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ABSTRACT:  
 

Abstract— in this paper, we are interested in the application of 

the theory of stochastic and mixed effects models on the 

Geometric Brownian Motion (GBM) with random effect, due 

to its importance in real studies. Actually, in many modelling 

studies, it is preferred to consider stochastic processes instead 

of deterministic, because the majority of real processes are 

always exposed to influences that are not completely 

understood or that it is impossible to model explicitly, and 

ignoring these phenomena in the modelling may affect the 

estimation result. Moreover, in order to take account of the all 

population comportment simultaneously, we incorporate two 

types of parameters in the model: fixed effects to capture 

general and common behavior for the whole population, and 

random effects varying between individuals to account for 

individual deviation. However, the obtained mixed-effects 

model with stochastic differential equations (SDEs), known by 

the Stochastic Differential Mixed Effects (SDME) model, is 

an extremely poorly estimated estimation problem. In fact, in 

general, the transition density of the stochastic process is 

usually unknown and therefore the likelihood function cannot 

be obtained in a closed form. Thus, many numerical 

approximation methods may be necessary to estimate model 

parameters. So, here, we consider a framework estimate for the 

Geometric Brownian Motion incorporating random effect 

under the Ito formula, by deriving its transition density from 

the solution of the Fokker-Planck equation. 
 

Keywords: Index Terms— Stochastic process, stochastic 

differential equations, random effects, transition density, 

Brownian Motion, Fokker-Planck, likelihood function.  
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1. INTRODUCTION 
 

In many pharmacokinetic/pharmacodynamic (PK/PD) applications and in biomedical researches, 

the experiment requires data on an entire population and not only on a single individual to obtain 

complete information on the phenomenon, as well as several repeated measurements of a 

quantitative variable for each unit, in order to model correctly the progression and the development 

of a disease or an economic or a financial aggregate. Thus, for each individual, many repeated 

measurements are taken at different points of time, it allows, therefore, to model the global 

behavior of a phenomenon for a group of units and also its dynamic side. Thus, this kind of 

modelling leads to describe the common side of the phenomenon in a whole population and the 

specificity of each individual, which leads to an increasing popularity and an extreme need for 

stochastic models with mixed effects. It is often reasonable to consider that responses follow the 

same model structure for all experimental units, while model parameters vary randomly among 

individuals, and both variations within and between groups are modeled, leading to a more precise 

estimation of population parameters. So, mixed-effects models have become an increasingly 

popular choice for modeling real processes, due to its inherent incorporation of uncertainty, 

allowing simultaneous representations of randomness in 

dynamics of real processes and variability between experimental units. 

See a rich and developed resources for mixed-effects models in [3], [4], [5], [6] and [7], also, see 

many applications in biomedical field in [8], [9] and [10] and in pharmacokinetic field in [11], 

[12], and [13]. So, all these points of advantage constituted a motivation to develop this article 

where we are interested in the estimation of the GBM containing a random effect. 

A SDME model is established from the SDEs with the incorporation of random effects and 

stochastic components driven by the Wiener process, which is an extension of an ordinary 

differential equation model. For a deterministic differential equation model, the solution is a 

deterministic function, while the solution of a SDE is a continuous time Markov process. The 

behavior of a diffusion process is governed by its transition density, that is in turn governed by the 

values of the parameters in the SDME model. In the theory, the stochastic differential equations 

(SDE)s have proved to be more useful than deterministic differential equations (ODE)s to describe 

the dynamic side of real processes in, e.g., the PK/PD phenomenon, finance studies [14], and other 

processes in different fields, See: [15], [16], [17], [18]. In [19], some examples of the application 

of the SDEs in the biomedical field are treated by the author, as well as other examples in 

pharmacokinetic field are discussed in [20]. However, statistical inference for SDME models is not 

straightforward, it provides a powerful modeling tool with immediate applications, since a closed 

form solution to many SDME models used in practice is not known, except for a few cases. 

Moreover, to obtain an explicit expression of the maximum likelihood estimators, we need to solve 

the integral in the marginal likelihood function of the parameters given the random effects. 

