Nikhil Kumar / Afr.J.Bio.Sc. 6(5)(2024). 10758-10787

https://doi.org/10.48047/AFJBS.6.5.2024.10758-10787

African Journal of Biological Sciences

A Mechanistic Review on Phytochemical, Traditional and Pharmacological action of *Michelia champaca*

Nikhil Kumar¹, Jyoti Nanda Sharma*

School of Pharmaceutical Sciences, Chhatrapati Shahuji Maharaj University, Kanpur 208040, Uttar Pradesh,

INDIA,

nk30474@gmail.com¹

School of Pharmaceutical Sciences, Chhatrapati Shahuji Maharaj University, Kanpur 208040, Uttar Pradesh,

INDIA,

Jyotinanda954@gmail.com*

Correspondence:

Dr. Jyoti Nanda Sharma

School of Pharmaceutical Sciences (Formerly University Institute of Pharmacy),

Chhatrapati Shahu Ji Maharaj University (Formerly Kanpur University)

Kanpur 208040, Uttar Pradesh, India

E-mail address: jyotinanda954@gmail.com

ABSTRACT-

Michelia champaca Linn acknowledged by most as Champa is a mediumsized everblooming tree in the Magnoliaceae family. It is widely dispersed in China, South India, West Bengal, Myanmar, and the eastern Sub-Himalayan region. This plant has both traditional ethnomedical uses so it is used in various ailments like ulcers, nausea, stimulant, astringent, purgative etc.

Preliminary phytochemical screenings have detected the existence of saponins, flavonoids, alkaloids, glycosides, fixed oils, and carbohydrates. Additional active components derived from various portions of this plant include dihydro parthenolide, liriodenine, gallic acid, quercetin, β -sitosterol, parthenolide, starch. Phytochemistry of plant revealed many active chemical constituents like Methyl Linoleate, Cis-Linalool Oxide, Phenyl Acetonitrile, 2-Phenyl Ethyl Alcohol, and Methyl Anthranilate Indole.

For the purpose of analyzing bioactive chemicals, the plant has been exposed to a variety of chromatographic techniques, including Gas chromatography (GC), Gas chromatography with Mass spectroscopy (GCMS), High-(HPTLC), performance thin-layer chromatography Thin-layer chromatography (TLC), High-performance liquid chromatography (HPLC). Procognitive activity, Anti-microbial, Anti-oxidant, Diuretic, Anti-ulcer, Analgesic, Anti-inflammatory, Burn wound healing, Anti-helmintholytic, Anti-diabetic, and antifertility properties are among the pharmacological activities for *M.champaca* that have been described. The goal of this review is to present a comprehensive and complete understanding of the pharmacological, phytochemical, and pharmacognostical activities associated with *M. champaca* in a single piece.

Keywords: *Michelia champaca Linn.*, Pharmacological activity, HPLC, HPTLC, Flavonoids, Phenol

Article History Volume 6, Issue 5, 2024 Received: 22 May 2024 Accepted: 03 Jun 2024 doi: 10.48047/AFJBS.6.5.2024, 10758-10787

Introduction

Michelia champaca a tree with high therapeutic value belonging to the family *Magnoliaceae* known by many names, including Champa in Hindi, Atigandhaka in Sanskrit, Sambagam in Tamil, Champaka in Bengali.this plant is grown in Indian gardens and close to temples because of its lovely foliage and fragrant blossoms. (Kapoor S, 2004)

Vernacular Names-

M. champaca is also referred to by a number of regional names, as listed below:

Assam	- Champa, Champaka,
English	- Golden, Yellow Champa,
Gujrati	- Pilochampo, Champ, Sonchampo, Konkani, Champa, Champaca, Champac,
Sanskrit	- Anjana, Atigandhaka, Hempushpa, Kanchana
Marathi	- kudchampa, Sonchampa
Punjabi	- Champa, Chamoti
Uriya	- Champa, Chamoka
Tamil	- Amariyam, Sambagam

Geographical Distribution

Native to India, *M.champaca* grows in humid tropical evergreen woods between 250 and 1500 metres above sea level. It can be found in Java, Sumatra, Malaysia, Indo-China, and southwest China. Because of the widespread human dispersal caused by the use of the trees, it is challenging to ascertain the native distribution of this species outside of India. These areas include Southeast Asia and Indonesia. About 40 species make up the genus Michelia, which is found in southern Japan, Taiwan, Malaysia, and Indonesia in addition to India. In Malaysia, there are three types of chempaka: *Michelia alba* (white), *Michelia figo* (dwarf), and *Michelia champaca* (orange). (Armiyanti, 2010,M.K. HOSSAIN and Indian Diversity Portal)[.]

Botanical Description

The scientific name for the Michelia tree is *M. champaca*, and it can grow as high as thirty metres. The young branches are covered in grey hairs. The greatest length and width of the ovate-shaped leaves are 30.5 cm and 10.2 cm, respectively, and they taper to a fine point at the tip. Stipules are little bracts that are present on the leaf stalks of alternating leaves. With a diameter of 5.1 cm, the flowers are relatively enormous and come in a variety of colours, from pale yellow to orange. When a Michelia tree blooms, they may also be smelled far away due to its potent scent. The blooms feature fifteen tepals that curve upward towards the tips

and several stamens that generate pollen. (NTBG, 2005, M.K. HOSSAIN and Indian Diversity Portal)

M. champaca grows at 2,100 metres above sea level, it can be found sporadically in mountain rain forest to primary lowland. $35-400^{\circ}$ C is the absolute maximum, while $3-100^{\circ}$ C is the absolute minimum (Orwa C, 2009). This plant's primary growing season is the monsoon, which lasts from June to September. This plant contains a lot of volatile oil constituents, the concentrations of which change with the seasons. (Lago JHJ, 2009, M.K. HOSSAIN and Indian Diversity Portal)

Taxonomical Classification

Kingdom	Plantae
Subkingdom	Tracheobionta
Division	Magnoliophyta
Class	Magnoliopsida
Subclass	Magnoliidae
Order	Magnoliales
Family	Magnoliaceae
Genus	Michelia
Species	champaca

(c)

Fig.1 Various part of *Michelia champaca* plant (a) Fruit (b) Flower (c) Steam & Flower

Identity, Purity & Strength

The qualities listed below aid in identifying this plant, both in terms of strength and purity.

Table 1: Established Standard Parameters of M. Champaca Lin. (The Ministry, 2008)

Standardized Parameters	Value(Value(%w/w)		
	Not more than	Not less than		
Water-soluble extractive value	-	12%		
Foreign matter	2%	-		
Alcohol-soluble extractive	_	9%		
Total Ash	11%	-		
Acid-insoluble ash	1.5%	_		

Traditional uses-

M. champaca had been used since ancient times so it found a wide range of the traditional uses in variety of health related problems.

Plant part	Uses	Reference
Dried root & Bark	Abscesses, Purgative	(Kirtikar, 1991)
Flower & flower buds	Ulcers, skin disease wounds	(Nandkarni, 1954)
Flower buds	Herbal preparation for	(Rajagopalan, 2010)
	diabetes	
Flower oil	Cephalagia, opthalmia &	(Sumeet Gupta, 2011)
	gout, Rheumatism	
Flowers	Stimulant, antispasmodic,	(Kirtikar, 1991,Sumeet
	tonic, stomachic, dyspepsia,	Gupta, 2011 and (Gupta S.,
	Nausea & fever, Antidote to	2011)
	snake & Scorpio venoms,	
	Foetid discharges from	
	nostrils, Vertigo.	
Leaves	Colic, fever leprosy, post	(Sumeet Gupta, 2011 and
	partam protection	LM, 1980)
Fruits	Ulcers, Skin disease wounds	(Nandkarni, 1954)
Root Bark	Purgative, inflammation,	(Khan. M. R., 2002)
	constipation &	
	dysmenorrhea.	
Stem bark	Stimulant, gonorrhea,	(Varier, 2003, Nandkarni,
	antidote for scorpion and	1954 and Sobhagini N,
	snake venoms, cough,	2004)
	astringent and febrifuge, eye	
	disorders, inflammation	

Table 2: Traditional Uses of M. champaca

Phytochemistry-

Researchers have isolated numerous active principles and secondary metabolite from various parts of *M. champaca* and they are tabulated below.

