. Another type is the Crustacean shells, also known as exoskeletons 

found in crustaceans such as shrimp, crab, lobster, and crayfish. After the edible meat 

is extracted during processing, the shells are often discarded which contains chitin, 

calcium carbonate and protein (Hayes et al., 2008). Mollusc shells, exemplified by 

those of abalone and mussels, are abundant biogenic materials boasting unique 

properties like nacre's toughness. Beyond their aesthetic value in jewellery, these 

shells inspire biomimetic materials research. Additionally, their composition, rich in 

calcium carbonate, offers potential for eco-friendly applications in fields ranging from 

construction to water purification, demonstrating their versatility and environmental 

significance. The composition of the shells and their potency are given underneath in 

brief: 

a. Calcium Carbonate (CaCO3): Predominant component in marine shells, 

comprising a substantial portion of their structure (Miron et al., 2022) . The 

seashell material attracts attention due to high calcium carbonate content, low-

cost and availability provided by the fast developing seafood industry (Barros 

et al., 2009). The mussel shell constitutes approximately 31-33% of the total 
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mussel weight in the cannery and processing facilities (Azarian & Sutapun, 

2022). This shell is a composite biomaterial, with the mineral phase, primarily 

calcium carbonate, making up 95-99% of its weight. The remaining 1-5% 

comprises an organic matrix. (M.C. Barros et al., 2007). Valuable for the 

production of calcium-based products, such as calcium supplements, and as a 

substrate for the synthesis of biomaterials through biotechnological 

fermentation processes. 

b. Chitin: Chitin is a biopolymer that occurs naturally and is composed of 2-

acetamido 2-deoxy-b-D-glucose linked by a b (1,4) bond. Similar to cellulose, 

it is the second most prevalent polymer on Earth and serves as a structural 

polysaccharide. Abundant in the exoskeletons of fish (silver and pang scales), 

some mollusks (oyster shell and mussels), and crustaceans (prawn and crab), 

The entire yearly output of chitin in aquatic habitats was calculated to be 

1.3~1012 kg for marine ecosystems and 2.8~1010 kg for freshwater 

environments, respectively (Owuamanam & Cree, 2020). Extracted chitin can 

be enzymatically converted into chitosan, a versatile biopolymer with 

applications in pharmaceuticals, agriculture, and water treatment, contributing 

to sustainable waste utilization. 

c. Proteins: Found in varying proportions in different types of marine shells, 

such as abalone shells and sea urchin shells. The shell matrix proteins of the 

mollusc start to reveal their secrets after more than 20 proteins or protein 

families have been identified (C. Zhang & Zhang, 2006). The protein 

component of marine shells can be explored for the production of bioactive 

peptides or as a substrate for enzymatic processes in biotechnological 

fermentation, offering potential applications in medicine and industry. 
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Figure 1. Representation of components of marine shell 

d. Aragonite: Commonly found in the cuttlefish bones, providing structural 

integrity (Suryawanshi & Eswari, 2022). Aragonite is a crystalline form of 

calcium carbonate with applications in materials science. Additionally, the 

chitin derived from cuttlefish bones can be explored for various 

biotechnological applications, contributing to the development of novel 

materials and processes. 

4. Utilization and methodology 

One important source of valuable minerals, including chitin, calcium, protein, and 

carotenoids, is the use of marine industrial food-processing waste, including the shells 

of shrimp, crabs, and krill (Nguyen et al., 2020). These shells include varying 

amounts of chitin, usually between 15% and 40%, depending on species and culture 

circumstances (D. H. Lee et al., 2021). However, the problem of firmly bound 

proteins and calcium must be overcome in order to extract chitin effectively, requiring 

a series of pre-treatment steps. Proteins and calcium carbonate are frequently 

extracted from these shells using chemical and fermentation processes. However, 

using conventional chemical processes frequently results in waste, excessive 

expenses, and damage of the environment. Shells—mollusc shells in particular—have 

drawn attention in recent decades due to their distinctive morphological and 

biological characteristics. Interestingly, nacre—the aragonite layer found in mollusc 

shells—has the remarkable ability to withstand fractures and has demonstrated 
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potential for promoting bone growth. Water treatment, medicine, and pharmaceuticals 

are just a few of the industries that use chitin, a biopolymer that is often found in the 

shells of marine crustaceans. One viable option for the long-term use of marine shell 

debris is biotechnological fermentation processes. 

