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Abstract 

Here we have proposed a new distribution by applying the 

technique of transformation, length biased to the parent 

distribution. The new distribution is termed Length Biased 

Modified Aradhana distribution (LBMAD) has been 

presented. Also detailed the important statistical properties 

like moments, survival function, hazard function, and moment 

generating function. Also, the approach of maximum 

likelihood estimation was used to figure out the parameters of 

the new distribution. Lastly, a set of real-time data has been 

shown and analyzed to show how useful a new distribution is. 

A randomly selected 180 patients from a hospital at Chennai, 

which shows the mean reduction (mg/dL) of low-density 

lipoproteins (LDL) from the Near Optimal range of LDL(100 

– 129) after taking the prescribed diet and physical exercise as 

prescribed by their consultant dietician for four weeks 

continuously 
 

Keywords: Order statistics, New quasi-Aradhana 

distribution, Maximum likelihood estimation, Length biased 

distribution, Survival analysis 
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1. INTRODUCTION 

There are many real life situations where known probability distributions failed to show a 

good fit for the data. For example, a common but an important biomedical data is based on 

LDL cholesterol. Direct LDL cholesterol testing measures the amount of cholesterol found 

inside low-density lipoproteins (LDL) in a sample of blood. Mostly this type of data set 

shows lack of symmetry, that is most of them are skewed. Dealing with such non- 

symmetrical data for analysis we can make use of the modified distributions. The concept of 

weighted distribution is one of the reputed and powerful tools in probability and statistics 

because it provides a comprehensive and informative approach for modeling, analyzing, and 

interpreting complicated statistical information. Fisher (1934) was the first person to use 

weighted distributions to demonstrate how ascertainment influences frequency estimation. 

Later, Rao (1965) indicated that recorded observations should not be regarded as a random 

sample from the standard distribution for various reasons. Reliability, ecology, biomedicine, 

family data analysis, meta-analysis, and many other fields of study have improved and 

expanded the use of the weighted distribution. The result of this has been the development 

of common statistical models. If the weight function only looks at the length of the units of 

interest, it is clear that the weighted distribution will be skewed toward longer units. The 

term length bias is a type of weighted distribution, so it can happen if the sample 

observations are not chosen correctly. The number of length-biased data points, on the other 

hand, is proportional to their length. This type of distribution is referred to as a length-biased 

distribution. It was Cox who first thought of a length-biased distribution in 1962. A length- 

biased distribution refers to sample data where the chance of getting an observation depends 

on how big that observation is.But Cox (1969) and Zelen (1974) also came up with the idea 

of length-biased sampling. It happens when there isn't a proper sampling frame, which leads 

to length-biased sampling. The idea of length bias can be used in many biomedical fields, 

including a history of families, analysis of reliability, geological sciences, evaluation of 

survival, disease, intermediate events, and population studies. A lot of researchers have 

looked into biased distributions and how they can be used to handle complicated data sets 

from a wide range of applied fields. In 2021, Ganaie and Rajagopalan created the length- 

biased power quasi-Lindley distribution and showed how it could be used. In 2016, 

Bodhisuwan et al. suggested a way to figure out the parameters of a Beta-Pareto distribution 

that is biased by length. Akanbi and Oyebanjo (2021) found the length-biased Gumbel 

distribution by employing it to look at wind speed data. Ahmad and Tripathi (2021) 

discussed power size-biased Maxwell distribution with engineering applications. Shanker 

and Shukla (2017) came up with the idea of the size-biased poisson Garima distribution and 

showed how it could be used. It was estimated by Salama et al. (2023) that the length-biased 

weighted exponentiated inverted exponential distribution would look like. It was Kousar and 

Memon (2017) who talked about their study of the length-biased weighted Nakagami 

distribution. Wani et al. created the size-skewed Lindley-quasi Xgamma distribution in 

2022. It was used to study survival times. 

A new quasi-Aradhana distribution that is a particular case of Aradhana distribution was 

proposed by Shanker et al. (2023). The suggested distribution has two parameters and is a 

lifetime distribution. Various statistical properties of it have been discussed, including the 

hazard function, survival function, mean residual life function, reverse hazard function, 

stochastic ordering, Lorenz and Bonferroni curves, and deviation from the mean and 

median. Further, its moments and moments-based measures have also been obtained. The 

maximum likelihood method was used to find the parameters of the suggested distribution. 
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2. MATERIAL AND METHODS 

 

2.1 Length Biased Modified Aradhana (LBMA) Distribution 

The probability density function (PDF) of the modified Aradhana distribution, as projected 

by Shanker et al., in their 2023 publication, is “expressed as: 
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the distribution's cumulative distribution function (CDF) is provided as: 
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Let X be the unknown variable followed by a non-negative condition with PDF= f (x) . Let 

the non-negative weight function be w(x).The PDF of a weighted random variable 

be described as: 
w(x) f (x) 

Xw can 

fw (x) = , 
E(w(x)) 

x  0. 