Plant Part	Chemical constituents	References		
Flower	Alkaloids, A-Ionon, Saponins,	(Raja S, 2014 and Rout,		
	Methyl Benzoate, Tannins, Sterols,	2006)		
	Flavonoids, Dihydro-B-Ionone, B-			
	Ionone Dihydro-B-Ionol,			
	Triterpenoids, Linalool, Benzyl			
	Acetate, Methyl Linoleate, Cis-			
	Linalool Oxide, Phenyl			
	Acetonitrile, 2-Phenyl Ethyl			
	Alcohol, Methyl Anthranilate			
	Indole,			
Leaves, Stem,	Triterpenoids, B-Caryophyllene,	(Chandrashekhar KS, 2010,		
Root	A-Humulene, Steroids, Fatty Acid,	Ahmad H S. V., 2011,		
	Alkaloids, Flavonoids, Tannins	Monteiro MCM, 2007,WC,		
	And Saponins, Liriodenine,	1994, Kazuoito, 1982, PK,		
	Parthenolide, Sesquiterpene	1997, Cheng-Tsung Huang,		
	Lactones, Guaianolides, Benzyl	2014 and João Henrique G.		
	Acetate, Linalool,	Lago, 2009)		
	Isoeugenol, Sesquiterpenes B-			
	Elemene, B-Selinene, A-Cadinol.			
Stem Bark &	Quercetin	(Ahmad H M. A., 2011)		
Leaves				
Stem bark	Magnograndiolide, Costunolide,	(RK, 2004, SC, 2005,		
	Dihydroparthenolide, N-	Jacobsson U, 1995, Balugri		
	Docosanoic Acid B-Sitosterol,	VC, 1997, Banerjee SK,		
	Ushinsunine, Michampanolide, 8 -	1964, Makhija IK, 2010 ar		
	Acetoxyparthenolide, Stigmasterol,	Ahmad H M. A., 2011)		
	(Polyphenolic) Gallic Acid,			
	Magnoflorine, And Micheliolide			
Bark	Volatile, Essential, Fixed Oil,	(Kirtikar, 1991)		
	Resin, Mucilage, Starch, Sugar,			
	Tannin			
Branches	Anonaine, Asimadoline,Romerine,	(Lo WL, 2004, Chen CY,		
	N-Acetylanonaine, Scopoletin ,	2008, Yang TH, 1972, CM,		
	Vanillin , Nuciferine,	1970, Liu CY, 2008,		
	Anolobinelignan –Syringaresinol	Céspedes CL, 2006, , Lo		
	Amide- N Trans-Feruloyltyramine,	WL, 2004, Kapoor S, 2004		
	Vanillic Acid	and Yeh YT. 2011)		

Table 3: Various chemical constituents in different parts of M. champaca

Preliminary Phytochemical Screening-

Michelia champaca is a very precious plant and it contains a markedly significant amount of phytochemical constituents, Researchers had employed a wide range of preliminary tests to confirm the presence of specific chemical constituents and they are tabulated below.

S. no.	Phytochemical Tests	Extract	References
	Reducing Sugar, Flavonoids,	n-hexane, chloroform,	(N. Manhas, 2017)
1	Steroids, Tannins,	methanol, ethanol, and	
1.	Phlobatannis, Saponins	aqueous extract of	
		leaves and stem	
	Alakloids, tannis,	Petroleum ether extract	(Shejale Savita R.,
2	glycosides, carbohydrate,	of dried flower and	2019)
4.	amino acids, flavonoids and	leaves	
	sterols		
	Alkaloids, Amino acid,	Acetone, Aqueous,	(K. N. Geetha,
	Flavonoids, Sterols,	Benzene, Ethanol,	2011)
3.	Saponis, Tannins,	Chloroform, Pet. Ether	
	Glycosides, Carbohydrate,	extract of leaves and	
		flower	
	Alkaloid, Tannins,	Pet. Ether, Chloroform,	(Raja S, 2014)
4.	Saponins, Flavonoids,	Ethyl acetate, Methanol	
	Terpenoids, Glycosides,		
	Carbohydrate, Steroids		(T)
	Carbohydrate, Alkaloids,	Methanolic extract of	(T. ANANTHI,
5.	Terpenoids, Flavonoids,	Flower	2013)
	Tannins, Steroids, Proteins,		
	Amino acid, Phenols		
	Alkaloids, Flavonoids,	Methanolic extract of	$(\mathbf{R}.$ Shankar,
6.	Dhanala Stansida Tanning	leaves	2023)
	And Sepaning		
	Termenoide Elevenoide	Ethanolia Mathanolia	(Dr. S. Viiovopond
	Saponing Tanning	Chloroform Aqueous	(DI. S. VIJayananu, 2016)
	Alkaloids Reducing Sugar	extract of Seed and	2010)
7.	Anthraquinones Cardiac	flower	
	glycoside Steroids Phenols	nower	
	oils and resins		
	Alkaloids, Flavonoids.	Hydroalcoholic extract	(Seema Taprial
8.	Steroids And Tannins	of leaves	2013)
	Alkaloids, Saponins, Tanins.	Methanolic, ethanolic&	(Iver Ganesh.
6	Glycoside, Carbohydrate,	aqueous extract of	2016)
у.	Flavonoids, Sterols, Amino	dried flower	·
	acids		

	Steroids, Carbohydrates,	Chlorofrom, Acetone,	(E. Edwin Jarald,
10.	Alkaloids. Flavonoids.	Ethanolic. aqueous	2008)
	Tannins, Saponins.	extract of Plant material	/
	Carbohydrates, Alkaloids,	Methanolic extract of	(T. Lavanya,
	Terpenoids, Flavonoids,	dried flower	2017)
11.	Tannins, Steroids, Proteins,		,
	Amino acid, Phenols		
	Saponins, Alkaloids,	Ethanolic extract of	(Saqib, 2018)
10	Terpens, Sterols,	Leaves	
12.	Anthraquinone, Tannins,		
	Phenols		
	Alkaloids, Flavonoids,	Pet. Ether,	(Seema Devi,
13.	Tannins, Steroids	choloroform& Ethanolic	2024)
		extract of Aerial	
	alkaloids, flavonoids,	Aqueous and Ethanolic	(A. R.
14.	glycosides, Carbohydrate,	extract of leaves &	Mullaicharam,
	Protein, Sterols,	Flower	2011)
	Tannins, Flavonoids,	Methanolic extract of	(T.Ananthi, 2014)
	Steroids, Triterpenoids,	dried flower	
	Anthroquinones,		
15.	Carbohydrate, Saponins,		
	Cardiac Glycosides,		
	Terpenoids, Alkaloids,		
	Phlobatannins		
	Steroids, Alkaloids,	Pet.Ether,Chloroform,A	(Gupta S., 2011)
16.	Saponins	ceton,Ethanolic Extract	
		of leaves	
	Sterols, Flavonoids,	ethyl acetate,	(Dutta M., 2023)
17.	Saponins, Terpenoids,	chloroform:methanol	
	Glycosides And Tannins	and methanolic extract	
		of Seeds	(7. 11. 2010)
	Alkaloids, Coumarins,	Ethanolic extract of	(Saq1b, 2018)
10	Flavonoids, Tannins,	Leaves	
18.	Phenols, Sterols, Saponins,		
	Terpenes And		
	Anthraquinone		(IZ
	Aikaloids, carbohydrate,	ret. Ether, Ethanol,	(Kartnikeyan V, 2016)
19.	Giycosides, Phytosterol,	Chioroform, Ethyl	2010)
	Saponins, Lannins, Protein &	acetate, and Aqueous	
	A.A, Gum & Mucilage etc.	extract of Leaves	

Chromatographic Techniques-

For the quantitative and qualitative estimation of various compounds various Chromatographic Techniques had been employed by the Researchers and they are tabulated below.