Lactic fermentation bioprocesses, for example, can efficiently condition the 

medium by utilizing certain bacterial strains to produce lactic acid and proteases, 

which facilitate the extraction of chitin (Suryawanshi et al., 2019). Additional 

fermentation techniques, including enzymatic hydrolysis or the use of fungi, have the 

potential to produce useful products from shell waste. Moreover, waste from the 

industrial processing of marine shells, which makes up around 50–60% of the total 

weight, offers potential for the production of minerals like hydroxyapatite (HAP), 

which has potential use in bone tissue engineering (Suresh & Chandrasekaran, 2020). 

To sum up, trash from marine shells is a rich source of important minerals and 

compounds. Through the implementation of inventive techniques for extraction and 

exploitation in conjunction with sustainable biotechnological processes, we can 

efficiently convert this waste stream into valuable resources that support economic 

viability and environmental sustainability. 

4.1. Pre-treatment 

Dense chitin fibres seen in the shells of crustaceans and molluscs are connected by 

protein covalent connections. Calcium carbonate, in particular, is the mineral salt that 

is deposited to further fortify the chitin-protein matrix. According to (Sini et al., 

2007), the complexity of the shell structure has risen due to the inclusion of proteins 

in the shell wastes. Over the course of the subsequent pre-treatment procedures, the 

proteins and calcium were carefully eliminated in order to extract pure chitin from 

such a complicated structure. The pre-treatment procedure included a combination of 

physical, chemical, and fermentation methods. Alkaline or enzymatic hydrolysis of 

the proteins within the shell was accomplished by the process of deproteinization. 

Using either inorganic or organic acids from fermentation processes, calcium 

carbonate deposits were eliminated throughout the demineralization process. 

Depending on the situation, pigment removal may be required as an extra step. 

This can be done with an appropriate organic solvent mixture (Younes and Rinaudo 

2015). Remarkably, the pre-treatment process's yield and pace have been greatly 

impacted by the size of the particles (Hou et al., 2016). As a result, before beginning 

the pre-treatment procedure, shell wastes must be reduced in size. Several 
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techniques, including demineralization (treatment with hydrochloric acid) and 

deproteinization (treatment with sodium hydroxide), have been used to remove these 

contaminants from chitin shell waste, and numerous studies have reported great 

results. 

4.2. Chemical extraction method 

The traditional chemical extraction process for chitin involves various steps, such as 

demineralization (DM), deproteination (DP), bleaching/discoloration and 

deacetylation to form CTS.  Concentrated acid and alkali solutions are used in these 

procedures, which are run at high temperatures for an extended period of 

incubation(Lagat et al., 2021). The stages involved in chemical extraction use more 

energy, take longer, and use more solvents. Strong acids and bases that remove chitin 

have a number of detrimental effects, including: (A) destroying the physico-chemical 

characteristics of chitin; (B) producing wastewater effluent that contains chemicals; 

and (C) raising the expense of the chitin purification process (Dhillon et al., 2012). 

For this reason, a safe and affordable extraction method for chitin is needed. 

Additionally, the use of microorganisms (MOs) for chitin extraction is becoming 

increasingly popular as green extraction methods based on the idea of "Green 

Chemistry" gain ground (Janković et al., 2020). High repeatability in less time, easier 

manipulation, less solvent usage, and less energy input are all benefits of the 

biological extraction of chitin. The biological extraction approach has the potential to 

replace chemical procedures, which have several drawbacks when used to a 

commercial scale. However, it is presently restricted to laboratory size experiments.  

Chitin extraction is a crucial step in obtaining chitin from marine wastes, 

affecting its purity, degree of acetylation (DA), molecular weight (MW), and 

polydispersity index. Chemical methods are currently used on a commercial scale, 

while bio-extraction has gained interest. Chemical extraction involves removing non-

edible materials from shellfish, such as shrimp, crab, and krill, which are considered 

a major environmental pollution due to uncontrolled dumping (Dhillon et al., 2012). 

However, shrimp waste is often used as a substrate for chitin and CTS production 

due to its chemical composition and availability in the seafood industries. Traditional 

chemical methods, such as demineralization treatment with HCl, HNO3, H2SO4, 

CH3COOH, and HCOOH, are used to extract chitin from crustacean shell waste 

(CSW) (Sandford, 2003). However, these methods have negative implications, such 

as harming the physico-chemical properties of chitin and causing detrimental effects. 
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Biological extraction methods, on the other hand, remove pigments like melanin and 

carotenoids from crushed shells using various methods. These methods can result in 

effluent wastewater containing chemicals and increase the cost of chitin purification 

processes. The quality of extracted chitin is affected by the extraction method and the 

nature of the chitin (Kjartansson et al., 2006). 