Where the non - negative weight function be w(x) and E(w(x)) =  w(x) f (x)dx  . 

For various choices of weight function w(x) obviously if w(x) = xc, the proposed 

distribution is termed a weighted distribution. In the currentresearch, the length-biased 

version of the” modified Aradhana distribution, LBMAD, has to be determined. So, 

consequently, the weight function considered at w(x) = x, the subsequent distribution is 

termed a length-biased distribution and its PDF is “given by 
x f ( x) 
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We will now get the necessary PDF of LBMAD by applying equations (1) and (4) to 

equation (3). 
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and the CDF of LBMADis derived as: 
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Following eq”. (6)'s simplification, the LBMAD's cumulative distribution function will be 

as: 
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Figure 1. pdf of LBMAD Figure 2. cdf of LBMAD 

The nature of pdf and cdf of LBMAD is clear From the figure 1 and Figure 2. 

3. RESULTS AND DISCUSSION 

The hazard rate function, Mills ratio, survival function, along with the reverse hazard rate 

function of the LBMAD will all be obtained in this section. 

3.1 Survival function 

The LBMAD's survival/reliability function will be ascertained to be 
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3.2 Hazard function 

The “hazard function/the failure rate/hazard rate, is provided by 

 
h( x) = 

fl ( x) 

1 − Fl ( x) 

x 
4 

( 
2  

+ 2θx +  
2 

x 
2 

) e 
−θx

 

= 

(θ 
4 

+ 4 
2  

+ 6 
2 

) − ( 
4
 (2, θx) + 2 

2
 (3, θx) +  

2
 (4, θx)) 

l 



Ravikumar K /Afr.J.Bio.Sc.4(4)(2022) Page 400 to 12 
 

 

 
 

 

 
 

Figure 3. Reliability function of LBMAD Figure 4. Hazard function of LBMAD 

The nature of Reliability function and Hazard function of LBMAD is clear From the figure 

1 and Figure 2. 

3.3 Test for Length Biasedness of LBMAD 

Consider “the random sample X1, X2,….,Xn of size n drawn from the LBMAD. To study its 

flexibility the hypothesis is to be analyzed and investigated. 

H0 : f (x) = f (x ; , ) Vs H1 : f (x) = fl (x ; , ) 

In order to explore and find out, if the random sample of size n comes from the LBMAD, 

the given rule of test statistic is to be applied. 
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If the variable 2logΔ follows a “chi-square distribution with one degree of freedom, then the 

sample size, n, is large and the p-value is obtained by applying the chi-square distribution. 

Therefore, it is evident that the null hypothesis should not be maintained if the probability 

value is” provided. 
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3.4 Structural Properties: Moments and its related measures 

This section will cover the different statistical characteristics of LBMAD, including 

moments, moment “generating function, harmonic mean, and characteristic function. 

3.4.1 Moments 

Consider the random variable X following LBMAD with parameters θ and α, then the rth 
order moment E(X r) of introduced distribution will be determined as 
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After simplification, 
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Now by replacing r = 1, 2, 3 and 4 in eq (8), we will determine the required first 4 moments 

of LBMAD as 
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3.4.2. Moment generating function and characteristic function 

Consider “the random variable X following LBMAD with parameters θ and α, then the 

moment generating function of proposed distribution willbe determined as 
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Likewise, the characteristic function” of LBMAD, 
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3.5 Parameter Estimation and Fisher’s Information Matrix 

This section will explain the process of estimating the parameters of LBMAD and 

constructing its Fisher's information matrix using the estimation of the maximum likelihood 

technique. Consider the random sample X1, X2,…., Xn of size n from the LBMAD, then the 

likelihood function is” written as 
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Since  being unknown,we estimate I 
−1

() by I 
−1

(ˆ) and this can be used to obtain asymptotic 

confidence intervalsfor  and . 
 

3.6 Simulation Analysis 

The simulated data from the PDF of LBMAD is analyzed. The descriptive Statistics of the 

same is shown at Table 1. 

Table 1. Descriptive Statistics of the simulated data with MLE of θ = 0.0.001 and α=0.2099 

Mean 8.56111 Range 19 

Standard Error 0.393762 Minimum 0.9 

Median 6.9 Maximum 19.9 

Mode 2.1 Sum 1513.1 

Standard Deviation 5.282872 Count 5000 

Sample Variance 27.90873 Largest(1) 19.9 

Kurtosis -0.96724 Smallest(1) 0.9 

Skewness 0.440727 Confidence Level(95.0%) 0.777013 

Table 1. Shows a clear positive skewness of LBMAD. Hence some new distributions are 

applied to check the goodness of fit. 
 

4. APPLICATION 

This section examines the goodness of fit of a real-world data set in LBMAD and compares 

it to New Quasi-Aradhana(NQA), quasi-Garima, and quasi-Akash distributions. 