S.	Chromato	Extract	Solvent system	Phytochemical	References
No	graphic			constituents	
•	Technique				
	s				
1.	GCMS	Volatile	Carrier gas-	phenyl ethyl	(Rajnibhas
		compounds	Helium	alcohol,	Samakradh
		of dried		epoxylinalool,	amrongthai
		flower		varamol, methyl	, 2009)
				anthranilate and	
				β–elemene	
2.	GC-MS	Oils from	Carrier gas-	n-alkanes	(João
		leaves	Helium		Henrique
					G. Lago,
					2009)
3.	GC-MS	Methanolic	Carrier gas-	linoleic acid	(T.
		extract of	Helium	ethyl ester	ANANTHI
		flower		9,12octadecadien	, 2013)
				oic acid	
4.	GC-MS	Ethanolic	Carrier gas-	n-hexadecanoic	(Waisul
		extract of	Helium	acid etc.	Qarani,
		dried			2023)
		leaves			
5.	HPLC	Methanolic	Solvent A-	Gallic acid,	(T.
		extract of	Methanol	Caffeic acid,	Ananthi,
		flower	Solvent B-	Rutin, Quercitin,	2015)
			(water: acetic	Ferulic acid	
			acid;1:1 v/v)		
6.	HPLC	Endophytic	Methanol /	taxol	(A.
		Chaetomiu	acetonitrile / water		Immaculate
		m sp.	(25:35:40, v/v/v)		Nancy
					Rebecca,
					2012)
7.	HPTLC	Methanolic	Methanol :	Saponins,	(Malathi S.,
		& aqueous	Chloroform: acetic	Terpenoids,	2015)
		extract of	acid :formic acid:	Tannins,	
		Dried	(15:80: 2.5:2.5)	Steroidal	
		flower		Terpens, Phenol,	
				Flavonoids,	
				Phenols &	

 Table 5: Various Chromatographic Techniques of M. champaca

				Anthraquinons	
8.	HPTLC	n-hexane	Toluene: Ethyl	Steroidal,	(Hafsa
		extract of	acetate : Acetic	Terpenoids, Fats,	Ahmad V.
		dried	acid : Methanol	Flavonids	S., 2011)
		leaves	(2.5:7:0.25:0.25)		
9.	HPTLC	Methanolic	Benzene :	β- Sitosterol	(Hafsa
		extract of	Methanol (9:1)		Ahmad S.
		dried			S., 2012)
		leaves &			
		stem bark			
10.	TLC	Methanolic	Toluene :	Phenols,	(Malathi S.,
		& aqueous	Chloroform :	Flavonoids,	2015)
		extract of	Methanol	Saponins,	
		Dried		Terpenoids	
		flower			
11.	TLC	Methanolic	Solvent A-	β- Sitosterol	(Hafsa
		extract of	Toluene: Ethyl		Ahmad S.
		dried	acetate(8:2)		S., 2012)
		leaves &	Solvent B –		
		stem bark	Benzene :		
			Methanol (9:1)		
			Solvent C –		
			Toluene :		
			Methanol(9:1)		
12.	TLC	Pet. Ether,	Solvent A-	Alkaloids,	(Raja S,
		Chloroform	Dioxane :	Steroids,	2014)
		,	ammonia 25%	Flavonoids	
		Ethylacetat	(9:1)		
		e,	Solvent B-		
		methanolic	Ethyl acetate :		
		extract of	Methanol (60:20)		
		plant	Solvent C-		
			Benzene : Ethyl		
			acetate(95:5)		
			Solvent D-		
			Chloroform		
			Solvent E-		
			roluene : dioxin :		
			acetic $acid(00.25.4)$		
			$\frac{\operatorname{aciu}(90:23:4)}{\operatorname{Solvent} E}$		
			SUIVEIII F-		
			formic acetate :		
			Clasial A actio acid		
1			Glacial Acetic acid		

			: water		
			(100:11:11:26)		
13.	TLC	Endophytic	Solvent A-	Taxol	(A.
		Chaetomiu	methanol :		Immaculate
		m sp.	Chloroform - 1:7,		Nancy
			v/v		Rebecca,
			Solvent B –		2012)
			acetonitrile		
			:Chloroform - 3:7,		
			v/v		
			Solvent C –		
			Ethylacetate :		
			propanol - 95:5,		
			v/v		
			Solvent D –		
			Methylene chloride		
			: tetrahydrofuran-		
			6:2, v/v		
			Solvent E-		
			Methylenechlorid :		
			methanol :		
			dimethyl		
			formamicle-90:9		
			: 1, v/v/v.		
14.	TLC	Chloroform	Solvent A-	Quercetin	(Shejale
		Extract,	n-Hexane:		Savita R.,
		Petroleum	Methanol- (9:1)		2019)
		ether	Solvent B-		
		extract	Chloroform:		
			Methanol-(9:1)		
			Solvent C-		
			Ethanol:n-Hexane-		
			(2:8)		
15.	GC	Aqueous	Carrier gas-	Sesquiterpenes,	(Prasant K.
		extract of	Helium (50:1)	essential oils	Rout,
		fresh			2006)
		flower			
16.	GC	Methanolic	Carrier gas-	Tributylacetylcitr	(I Gusti
		extract of	Helium	ate	Agung
		Bark			Gede
					Bawa,
			~ .		2024)
17.	GC	Oils from	Carrier gas-	Monoterpene,	(Joao
		leaves	Helium	hydrocarbons,	Henrique

				oxygenated	G. Lago,
				sesquiterpenes,	2009)
				aliphatic alcohols	
18.	GC	Volatile	Carrier gas-	phenyl ethyl	(Rajnibhas
		compounds	Helium	alcohol,	Samakradh
		of dried		epoxylinalool,	amrongthai
		flower		varamol, methyl	, 2009)
				anthranilate and	
				β–elemene	
19.	CC	Methanolic	Mobile Phase -	HE1, HE2, HE3,	(I Gusti
		extract of	Hexane : acetone	HE4, HE5	Agung
		Bark	(3:1)		Gede
			Stationary phase -		Bawa,
			Silica gel 60		2024)

Ethanomedicinal uses:

The flowers of this plant are used orally in the Ayurvedic medical system to treat dyspepsia, stomachaches, and as a carminative (Chanda R, 2007). Joint swelling is treated with *M. champaca* flower oil in the Siddha medical system (Wilson E, 2007).Plant seeds are consumed to increase appetite and treat liver conditions (Shrivastava RC, 2010). Honey-infused leaf infusion is used to cure colic, and fruit and seed paste is used to treat foot cracks. (Lalfakzuala R, 2007).

Pharmacological Activity-

As the *M. champaca* contains high amount of active chemical constituents it possess various reported Pharmacological activities

Diuretic Activity:

In order to assess diuretic action, the study used the conventional Metabolic Cage method, which involves giving the extracts to adult Swiss albino Wister rats with dosage of 250mg/kg and 500 mg/kg and monitoring rat's urine output over a predetermined amount of time. Comparing the extracts from the stem bark and leaves to a control group, the findings showed that both had notable diuretic effects. This may have consequences for the creation of natural diuretic medicines as it implies that *M. champaca Linn.* has promising diuretic characteristics. To clarify the underlying mechanisms and evaluate the safety and effectiveness of these extracts for use in human medicine, more research is necessary. (Ahmad H M. A., 2011)

Anti-microbial activity:

The study employs a method to synthesize (Silver Nitrate nano Particles) AgNPs using the fruit extract as a reducing agent and characterizes the nano-particles using various analytical

Nikhil Kumar / Afr.J.Bio.Sc. 6(5) (2024).10758-10787

techniques. The results demonstrate that the synthesized AgNPs exhibit significant antibacterial properties at various concentration (200, 400, 800 and 1000 μ g/ml). This suggests that *Michelia champaca L*. fruit extract can be utilized as a green and sustainable approach for the synthesis of AgNPs with potential applications in medicine and materials science. (Azharuddin Daphedar, 2020)

Anti-diabetic Activity:

In this research the investigator utilized alloxan to induce diabetes in rats, followed by treatment with the extract. Through morphological analysis and biochemical assays, the research revealed that the *M. champaca* leaves extract effectively mitigated hyperglycemia and induced positive morphological changes in the pancreatic beta cells. This suggests a potential anti-hyperglycemic effect of the extract Pet.Ether, Ethanol, Chloroform at a dose of 200mg/kg mediated through its impact on pancreatic beta cells. (Gupta S, 2011)

Wound healing:

In this study the researcher employed *M. champaca* extract in burn wound model as well as Dexamethasone suppressed burn wound model both model in this investigation were treated with *M. champaca* extract. When compared to the control group, oral and topical treatment of *M. champaca* dramatically accelerated wound contraction and shortened the duration of epithelialization in the burn wound model. In the dexamethasone-suppressed burn wound model, topical use of the extract markedly improve the rate of wound contraction. (Tara Shanbhag, 2011)

Anti-inflammatory Activity:

The investigation shows marked anti-inflammatory activity of *M. champaca* leaf extracts. Paw edema, a hallmark of inflammation, was notably reduced following treatment with the Ethanolic, Pet. Ether, chloroform, aqueous extracts at a dose of 200mg/kg. Moreover, granuloma formation, indicative of chronic inflammation, was inhibited. Biochemical analysis showed a decrease in MPO activity and NO levels, suggesting attenuation of inflammatory mediators. Histopathological examination corroborated these findings, demonstrating reduced tissue damage and inflammatory cell infiltration in treated rats compared to controls. (Gupta S., 2011)

Anti-oxidant Activity:

The research revealed promising hypolipidemic effects of *M. champaca Linn.* in hyperlipidemic rats. Elevated levels of antioxidant enzymes like Super Oxide Dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and together with decreased lipid peroxidation, confirmed the extract's antioxidant efficacy. Histopathological examination of

the liver showed improvements in hepatic architecture and reduced lipid accumulation in treated rats compared to hyperlipidemic controls. (Pramila Patil, 2021)