Chitin is the raw material used in commercial production of CTS and 

glucosamine, with an estimated annual production of 2000 and 4000 tons, 

respectively material (Sandford, 2003). Chitin can be deacetylated to create CTS, a 

more flexible and soluble polymer. The process involves hydrolysis of acetamide 

groups of chitin by severe alkaline hydrolysis treatment, which releases amine 

groups (NH2) and imparts a cationic characteristic to CTS (Janković et al., 2020). 

Deacetylation can be performed at room temperature or elevated temperature 

depending on the final product desired. The quality of the extracted chitin depends 

on the molecular weight, polydispersity, and deacetylation (DA) of the polymer 

(Jung et al., 2007). Harsh acid treatments during the DM stage may result in 

hydrolysis, inconsistent physical properties, and environmental hazards. High NaOH 

concentrations and high temperatures during DP steps can cause undesirable 

deacetylation and depolymerisation, limiting its use in various applications 

(Kjartansson et al., 2006; Yang et al., 2000). Environmental concerns arise from 

chemical extraction, which is energy-intensive and causes environmental pollution. 

Chemical treatments also create disposal problems for wastes, as neutralization and 

decontamination may be necessary due to strict government legislations (El-Saied & 

Ibrahim, 2020). Additionally, valuable protein components are damaged during 

chemical extraction, making them unsuitable for animal feed. Biological techniques, 

such as living microorganisms (MOs), have been proposed as an environmentally 

safe extraction method for chitin and CTS (Gagne & Simpson, 1993). MOs secrete 

proteolytic enzymes with various properties, such as wide substrate specificities and 

stability towards temperature, pH, and organic solvents (Zou et al., 2021). However, 

MOs-mediated extraction processes can be made economical by optimizing process 

parameters and recovering valuable by-products like proteins, free amino acids, 

carotenoids, and mineral salts, with higher economic and environmental impacts. 
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4.3. Biological extraction process 

Bio-based products, such as food, alcoholic beverages, and biochemicals, are 

increasingly being developed and used due to their eco-friendliness, safety, and 

flexibility compared to chemical synthesis methods (Kaur & Dhillon, 2015). 

Fermentation is considered one of the most eco-friendly, safe, and economically 

feasible alternatives. Solid-state fermentation (SSF) reproduces natural 

microbiological processes, such as composting and ensiling, and offers numerous 

advantages for producing bulk chemicals and enzymes. Bacterial strains like 

Lactobacillus sp. and Clostridium sp. are widely used for ensiling (Atalla et al., 

2020). Biological silage, which uses MOs to produce LA in situ, can be used for 

waste bioconversion, while shrimp waste ensilation can be carried out biologically or 

chemically. Ensilation of crustacean shells can be done in situ using by-products like 

whey, lignocellulosic biomass, and starch. Ensilation also provides advantages as a 

preservation method and allows recovery of value-added by-products, such as chitin, 

proteins, and pigments, with a broader market (Lagat et al., 2021).  

MOs-mediated dewatering and dewatering (DP) and dewatering (DM) of bio-

waste produce a liquor fraction rich in proteins, minerals, and carotenoids, including 

astaxanthin, and a chitin-rich solid fraction (Balitaan et al., 2020). This liquor 

fraction can be used as animal feed or as a protein-mineral supplement for human 

consumption. Dewatering of bio-waste mainly occurs by proteolytic enzymes 

produced by Lactobacillus, resulting in clean chitin fraction and liquor with high 

content of soluble peptides and free amino acids (Lin et al., 2021). Proteases and LA 

bacteria are used for DP and DM of crustacean shells, reducing the use of 

concentrated alkali and acid treatment (Hou et al., 2016). Biological DM has been 

used for chitin production from crustacean shells with enzyme-catalysed reactions or 

microbial processes involving species. DP and DM steps can be integrated, and co-

fermentation using different MOs known for LA and protease producing capability 

can be employed (Jung et al., 2007). Researchers have explored LA fermentation 

combined with chemical treatments as an alternative to chemical extraction for chitin 

recovery, reducing the need for alkali and acid. This process removes protein and 

calcium through enzymatic action on tissues and solubilization of calcium by organic 

acids, using lactose and protease-producing bacterial strains (Kjartansson et al., 

2006).  
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5. Applications of Marine shell wastes 

5.1.  Chitin:  

5.1.1.  Biomedical Materials: Chitosan, a derivative of chitin found in marine shells, has 

diverse biomedical applications (Baharlouei & Rahman, 2022). It can be used to 

create wound dressings, sutures, and scaffolds for tissue engineering due to its 

biocompatibility and antimicrobial properties. 