However, in general, it is not possible to solve analytically and explicitly this integral, and the more 

the dimension of random effects vector increases, the more the difficulties increase. So, a 

closed-form expression of the likelihood function is rarely available. Hence, exact maximum 

likelihood estimation is generally unrealizable. In this paper, we deal with a generic and feasible 

estimation approach based on maximum likelihood estimation, which can be implemented in the 

absence of a closed expression of the transition density. In the literature, we propose a review on 

estimation methods of SDME models in [21], [22] and [23]. Moreover, to strengthen knowledge 

on estimation methods of SDME models, we refer to [24] and [25] that propose an example of 

stochastic mixed effects model with random effects log-normally distributed with a constant 

diffusion term. Also, several solutions have been proposed to approximate the transition density 

and have shown their effectiveness despite certain limitations. For example, the transition density 

could be approximated by the solution of the partial differential equations of Kolmogorov [26]; or 

by the derivation of an Hermite expansion of closed form at the transition density [27], [28], [29], 

this method has been reviewed and applied for many known stochastic processes for 
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one-dimensional [9] and multi-dimensional [30] timehomogeneous SDME model; or by 

simulating the process to Monte-Carlo integrate the transition density, see [31], [32], [33]. These 

techniques are very useful and can solve the problem, but unfortunately, they involve intense 

calculations which make the problem always complicated. 

In this work, we focus on two fundamental issues concerning the implementation of SDME 

models. The first is to incorporate mixed effects in the GBM model, and the second is about the 

estimation of the model parameters by deriving simulation issues. Then, many artificial data were 

generated using moderate and different values of M (the number of subjects) and n (the number of 

observations for each experimental unit data), and the obtained estimates are often close to the true 

values of the parameters. This is relevant to the proposed estimation methodology and its 

application in situations where large data are not available, e.g. in biomedical applications, where 

mixed effects theory is widely applied. 

 

I. THEORETICAL TOOLS 

A. Stochastic Differential Mixed-Effects Models 

For a N-multidimensional continuous stochastic process 

                                                      , evolving in M different exper-imental units, the SDME model 

in the sense of Ito is definedˆ as follows [34]: 

 

                                                                                       
 (1) 

Y0
i = y0

i, i = 1,...,M 

 

 

where θ ∈ Θ ⊂ Rp is the common p-dimensional parameters vector to all individuals and bi ∈ B ⊆ 

Rq is the qdimensional random effects vector of individual i distributed with a density PB depending 

on a population parameter Ψ specifying the marginal distributions of the components of bi, each 

component  may follows different distribution with a joint density function PB, the 

standard choice is a Gaussian distribution, but it could be any other continuous or discrete 

distribution such as Gamma distributions to ensure the positivity of the parameters: 

 
 (2) 

and (Wi(t))0≤i≤M are M independent Wiener process trajectories assumed mutually independent with 

bj for all i 6= j, the different realizations of the two vectors give different paths for each subject and 

describe the intra- and intervariability between different units of the population. Therefore, to 

ensure the existence of solution  to (1), the functions µ(·) : E ×R×Θ×B −→ R and Σ(·) : E ×Θ×B 

−→ R+, representing the drift and diffusion term respectively, are supposed to verify sufficient 

properties, see: [35], [36], [37], with E ⊆ RN is the space state of the process . Therefore, we 

assume that the solution  of (1) have a strict positive density with respect to the Lebesgue 

measure on E given (bi,θ) and Y i(s) = ys
0 , s < t, however, this assumption does not imply the 

existence of an explicit transition density: 

           (3) 

Also, the equation (1) can be understood under the following integral form: 

 
B. Maximum Likelihood Estimation in SDME Models 

Each subject is observed in several points of time ,  and the vector 

 yi =  is the repeated measurements vector for the responses of each subject i. The 

process Y could be observed directly or indirectly with measurement noise, which may be due to a 
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test error or to the existence of a disturbance element. Here, we assume that (Yt)t≤0 is observed 

directly at discrete times t1,...,tni, in this case, the likelihood function is defined as follows: 

 

(4) 

where P(Y i|.) denote the density of yi given (θ,Ψ), and 

 

PY (y
i|.) is defined by the Markov property as the product of 

the transition densities for a given realization of the random effects and for a given θ: 