Analgesic Activity:

In this study the researcher employed methanolic extract of *M. champaca Linn*. leaves at a dose of 200 and 400 mg/kg in rats with acetic acid induces writhing exhibited the analgesic activity. The activity of extract improves with increasing dose of extract. (Mohamed HM, 2009)

Procognitive Activity:

The hexane extract of *M. champaca* Linn. at dosage of 100mg/kg and 200 mg/kg demonstrated precognitive activity in memory deficit mice utilizing animals using interoceptive behavioural models of the Y maze. As the dosage was increased, the extract's activity surged. A higher dosage improves memory, which in turn causes mice to learn more effectively. (Ahmad H S. V., 2011)

Anti-Cancer:

This important research shows that researcher had utilized the flower and seed extract of the *M. champaca* plant for the exploration of anti-cancer potential of the flower extract and extract of *M. champaca* shows positive results in the research against MCF-7 cells. (Lee Seong Wei, 2011)

Acetyl cholinesterase inhibition activity:

The researcher has extracted eight different extracts (Mc-1, Mc-2, Mc-3, Mc-4, Mc-5, Mc-6, Mc-7, and Mc-8) from *M. champca* that are fungal strains of endophytic fungus (*Xylaria sp., Phomopsisstipata, and C. gleosprioides*). TLC assays that were assessed at 200µg showed a moderate inhibition of AChE. All other drugs were utilized as negative controls, such as Mc-1, which showed minimal action, and galantamine. (Vanessa Mara Chapla, 2014)

Anti-Depressant activity:

The tail suspension test was used to assess the antidepressant activity of EEMC. When compared to the control group, the results demonstrated that all treatment groups had a significant reduction in immobility time, and that the treatment groups at 100 mg/kg and 200 mg/kg were both equivalent and significantly better, respectively, when compared to standard drugs. (Pushpa V. H., 2022)

Anxiolytic activity:

The anxiolytic activity is evaluated using the light and dark box method to evaluate the anxiolytic effect of EEMC, the study found that both doses markedly increased the amount of duration in the light cubicle. On the other hand, treatment with 200 mg/kg of EEMC proved

to be more effective than other treatment doses and outperformed standard medication. Diazepam. (Pushpa V. H., 2022)

Antifungal activity:

According to this study, every extract of the endophytic fungal strain (*Colletotrichum gloeospriodes*) that was separated from *M. champaca* was assessed for its ability to inhibit phytopathogenic fungi. *C. sphaerosperm* and *Cladosporium cladosporioides* Using the TLC diffusion method, the extract Mc-1 showed strong antifungal activity at 5 μ g, comparable to that of the positive control (Nystatin), suggesting that it has the potential to be an antifungal agent. The extracts Mc-7 and Mc-8 also showed strong antifungal activity at 100 μ g against both fungal strains, but the Mc-6 extract only showed strong antifungal activity against *C. spaerospermum*. (Vanessa Mara Chapla, 2014)

Antifertility activity:

The aerial portions of *M. champaca* were extracted and using an investigational model for estrogenic/anti-estrogenic and anti-implantation effect, Ethyl alcohol (EAEMC), and Chloroform water (AAEMC), Petroleum ether (PEAEMC) were administered to female Wistar rats at dosae of 100 mg/kg and 200 mg/kg. The Ethyl alcohol extract of *M. champaca*, or EAEMC, was found to exhibit dose-dependent anti-fertility action. *M. champaca* may have anti-fertility properties is because of existence of phytochemical like as flavonoids, steroids, and alkaloids that were discovered using photochemical screening. (Seema Devi, 2024)

Anti-ulcer activity:

This study was conducted to assess *M. champaca Linn*. anti-ulcer properties. At dosage of 300 gm/kg, an alcoholic extract and flowers and leaves demonstrate anti-ulcer efficacy in male albino rats. It results in a rise in pH, a drop in ulcer index, overall acidity, and gastric juice. It lessens the production of pepsin and acid, which are necessary to preserve the strength of the stomach mucosa. (Kumar MS, 2011)

Anthelmintic activity:

The purpose of investigation is to assess anthelminthic potency of *M. champaca* leaves using test worms called *Pheretima posthuma*. In the investigation, different quantities of both methanolic and aqueous leaf extracts (70 mg/ml and 30 mg/ml) were utilized. The earth worm's death time (D) and paralysis time (P) were measured as part of the investigation. The extracts demonstrated dose-dependent anthelmintic efficacy. In comparison to the aqueous extract, the methanolic extract at both concentrations displayed shorter P and D time. Both

extracts displayed P and D times that were higher than average. Additionally, compared to Albendazole, the Ayurvedic standard had a longer P and D period. (Dama G., 2011)

Anti-tubercular activity:

In this research the investigator is able to conclude that Inhibition of both chloroform and methanol extract of *M. champaca* with concentration of 1mg/ml against *M. tuberculosis* MDR was under 90%. The increasing concentration of extracts (10 and 100m/ml) gives higher inhibition against *M. tuberculosis* MDR with inhibition above 90%. (Ni Putu Ariantari, 2017)

Pharmacolog	Animal/Specie	Туре	Method	Extract	References
ical Activity	/Extract Used	of			
		study			
Diuretic	Swiss Albino	In-vivo	Metabolic	Aq. Extract of	(Ahmad H
activity	Wistar Rats		cage Method	leaves and	S. V.,
				stem bark	2011)
Anti-	S.aureus,	In-vitro	Minimum	Methanolic	(T.
microbial	E.coli,		Inhibitory	extract of dried	Lavanya,
Activity	B.subtilis		concentration	flower	2017)
Anti-	A.niger,	In-vitro	Minimum	Methanolic	(Khan. M.
microbial	Arubrum,		inhibitory	extract of	R., 2002)
Activity	A.versicolor,		concentration	stem, root	
	A.vitis,		(MIC)	heart-wood,	
	C.albicans,		determination	leaves, seed,	
	C.tropicalis,			stem, root	
	C.cladosporio			bark,	
	ds,				
	T.mentagrophy				
	tes,				
	T. tronsurum				
Anti-	E.coli, K.	In-vitro	Minimum	Methanolic	(Lee Seong
microbial	pneumonia,		inhibitory	extract of Seed	Wei, 2011)
Activity	Edwardsiella		concentration	and flower	
	tarda,Flavoba		(MIC)		
	cterium		determination		
	spp.,S.typhi, P.				
	aeruginosa, V.				
	alginolyticus,				
	<i>V</i> .				
	parahaemolyti				
	cus,				
	A.hydrophila,				

Table 6: Various Pharmacological activities of M. champaca

	V.cholera				
Anti- microbial Activity	S.aureus, P.aeruginosa, , C.albicans, S.paratyphi B.subtilis, S.typhosa, E.coli	In-vitro	Minimum inhibitory concentration (MIC) determination	Methanolic, Ethanolic and aqueous extracts of the flowers	(R. Vivek Kumar, 2011)
Anti- microbial Activity	E.coli, B.coagulans	In-vitro	Agar Cup Plate Method	Methanolic, ethanolic& aqueous extract of dried flower	(Iyer Ganesh, 2016)
Anti- microbial Activity	E.coli,S.aureus , P.aeruginosa, B.cereus,	In-vitro	Disc diffusion method	Silver nanoparticle of aqueous fruit extract	(Azharuddi n Daphedar, 2020)
Anti- microbial Activity	B.subtilis, S. aureus, S. typhi and S. dysentriae	In-vitro	Minimum inhibitory concentration (MIC) determination	hexane & ethyl acetate extract of Flower	(Umadevi Parimi, 2012)
Anti- microbial Activity	Salmonella, E. coli, S.aureus, E.coli, Klebsiella, Pseudomonas sp. & Acinetobacter, S. aureus	In-vitro	Agar Well diffusion method	n-Hexane, chloroform, Methanolic, Ethanolic, & aqueous extract of Leaves and Stem	(N. Manhas, 2017)
Anti- microbial Activity	Rhizopusspecies,S.aureus,E. coli,M.luteus,B.subtilis,Y.enterocolitica,S.typhimurium,	In-vitro	Disc Diffusion Method	Methanolic & Aqueous extract of flower	(K. M. Elizabeth, 2006)
Anti-Fungal Activity	C.cladosporioi des, C.sphaerosper mum	In-vitro	Bio- autography	Endophytic Fungal extract isolated from Leaves, Stems & roots	(Vanessa Mara Chapla, 2014)