The real lifetime data, from 180 randomly selected patients from a hospital at Chennai, which shows 

the mean reduction (mg/dL) of low-density lipoproteins (LDL) after taking the particular diet and 

physical exercise as prescribed by their consultant dietician for four weeks continuously.(Table 2). 
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Table 2: The mean reduction (mg/dL) of low-density lipoproteins (LDL) 
 

1.5 1.3 3.3 4.7 6.2 18.2 8.6 11.2 19 2.6 4.2 5.3 

1.8 1.3 3.3 4.7 6.2 11 8.6 11.2 19.9 2.7 4.3 5.5 

1.8 1.5 3.5 4.7 6.2 7.1 8.8 11.2 19.9 2.7 4.3 5.5 

1.9 0.9 3.1 4.4 6.1 11.5 8.6 11 18.4 1.9 4.1 4.9 

13 0.9 3.1 4.4 6.1 11.9 8.6 11 18.9 2.1 4.2 5 

13 0.9 3.2 4.6 6.2 11.9 8.6 11.1 18.9 2.1 4.2 5 

1.5 0.9 3.2 4.6 6.2 12.4 8.6 11.1 19 2.6 4.2 5.3 

12.5 1.5 3.5 4.7 6.2 12.4 8.8 11.2 13.1 2.9 4.3 5.7 

12.5 1.8 3.6 4.8 6.3 13.7 8.8 11.5 18.1 2.9 4.3 5.7 

12.9 1.8 3.6 4.8 6.3 7.4 8.8 11.5 13.1 13.9 4.4 5.7 

12.9 1.9 4 4.9 6.7 7.4 8.9 11.9 13.3 14.1 4.4 5.7 

1.9 1.9 4 4.9 6.7 7.4 8.9 11.9 13.3 14.1 15.4 17.3 

13 1.9 4.1 4.9 6.7 7.4 8.9 12.4 13.6 15.4 17.3 18.1 

13 15.4 17.3 18.2 11 7.6 13.7 12.4 13.6 15.4 17.3 18.2 

1.5 13 15.4 17.3 17.3 13.9 13.9 13.7 12.4 13.6 15.4 11 

Here the sample mean = 8.4061, mode = 1.9 and median = 6.9, hence the data is non- 

symmetric, positively skewed. 
 

To calculate the unknown parameters and determine the values of the model comparison 

criterion, R software is utilized. We used criteria values such as AIC (Akaike Information 

Criterion), BIC (Bayesian Information Criterion), AICC (Akaike Information Criterion 

Corrected), and -2logL to compare the LBMAD over new quasi-Aradhana, Garima, and 

Akash distributions. The distribution is better if its corresponding criterion values such as 

AIC, BIC, AICC and -2logL are lesser over compared distributions. The given formulas are 

applied for determining the criterion values. 

AIC = 2k − 2log L, BIC = k log n − 2log L and AICC = AIC + 
2k(k +1)

 

n − k −1 
 

Where–2logL is maximized value of log-likelihood function under considered model, n is 

the sample size and k is the number of parameters in the statistical model. 

Table 3: MLE, S.E, Criterions (AIC, BIC, AICC, -2logL) 

Distribution MLE S.E -2logL AIC BIC AICC 

 

LBMAD 

ˆ = 0.0010 

ˆ = 0.2114 

ˆ = 0.0064 

ˆ = 0.0533 

 

634.61 

 

638.61 

 

643.82 

 

638.73 

 

NQA 

ˆ = 0.1443 

ˆ = 0.2596 

ˆ = 0.0950 

ˆ = 0.0247 

 

637.50 

 

641.50 

 

646.71 

 

641.63 

Garima ˆ = 0.1515 ˆ = 0.0130 649.63 651.63 654.24 651.67 

Akash ˆ = 0.2952 ˆ = 0.0168 641.92 643.92 646.53 643.97 
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From table 3 given above, it is quite clear from the results that the LBMAD has the lesser 

AIC, BIC, AICC and -2logL values as compared to the NQA, Garima and Akash 

distributions, which implies that the LBMAD leads to a better fit over NQA, Garima and 

Akash distributions. Hence, it can be revealed and explored thoroughly that the LBMAD 

provides a quite satisfactory results over new quasi-Aradhana, Garima and Akash 

distributions. 

5. CONCLUSION 

In the present article, we have developed a novel class of a modified Aradhana distribution 

termed as LBMAD. By employing the length biased technique to its baseline distribution, 

we have introduced a new distribution which has different characteristics and properties. 

After a thorough analysis, the proposed new distribution was presented with various 

structural properties. These included the shape of the pdf and cdf, moments, mean and 

variance, hazard rate function, survival function, moment generating function, additionally, 

the maximum likelihood estimation technique has been used to estimate the parameters of 

the new distribution. Finally, the practical applicability and superiority of the LBMAD has 

been examined with real life data set by comparing its fit over other well-known 

distributions like NQA, Garima and Akash distributions. The distribution of the mean 

reduction (mg/dL) of low-density lipoproteins (LDL) is studied and its characterisation is 

derived with respect to some probability distributions. Hence, it has been realized from the 

results that the LBMAD performs quite well over NQA, Garima and Akash distributions. 
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