5.1.2. Biodegradable Packaging: Chitin-based materials obtained from marine shells 

can be used to produce biodegradable and compostable packaging products. These 

eco-friendly alternatives to conventional plastics help reduce plastic pollution and 

contribute to sustainable packaging solutions. 

5.1.3. Water Treatment Solutions: Chitin and chitosan derivatives can be used in water 

treatment applications for heavy metal removal, wastewater purification, and 

environmental remediation (Tsai et al., 2021). Their adsorption properties make 

them effective agents for removing pollutants from industrial effluents and 

contaminated water sources. 

 

Figure 2. Applications of chitin derivatives 

5.2. Calcium Carbonate  

5.2.1.  Construction Materials: Calcium carbonate is used as a building material in the 

form of limestone and marble. It is employed in the production of cement, 

concrete, mortar, and stucco. Its high calcium content makes it ideal for use as a 
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filler and extender in these materials. Calcium carbonate extracted from marine 

shells can be used as a filler in various construction materials such as concrete, 

asphalt, and plaster (Barros et al., 2009). It improves durability, reduces costs, and 

provides environmental benefits by utilizing a renewable resource. 

5.2.2. Calcium Supplements for Pharmaceuticals: Calcium carbonate is used as a dietary 

supplement to provide calcium, which is essential for bone health. It is also 

employed as an antacid to relieve heartburn, indigestion, and acid reflux. Calcium 

carbonate extracted from marine shells can be purified and used as a source of 

calcium in pharmaceutical formulations such as antacids and calcium 

supplements. This natural source of calcium offers a bioavailable and cost-

effective alternative to synthetic sources. 

 

Figure 3. Applications of derivatives 

5.3. Additional derivatives and its by-products 

5.3.1. Protein-Rich Animal Feed: Proteins recovered from marine shell waste can be 

processed into high-quality animal feed supplements. These proteins are rich in 

essential amino acids and can enhance the nutritional value of livestock and 

aquaculture feeds, reducing reliance on traditional protein sources like soybean 

meal. 

5.3.2. Carotenoid Extracts for Nutraceuticals: Carotenoids, natural pigments found in 

marine shells, have antioxidant properties and various health benefits (Jo et al., 

2010). Extracts derived from shell waste can be incorporated into nutraceuticals 
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and dietary supplements to promote eye health, skin health, and overall well-

being. 

5.3.3. Carotenoid Pigments in Cosmetic Formulations: Carotenoids extracted from 

marine shells can be incorporated into cosmetic formulations such as lipsticks, 

creams, and lotions for their natural colorant and antioxidant properties. These 

pigments provide vibrant hues and anti-aging benefits to cosmetic products. 

6. Future perspectives 

In light of the current research findings and practical applications, several future 

perspectives emerge in the realm of utilizing marine shell waste. Firstly, there is a 

pressing need for the advancement of extraction techniques to enhance the efficiency 

and yield of valuable components from these waste streams (Muthu et al., 2021). 

Research efforts could focus on exploring novel solvents, enzymatic processes, and 

biotechnological approaches to optimize extraction rates and purity (Aam et al., 

2010). 

Additionally, biopolymer engineering holds promise for tailoring the 

properties of chitin and chitosan for specific applications in biomedicine, packaging, 

and beyond. Circular economy initiatives are essential for integrating marine shell 

waste into existing industrial processes, fostering partnerships between seafood 

processors, waste management facilities, and product manufacturers to create closed-

loop systems (Xu et al., 2020). Moreover, the development of waste valorisation 

platforms and collaborative networks could facilitate knowledge exchange and 

technology transfer, accelerating the adoption of sustainable practices (Suresh Kumar 

et al., 2020). Environmental impact assessments are crucial for evaluating the 

sustainability of different utilization pathways, guiding decision-making and policy 

development. Furthermore, consumer awareness campaigns and policy support from 

governments can drive demand for products derived from marine shell waste, 

fostering a shift towards sustainable consumption choices (Muthu et al., 2021). By 

addressing these future perspectives, stakeholders can work towards unlocking the 

full potential of marine shell waste as a valuable resource for sustainable 

development. 

7. Conclusion 

Increased consumption of marine food had implications of their waste management a 

challenge as they have an impact on environment. Alternate studies are gaining 

interest amongst which the converting this a valuable resource is the best (Mohan et 
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al., 2021). The industrially valuable products like chitin, calcium carbonate and 

proteins production from these ditch are major. This review concludes that the 

biological method of extraction from the shells waste is an eco-friendly and 

economically feasible method (Younes & Rinaudo, 2015). However, further studies 

can be conducted to develop an even easier for the extraction.   
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