Anti-Ulcer	Male albino	In-vivo	Pylorus	Ethanolic &	(Kumar
Activity	Wistar		Ligation	aqueous	MS, 2011)
			Method	extract of Leaf	
				and Flower	
Anti-Ulcer	Male albino	In-vivo	Aspirin	Ethanolic	(M.
Activity	rats		induced	extract of	Surendra
			Gastric acid	Leaves	Kumar.
			ulcers		2011)
Anti-Ulcer	Male albino	In-vivo	Pylorus	Aqueous and	(A R
Activity	wistar Rat	III VIVO	Ligation	Ethanolic	Mullaichar
rictivity	Wibtur Kut		Method	extract of	am 2011
			wichiod	leaves	am, 2011)
Anti-Diabetic	Sprague	In_vivo	Allovan	Petroleum	(Gupta S
Activity	Dowley rate	111- 1110	induced	Chloroform	(000pta 5, 2011)
Activity	Dawicy Tats		Diabetes Pat	Ethanolic	2011)
			Model	extract of	
			Model	extract of	
Audi Dishadia	NV: star usta	T.,	A 11	Pat sthere	(E. Educia
Anti-Diabetic	wistar rats	In-vivo	Alloxan	Pet etner,	(E. Edwin
Activity			Distates	Chiorolorin,	Jaraid,
			Diabetes	Acetone,	2008)
			Model	Ethanolic &	
				aqueous	
				extract of	
				Flower buds	
Anti-Diabetic	Albino wistar	In-Vivo	Streptozotoci	Ethanolic &	(Jyoti
Activity	rats		ne-	aqueous	Nanda,
			nicotinamide	extract of	2022)
			induced	leaves	
			diabetes		
			mellitus		
Anti-Diabetic	Dried bark	In-vitro	α- Amylase	Hydroethanoli	(Segu
Activity	extract		Inhibitory	c extract of	Prathyusha,
			Assay,	dried bark	2021)
			α-		
			Glucosidase		
			inhibitory		
			Assay		
Wound	Male Wistar	In-vivo	Burn wound	Ethanolic	(Tara
healing	rats		healing	extract of	Shanbhag,
Activity			model,	Flowers	2011)
			Dexamethaso		
			ne suppressed		
			burn model		
1	1	1		1	

	1				
Anti-	Albino wistar	In-vivo	Cotton pallet	Methanolic	(Vimala R,
inflammatory	rats		granuloma	extract of	1997)
Activity				flower	
Anti-	Human Red	In-vitro	HRBC	Methanolic	(T.
inflammatory	Blood cell		Membrane	extract of	ANANTHI
Activity	Membrane		Stabilization	flower	2013)
Activity	Wiemorane		Mathed/UDD	nower	, 2013)
			C)		
Anti-	Male Albino	In-vivo	Carrageenan	Pet. Ether,	(Gupta S.,
inflammatory	Wistar rat		Induced Paw	Chloroform,	2011)
Activity			oedema	Acetone,	
				Ethanolic	
				Extract of	
				leaves	
Analgesic	Male Swiss	In-vivo	Acetic acid-	Methanolic	(Mohamed
Activity	albino mice		induced	extract of	MM. 2009)
Tiouviey			writhing test	leaves	1111, 2007)
Anti-Oxidant	Methanolic	In_vitro	DPPH radical	Methanolic	(Mohamed
Anti-Oxidant	Extract	III-vitto		avtraat of	(MOHamed)
Activity	Extract		scavenging		ПМ, 2009)
			activity	leaves	(7 , 1, 1)
Anti-Oxidant	Pet. Ether,	In-vitro	DPPH radical	Pet. Ether,	(R. Vivek
Activity	Benzene,		scavenging	Benzene,	Kumar,
	Chloroform,		activity	Chloroform,	2011)
	Ethanol,			Ethanol,	
	Methanol &			Methanol &	
	aqueous			aqueous	
	Extract			Extract of	
				Flower	
Anti-Oxidant	Methanolic	In-vitro	DPPH radical	Methanolic	(Lee Seong
Activity	extract		scavenging	extract of Seed	Wei. 2011)
			activity	and Flower	,
			uctivity		
Anti-Oxidant	Hexane &	In-vitro	DPPH radical	Ethyl acetate	(Umadevi
Activity	Ethyl acetate		scavenging	Hexane,	Parimi,
			activity	extract of	2012)
			-	Flower	
Anti-Oxidant	Ethanol.	In-vitro	DPPH radical	Methanol.	(Rajshree
Activity	Methanol &		scavenging	Ethanol	Sinha.
	aqueous		activity		2017)
	avtracts		activity	avtracts of	2017)
	CALLACIS			plant 01	
	A	T •			
Anti-Oxidant	Aqueous &	In-vitro	DPPH radical	Methanolic,	(Pramila
Activity	Methanolic		scavenging	Aqueous,	Patil, 2021)

	extract		activity	extract of Arial	
				Part	
Anti-oxidant	Methanolic	In-vitro	DPPH radical	Methanol	(Ruksana
Activity	extract of bark		scavenging	Extract of	Yesmin,
			activity	Stem-Bark	2021)
Anti-Oxidant	Methanolic	In-vitro	DPPH radical	Methanolic	(V.
Activity	Extract		scavenging	extract of	Jaishree,
			activity	Flower	2011)
				(Soxhlet &	
				Microwave)	
Anti-Oxidant	Methanolic,	In-vitro	DPPH radical	Methanolic,	(Malathi S.,
Activity	aqueous		scavenging	aqueous	2015)
	extract		activity	extract of plant	
Anti-Oxidant	Ethanolic	In-vitro	DPPH radical	Ethanolic	(Waisul
Activity	extract		scavenging	extract of Plant	Qarani,
			activity		2023)
Anti-Oxidant	Silver	In-vitro	DPPH radical	Silver	(Azharuddi
Activity	nanoparticle of		scavenging	nanoparticle of	n
	aqueous		activity	aqueous fruit	Daphedar,
	extract			extract	2020)
Anti-Oxidant	Ethanolic	In-vitro	DPPH radical	Ethanolic	(Meihong
Activity	extract		scavenging	extract of	Liu, 2024)
			activity	leaves	
Anti-aging	Ethanolic	In-vitro	Tyrosinase	Ethanolic	(Waisul
activity	extract		inhibitory	extract of Plant	Qarani,
			activity		2023)
Anti-Cancer	Human lung	In-vitro	Cancer cell	Methanolic	(Yeh YT,
Activity	adenocarcinom		line	extract of air	2011)
	a cells and			branches	
	MDA-MB-231				
	human breast				
	adenocarcinom				
	a cells				
Anti-Cancer	Human breast	In-vitro	Cancer cell	Methanolic	(Lee Seong
Activity	adenocarcinom		line(MDA-	extract of seed	Wei, 2011)
	a (MCF-7)		MB-231)	and flower	
Anti-Cancer	S. cerevisiae	In-vitro	DNA repair	Endophytic	(Vanessa
Activity			or	Fungal extract	Mara
			recombinatio	isolated from	Chapla,
			n-deficient	Leaves, Stems	2014)
			mutants of	& roots	
			the yeast S.		
			cerevisiae		

-					
Anti-cancer	Brine Shrimp	In-vitro	Brine Shrimp	Methanolic	(Mohamed
Activity	(Artemia		lethality	extract of	HM, 2009)
	salina Leach)		biossay	leaves	
Anti-cancer	Human	In-vitro	human	Ethanolic	(JOSEPH
Activity	epidermoid		epidermoid	extract of stem	J.
-	carcinoma of		carcinoma of		HOFFMA
	the		the		NN, 1977)
	nasopharynx		nasopharynx		
			test system		
Anti-cancer	Human	In-vitro	SRB assay	Methylene	(Korakot
Activity	amelanotic			chloride	Atjanasupp
-	melanoma			extract of Bark	at, 2009)
	(C32) and				
	human cervical				
	carcinoma				
	(HeLa)				
Anti-cancer	DU-145 cell	In-vitro	SRB assay	Ethanolic	(Iyer
Activity	line			extract of fresh	Ganesh,
				flower	2016)
Anti-cancer	Swiss albino	In-vivo	Cell	Methanolic	(Ruksana
Activity	mice bearing		morphology	Extract of	Yesmin,
	Ehrlich Ascites		and analysis	Stem-Bark	2021)
	Carcinoma		the		
	(EAC) cells		expression of		
			cancer-related		
			genes		
Acetylcholine	Endophytic	In-vitro	TLC	Endophytic	(Vanessa
sterase(AchE)	Fungal extract		bioautographi	Fungal extract	Mara
inhibitory	_		c assay	isolated from	Chapla,
Activity				Leaves, Stems	2014)
-				& roots	
Anxiolytic	Swiss albino	In-vivo	Light and	Ethanolic	(Pushpa V.
Activity	mice		Dark test	extract of	H., 2022)
			,Elevated	leaves	
			Plus maze		
			test		
Antidepressa	Swiss albino	In-vivo	Tail	Ethanolic	(Pushpa V.
nt Activity	mice		Suspension	extract of	H., 2022)
			Test, Forced	leaves	
			Swim Test		
Helmintholyti	Pheretima	In-vivo	Determinatio	Methanolic &	(Dama G.,
c Activity	posthuma		n of Paralysis	Aqueous	2011)
			time(P) &	extract of	
			Death	Leaves	

			time(D)		
Anti- tubercular Activity	M. tuberculosis MDR	In-vitro	Proportion method	Chlororform & Methanolic extract of Stem	(Ni Putu Ariantari, 2017)
Anti- tubercular Activity	Mycobacteriu m tuberculosis	In-vitro	Alamar Blue susceptibility test	Pet. Ether extract of Plant	(Shejale & Yeligar, 2019)
Anti-fertility Activity	Male & Female wistar rats	In-vivo	Anti- implantation activity, estrogenic & anti- estrogenic activity	Pet. Ether, choloroform & Ethanolic extract of Aerial	(Seema Devi, 2024)
Anti-fertility Activity	Male & Female wistar rats	In-vivo	Anti- implantation activity, estrogenic & anti- estrogenic activity	Hydroalcoholi c Extract of Laves	(Seema Taprial, 2013)
Procognitive Activity	Mice of either sex	In-vivo	Hebb's William Maze(Rectan gular Maze), Y Maze apparatus	N-hexane Extract of Leaves	(Hafsa Ahmad V. S., 2011)
Effect in Gut, airways & cardiovascula r disorder activity	White albino rabbits	Invivo- Invitro	Isolated tissue preparation jejunam, Trachea, aorta	Ethanolic extract of Leaves	(Saqib, 2018)
Hypolipidemi c Activity	Male & Female albino wistar rat	In-vivo	High fat induced Hyperlipidem ia.	Aqueous&MethanolicExtractofArial part	(Pramila Patil, 2021)
Antihyperlipi demic Activity	TritonWR1339InducedMalealbinowistar rat	In-vivo	Triton induced hyperlipidemi a	Methanolic extract of dried flower	(T.Ananthi, 2014)
DNA damage protection activity	Methanolic extract of Flower	In-vitro	Hydroxyl radical mediated	Methanolic extract of Flower	(V. Jaishree, 2011)

			DNA damage	(Soxhlet &	
			assay by	Microwave)	
			electrophoresi		
			s, t-BOOH		
			radical		
			mediated		
			DNA damage		
			assay by		
			electrophoresi		
			S		
Larvicidal &	Aedes	In-vitro	Dose	ethyl acetate,	(Dutta M.,
Pupicidal	albopictus		dependent	chloroform,	2023)
Activity			larvicidal	methanolic	
			bioassay,	extract of	
			Dose	Seeds	
			dependent		
			pupicidal		
			bioassay		
Schizonticida	Mouse	In-vitro	Blood	Methanolic	(Eti
1 Anti-			parasitaemia	extract of	Mehrotra,
Malarial			level &	flower	2017)
Activity			mouse		
			survival time		
Anti-	Chicken Ileum	In-vivo	Isolated	Aqueous,	(Aswathy
spasmodic		In-vitro	Chicken	Methanolic	C. M.
Activity			Ileum	extract of stem	Pharm,
			Preparation	bark	2020)

Marketed Preparations-

Ayurvedic Marketed Preparations – There are several Ayurvedic formulations such as Candanabalalaksadi Taila, Baladhatryadi Taila, Pushpachurna, Madana Kameswari Lehyam, Maharajaprasarini Taila, Pusp Churna are available in the market. (The Ministry, 2008) And formulations such as Dry leaf powder and essential oil are also available in the market.

Allopathic Marketed Preparations - Champaca-infused skincare (Brand name - Som Rasa Silk Skin Tint Champa), Champaca tea (Brand name - Organic Blend of Magnolia Champaca Flowers and black Tea from Chiangmai, Thailand), Champaca absolute (Brand name - Tom Ford), Champaca hair and body care.

Conclusion -

Medicinal plants help people live better lives and effectively maintain their health. Its ability to produce unique molecules that can be utilized to create new treatments has made it a useful ingredient in medications and cosmetics. Plants are living factories of phytochemicals that

Nikhil Kumar / Afr.J.Bio.Sc. 6(5) (2024).10758-10787

produce a wide range of medications to treat different ailments. The future of herbal medications greatly depends on studying Indian traditional knowledge about plants. Because of their poisonous and negative effects, herbal medications could be a better option for treatment than synthetic ones. The active components of *Michelia champaca* leaves include flavonoids, sterols, phenols, glycosides, and alkaloids.

Many chromatographic techniques have been applied to the plant, such as Thin-layer chromatography (TLC), Gas chromatography (GC), High-performance liquid chromatography (HPLC), and Gas chromatography with Mass spectroscopy (GCMS), High-performance thin-layer chromatography (HPTLC).

Herbal medicine needs to be standardized in order to create formulations that have been supported by research. Through the economical and sustainable utilization of medicinal plant resources, scientists and researchers working in interdisciplinary research may generate native products beneficial in treating a variety of illnesses.

REFERENCES

- A. Immaculate Nancy Rebecca, V. H. (2012). ndophytic Chaetomium sp. from Michelia champaca L. and its taxol production. *Journal of Academia and Industrial Research*, 1(2), 68-72.
- 2) A. R. Mullaicharam, M. S. (2011). Effect of Michelia champaca Linn on pylorous ligated rats . *Journal of applied Pharmaceutical science*, 1(2), 60-64.
- 3) Ahmad H, M. A. (2011). Determiantion of Quercetin in Michelia champaca (CHAMPA) Leaves and Stem bark by HPTLC. *International Journal Pharma and Biosciences*, 388-397.
- 4) Ahmad H, S. V. (2011). Diuretic activity of aq. extract of M. champaca Linn. Leaves and stem bark in rats. *Newsletter*, 568-574.
- 5) Armiyanti, M. A. (2010). Plant regeneration of Michelia champaca L., through somatic embryogenesis. *African journal of Biotechnology*.
- 6) Aswathy C. M. Pharm, H. H. (2020). Evaluation of in vitro antispasmodic effect of Michelia ChampacaStem Bark. *World Journal of Pharmaceutical Research*, 9(12), 1345-1351.
- 7) Azharuddin Daphedar, M. R. (2020). Synthesis and characterization of Silver nanoparticles from fruit extract of Michelia Champaca L.: Their antioxidant and antibacterial activity. *International journal of nano Dimens.*, *11*(3), 267-276.
- 8) Balugri VC, R. S. (1997). Isolation of Parthenoloids from the leaves of Michelia champaca Linn. *Indian Drugs*, 415-420.

- 9) Banerjee SK, C. R. (1964). Liriodenine from M.champaca . *Bulletin of the Calcutta School of Tropical Medicine*, 23-24.
- 10) Basu, K. a. (2003). *Indian medicinal plant with illustration*. Dehradun: Orient Enterprises.
- 11) BM, L. (1995). The isolation of aromatic materials from natural plant product. In *In: K.T DeSilva (Ed.) a manual on the essential oil industry* (pp. 154-157). Vienna: United Nations Industrial Development Organisation .
- 12) Céspedes CL, A. J.-M.-G. (2006). Antifungal antibacterial activities of Mexican tarragon (Tagetes lucida). *Journal of Agricultural and Food Chemistry*, 352-357.
- 13) Chanda R, M. J. (2007). Medicinal Plant used gastrointestinal disorders by the Traditional Healers of Sikkiam Himalayas. *Indianb journal of traditional knowledge*, 606-610.
- 14) Chandrashekhar KS, V. H. (2010). Phytochemical studies of stem bark of Michelia Champaca Linn. *International Research Journal of Pharmacy*, 243-246.
- 15) Chen CY, H. L. (2008). Chemical constituents from the leaves of M. alba. *Chemical National Compound*, 137-139.
- 16) Cheng-Tsung Huang, S.-J. C.-M.-F.-L.-J.-T.-Y. (2014). Chemical Constituents of the Stems of Michelia champaca. *Chemistry of natural compounds*, *50*, 1047-1049.
- 17) CM, Y. T. (1970). Studies on the constituents of Annona squamosal L. *Tetrahedron*, 1105-1107.
- 18) Dama G., B. J. (2011). Helmintholytic Activity of the Methanolic and Aqueous Extracts of Leaves of Michelia champaca. *Research Journal of Pharmacology and Pharmacodynamics*, 3(1), 25-26.
- 19) Dr. S.Vijayanand, A. S. (2016). Screening of Michelia champacca and Muntingia calabura extracts for potential Bioactives . *International Journal of Pharma Sciences and Research*, 7(6), 266-273.
- 20) Dutta M., G. (2023). Octadecadienoate derivatives from Michelia champaca seed extract as potential larvicide and pupicide against Dengue vector Aedes albopictus. *BMC Research Notes*, *16*(212), 2-11.
- 21) E. Edwin Jarald, S. J. (2008). Antidiabetic activity of flower buds of Michelia champaca Linn. *Indian journal of Pharmacology*, *6*(40), 256-260.
- 22) Eti Mehrotra, J. V. (2017). Schizonticidal antimalarial sesquiterpene lactones from Magnolia champaca (L.) Baill. ex Pierre: microwave-assisted extraction, HPTLC fingerprinting and computational studies. *Natural product research*, 1-5.
- 23) Gupta S, M. K. (2011). Morphological changes and antihyperglycemic effect of M. champaca leaves extract on β- cell in Alloxan-induced diabetic rats. *Recent Research Science and Technology*, 3(1), 81-87.

- 24) Gupta S., M. K. (2011). Anti-inflammatory activity of leaves of Michelia champaca investigated on acute inflammation induced rats. *Latin American Journal of Pharmacy*, 30(4), 30.
- 25) Hafsa Ahmad, S. S. (2012). TLC Detection of β -sitosterol in Michelia champaca L. Leaves and stem bark and its Determination by HPTLC. *Pharmacognosy journal*, 4(27), 46-56.
- 26) Hafsa Ahmad, V. S. (2011). Procognitive Effects of Hexane Extracts of Michelia champaca Leaves in normal and memory Deficit Mice . *Pharmacognosy Communication*, 1(2), 30-36.
- 27) I Gusti Agung Gede Bawa, S. R. (2024). Active compounds of Michelia champaca bark extract against Curvularia verruculosa fungi causing leaf spot disease in rice (Oryza sativa L.). *Journal of Applied and natural Science*, *16*(1), 420-426.
- 28) Indian Diversity Portal, I. (n.d.). Michelia Champaca L. *Indian Biodiversity Portal*. https://indiabiodiversity.org/
- 29) Iyer Ganesh, P. S. (2016). Phytochemical screening and investigation of antibacterial and anticancer potential of michelia champaca L. Flowers . *International conference on Plant and resources*, 345-353.
- 30) Jacobsson U, K. U. (1995). Sesquiterpene lactones from Michelia champaca. *Phytochemistry*, 839-843.
- 31) Jalal Uddin, M. F. (2024). Pharmacological potential of micheliolide: A focus on antiinflammatory and anticancer activities . *Heliyon*, 10.
- 32) João Henrique G. Lago, ,. O. (2009). Chemical composition and seasonal variation of the volatile oils from leaves of Michelia champaca L., Magnoliaceae. *Brazilian Journal of Pharmacognosy*, *19*(4), 880-882.
- 33) Joao Henrique G. Lago, O. A. (2009). Chemical composition and seasonal variation of the volatile oils from leaves of Michelia champaca L., Magnoliaceae. *Revista Brasileira de Farmacognosia*, *19*(4), 880-882.
- 34) JOSEPH J. HOFFMANN, S. J. (1977). Cytotoxic Agents from Michelia champaca and Talauma ovata:Parthenolide and Costunolide . *Journal of pharmaceutical sciences*, 66, 883.
- 35) Jyoti Nanda, M. M. (2022). Michelia champaca leaf extracts exhibit hypoglycemic effect and hypolipidemic activity in streptozotocine-nicotiamide induced diabetic rats. *International journal of pharmaceutical sciences and Research*, *13*(12), 5200-5206.
- 36) K. M. Elizabeth, Y. A. (2006). Antimicrobial activity of michelia champaca. *Asian Journal of Chemistry*, 18(1), 196-200.
- 37) K. N. Geetha, K. J. (2011). A preliminary pharmacognostical study on leaves and flowers of Michelia champaca L. Magnoliaceae. *Journal of applied and atural science*, 3(2), 228-231.

- 38) Kapoor S, J. R. (2004). Chemical Studies on Flowers of Michelia champaca. *Indian Journal of Pharmaceutical Sciences*.
- 39) Karthikeyan V, B. B. (2016). Pharmacognostical, Phyto-Physicochemical Profile of the Leaves of Michelia champaca Linn. *Internaonal journal of Pharmacy & Pharmaceutical Research*, 7(1), 331-344.
- 40) Kazuoito:, T. I. (1982). Sesquiterpene lactone from Michelia champaca. *Phytochemistry*, 701-703.
- 41) Khan. M. R., K. M. (2002). Antimicrobial activity of Michelia champaca. *Fitoterapia*, 744-748.
- 42) Kirtikar, K. B. (1991). *Magnoliaceae in medicinal plant*. Dehradun, India: Bishan Singh Mahender Pal Singh.
- 43) Korakot Atjanasuppat, W. W. (2009). In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand. *Journal of ethanopharmacoloy*, *123*(3), 475-482.
- 44) Kumar MS, A. P. (2011). Effect of Michelia champaca Linn on pylorous ligated rats. *Journal of Applied Pharmaceutical Sciences*, 2, 1554-1558.
- 45) Kuo SY, H. T. (2008). Cytotoxic constituents from the leaves of C. subavenium. *Chem Pharm Bull*, 97-101.
- 46) Lago JHJ, F. O. (2009). Chemical composition and seasonal varation of the volatile oils from leaves of Michelia champaca L.(Magnoliaceae). *Brazillian Journal of Pharmacognosy*, 880-882.
- 47) Lalfakzuala R, L. H. (2007). Ethanobotanical uses of plant in western Mizoram . *Indian journal of traditionla knowledge*, 486-493.
- 48) Lee Seong Wei, W. W. (2011). Characterization of Antimicrobial, Antioxidant, Anticancer Property and Chemical Composition of Michelia champaca Seed and Flower Extracts. *Stamford Journal of Pharmaceutical Sciences*, *4*(1), 19-24.
- 49) Liu CY, C. Y. (2008). Cytotoxic constituents from root wood of Formosan M. compressa. *Journal of the Chilean Chemical Society*, 1523-1524.
- 50) LM, P. (1980). *Medicinal Plants of East and southeast asia: attributed properties and uses*. Cambridge, Massachusetts & London : The MIT Press.
- 51) Lo WL, W. Y. (2004). Chemical constituents from the stems of Michelia compressa. *Chinese Pharma Journal*, 69-75.
- 52) M. Surendra Kumar, P. A. (2011). A Comparative Study of Michelia champaca Linn.Flower and Leaves for Anti-Ulcer Activity . *International journal of pharmaceutical science and research*, 2(6), 1554-1558.
- 53) M.K. HOSSAIN, M. N. (n.d.). MAGNOLIACEAE (MAGNOLIA FAMILY). *Reforestation, Nurseries and Genetics Resources*, 572-574.

- 54) Makhija IK, V. H. (2010). Isolation of 3β-16α-dihydroxy-5-cholesterin-21-al, n-Docosanoic acid and Stigmasterol from Petroleum Ether extract of stem bark of M. champaca. *Scholar research library*, 344-348.
- 55) Malathi S., D. R. (2015). Free Radical Scavanging activity TLC, HPTLC and GCMS Analysis of Dry Flower of Michelia champaca Linn. *World Journal of Pharmaceutical Research*, *4*(1), 1576-1602.
- 56) Meihong Liu, Y. J. (2024). Flavonoid glycosides from the leaves of Michelia champaca. *Fitoterapia*, 175.
- 57) Mohamed HM, J. R. (2009). Anti-oxidant, analgesic and cytotoxic activity of M. champaca Linn. Leaf. *Stamford Journal of Pharmaceutical Sciences*, 2(2), 1-7.
- 58) Monteiro MCM, L. I. (2007). Constituentes of quimicos isolados dos caules de Michelia champaca L. (Mangoliaceae). *Eclet Quim*, 13-18.
- 59) N. Manhas, P. D. (2017). In vitro antimicrobial activity and phytochemical screening of leaf and stem extracts of Michelia champaca Linn. *International Food Research Journal*, 24(6), 26772-2676.
- 60) Nandkarni, K. (1954). Indian Material Medica. Popular book dept.
- 61) Ni Putu Ariantari, N. E. (2017). Anti-tuberculosis activity of chloroform and methanol extract of Michelia champaca L. Stem Bark against Mycobaterium tuberculosis MDR. *The 2nd molecular and cellular life science*, 97-99.
- 62) NTBG. (2005). National Tropical Botanical Garden (www.NTBG.org). Journal Museum Press, Honolulu, Hawai.
- 63) Orwa C, M. A. (2009). A: Agroforestree Database: A tree reference and selection guide version 4.0.
- 64) PK, W. (1997). Indian Medicinal Plant. Madras: Orient Longman.
- 65) Pramila Patil, M. M. (2021). Hypolipidemic and Antioxidant Activity of Aerial Parts of Michelia Champaca Linn in Hyperlipidemic Rats . *International Journal of Pharmaceutical Research and Applications*, 6(5), 702-710.
- 66) Prasant K. Rout, S. N. (2006). Composition of the concrete, absolute, headspace and essential oil of the flowers of Michelia champaca Linn. *Flavour and fragrance journal*, *21*, 906-911.
- 67) Pushpa V. H., J. M. (2022). New insights on the phytochemical intervention for the treatment of neuropsychiatric disorders using the leaves of Michelia champaca: an in vivo and in silico approach. *Taylor & Francis*, 60(1), 1656-1668.
- 68) R. Shankar, P. J. (2023). Qualitative and quantitative phytochemical analysis of methanolic extract of Magnolia champaca leaves. *Journal of Veterinary and animal science*, 54(1), 204-213.

- 69) R. Vivek Kumar, S. K. (2011). Antioxidant and Antimicrobial Activities of Various Extracts of Michelia champaca Linn flowers. *World applied sciences Journal*, 4(12), 413-418.
- 70) Raja S, R. S. (2014). Preliminary Phytochemical Screening and TLC Fingerprintingof whole Plant extract of Michelia champaca. *world of journal of pharmaceutical research*, *3*(10), 631-645.
- 71) Rajagopalan, P. M. (2010). *Siddha medicine. Madurai : Siddha Maruthuva Gurukulam* . 2000Mehla, K., Chauhan, D.,Kumar, S., Nair, A., & Gupta, S.
- 72) Rajnibhas Samakradhamrongthai, N. U.-a. (2009). Effect of Extraction on Volatile Compounds and Sensory Profile of Champak Flower (Michelia champaca L.) . *ASEAN PLUS THREE GRADUATE RESEARCH CONGRESS*, 721-727.
- 73) Rajshree Sinha, R. V. (2017). Antioxidant activity in leaf extracts of Michelia champaca L. *Journal of Advanced Pharmacy Education & Research*, 2(1), 86-88.
- 74) RK, K. S. (2004). Chemical studies on flowers of Michelia Champaca. *Indian Journal* of *Pharmaceutical sciences*, 403-406.
- 75) Rout, P. K. (2006). Composition of the concrete, absolute, headspace and essential oil of the flowers of Michelia champaca Linn. *Flavour and Fragrance Journal*, 906-911.
- 76) Ruksana Yesmin, P. K. (2021). Anticancer Potential of Michelia champaca Linn. Bark Against Ehrlich Ascites Carcinoma (EAC) Cells in Swiss Albino Mice. *The natural* product journal, 11(1), 85-96.
- 77) Saqib, F. M.-U.-H. (2018). Pharmacological basis for the medicinal use of Michelia champaca in gut, airways and cardiovascular disorders. *Asian pecific Journal ofTropical Medicine*, 11(4), 292-296.
- 78) SC, C. A. (2005). *Michelia champaca. In: the treatise on indian medicinal plants.* Delhi: NISCAIR Press CSIR.
- 79) Seema Devi, C. M. (2024). Evaluation Of the Post -Coital Anti-fertility Activity Of Michelia ChampacaLinn. Aerial extract in female wistar rats. *Journal of applied pharmaceutical sciences*, *12*(1), 52-58.
- 80) Seema Taprial, D. K. (2013). Antifertility effect of hydroalcoholic leaves extract of Michelia champaca L.: An ethnomedicine used by Bhatra women in Chhattisgarh state of India. *Journal of ethnopharmacology*, 147(3), 671-675.
- 81) Segu Prathyusha, M. V. (2021). Phytochemical Analysis by HR-LCMS and In vitro Anti-diabetic Potential O Michelia champaca Bark. *Journal of Natural remedies*, 22(3), 433-439.
- Shejale Savita R., Y. V. (2019). Phytochemical Screening on Champaka pushpam (Michelia champaca). *Research journal of pharmacy and technology*, 12(7), 3541-3546.

- 83) Shejale, S. R., & Yeligar, V. C. (2019). Antitubercular activity on Michelia Champaca Linn. *Journal of Current Pharma Research*, 9(3), 3042-3047.
- 84) Shrivastava RC, S. R. (2010). Indigenous Biodiversity of Apatani Plateau: Learning on Bioculture Knowledge of Apatani Tribe of Arunachal Pradesh for Sustainable Livelihoods. *Indian journal of traditional knowledge*, 432-442.
- 85) Sobhagini N, S. K. (2004). Ethano-medico-botanical Survey of Kalahandi district of orissa . *Indian Journal Traditional Knowledge*, 72-79.
- 86) Sumeet Gupta, K. M. (2011). Morphological Changes and Antihyperglycemic Effect ofchampaca Leaves Extract on Beta-cell in Alloxan Induced Diabetic Rats. *Recent Research in Science and Technolog*, 81-87.
- 87) T. ANANTHI, M. (2013). Screeningof invitro anti-inflammatory activity of Michelia champaca Linn. *Asian Journal of Pharmaceutical & Clinical Research*, 6(5), 71-72.
- 88) T. Ananthi, R. A. (2015). Determination of Phenolic Compounds in flowers of Michelia Champaca L. by HPLC Analysis. *International joiurnal of pharmaceutical Science Review and research*, 33(2), 166-168.
- 89) T. Lavanya, T. A. (2017). Evaluation of Preliminary Anti-bacterial Activityand UV Spectroscopic Analysis of Michelia champaca (L). *European Journal of Pharmaceutical and Medical Research*, 4(5), 430-434.
- 90) T.Ananthi, I. B. (2014). Antihyperlipidemic Activity of Michelia champaca L. In Triton WR 1339 Induced Albino Rats . *International Journal of Pharmceutical Technology Research*, 6(4), 1368-1373.
- 91) Tara Shanbhag, S. K. (2011). Effect of Michelia Champaca Linn. FLower On Burn Wound Healing In Wistar Rats. *International Journal of Pharmaceutical Sciences Review and Research*, 7(2), 112-115.
- 92) The Ministry, o. h. (2008). The ayurvedic Pharmacopoeia of India. *Department of Ayush*, *4*, 1-179.
- 93) Umadevi Parimi, D. K. (2012). Antibacterial and free radical scavenging activity of Michelia champaca Linn. flower extracts. *Free Radicals and Antioxidants*, 2(2), 58-61.
- 94) V. Jaishree, V. (2011). A comparative study of in vitro antioxidant and DNA damage protection of soxhlet vs microvave assisted extracts of Michelia champaca Linn. Flowers. *Indian Journal of Natural Product and resources*, 2(3), 330-334.
- 95) Vanessa Mara Chapla, M. L. (2014). Antifungal Compounds Produced by Collectorichum gloeosporioides, an Endophytic Fungus from Michelia champaca. *Molecules*, 19, 19243-19251.
- 96) Varier, P. S. (2003). Indian Medicinal Plants. Chennai: Orient Longman Pvt. Ltd.

- 97) Vimala R, N. S. (1997). Anti-inflammatory and antipyretic activity of Michelia champaca Linn., (White variety), Ixora brachiata Roxb. And Rhynchosia Cana (Willd.) D.C. flower extract. *Indian journal of express biology*, *35*(12), 1310-1314.
- 98) Waisul Qarani, F. H. (2023). Antioxidant and antiaging activities of Cinnamomum burmannii, Michelia champaca and their combinations. *narra j*, 3(2), 2-11.
- 99) WC, L. Y. (1994). The initiation of callus culture of Michelia champaca for essential oil Production. *Biotechnol Lett*, 5-88.
- 100) Wilson E, R. G. (2007). Herbs used in Siddha Medicine for Arthritis- A Review. *Indian journal of traditional knowledge*, 678-686.
- 101) Yang TH, C. C. (1972). Studies on the alkaloids of lotus receptacles. *Journal of The chinese Chemical Society*, 243-250.
- 102) Yeh YT, H. J. (2011). Bioactive constituents from Michelia champaca. *Natural product communications*, 1251-1252.