(5) 

 

where  and yj = ytj and the densities PY (.) are as in (3). As mentioned above, the density 

PB(.|Ψ) is often assumed to be multinormal but it could be any other density function. When the 

transition density is known explicitly, the likelihood (4) have a closed form and exact maximum 

likelihood estimators (MLEs) can be obtained, but this is possible in a few cases, otherwise, the 

transition density should be approximated. But, notice that even when the transition density is 

known, the explicit estimation equations for the MLEs may be difficult to compute, because the 

integral of (4) often has no solution or is difficult to solve and the degree of difficulty increases as 

the dimension of B is greater. In the theory, several methods were proposed to approximate the 

transition density: by solving the Kolmogrov partial differential equations satisfied by the 

transition density [38]; or by using the approximate transition density based on Hermite expansion 

suggested by [39] and [40], see practical examples in [18] and [30]; or by using the Bayesian 

inference either for model with or without measurements errors; or by using an extension of the 

Kalman Filter; or by simulating the process to Monte-Carlo-integrate the transition density, see: 

[41], [42], [43], [44] and [45]. 

The MLEs obtained by maximizing (4) have usually good properties, and we assume that they are 

the unique maximum of the likelihood function in (4). Thus, after estimating the fixed effects, we 

generate the random effects using the standard method of the mixed effects theory by plugging the 

estimates of θ in the following individual likelihood function: 

bi = argminbi(−𝝨logqY (yji,∆ij|yji−1,bi,θb)) 

 

C. Closed-form transition density and likelihood approximation 

Let  be the approximate transition density of (5) when the 

exact formula is not known, so the approximate likelihood function of (1) is defined as: 

 

(6) 

In the literature, the likelihood function of a nonlinear SDME model could be approximated with 

the likelihood of a linear mixed-effects model [46] or by using Laplacian and Gaussian quadrature 

approximation, see: [47], [48] and [49]. Therefore, by maximizing (6) with respect to (θ,Ψ) we 

obtain the approximate estimators (θ,ˆ Ψ)ˆ . Moreover, as mentioned before, the integral has often no 

closed form solution and efficient numerical integration methods are required. See [50] and [51], 

for proposed and available approximation methods for multidimensional integrals for any random 

effects distribution, and see [18] and [30] where the integral in (6) was approximated using the 

Gauss-Hermite quadrature and Laplace approximation respectively. Thus, after approximating the 

transition density, the integration over the random parameters bi is obtained using the proposed 
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methods, and finally, the approximate likelihood is obtained in its approximate closed form to 

optimize analytically or by using optimization tools. 

Here, we choose to approximate the transition density using the Risken approximation [1] based on 

the Fokker-Planck (FP) equation characteristics or the forward Kolmogrov equation. We notice 

that, a benchmark study was elaborate in order to evaluate the effectiveness of this approach using 

OU process, which is one of few processes with exact transition density, and that shows that this 

approximate transition lead to satisfactory results [2]. Let now describe the proposed methodology 

for approximating the transition density, which is based on the Kramers-Moyal expansion that 

represents a motion equation verified by the probability density. Under some assumptions, see [1], 

the probability density ϕ(y,t) of a N-dimensional SDME model obeys the Kramers-Moyal 

expansion: 

For special initial condition, the transition density of the process in (1) is the solution of the 

following Fokker Planck equation: 

 

(7) 

 

with: 

(8) 

The equation (7) represents the motion equation of the process Y verified by its transition 

probability PY (yj,∆j|yj−1,b,θ), and the resolution of this equation leads to obtain an explicit form for 

this density. For a small ∆j, we have: 

 
(9) 

where δ is Fourier integral terms: δ(yj − yj−1)= .  

Then, after a classical computation we get the following: 

 
 

]) (10) 

We notice that the proposed approximate transition density can be applied to multidimensional 

SDME models having constant or non-constant and linear and non-linear diffusion term, with 

random effects following any continuous distribution. 

II. GEOMETRIC BROWNIAN MOTION WITH RANDOM EFFECT 

A. Definition 

The Geometric Brownian process has relevant applications for modeling in pharmacokinetics as 

well as for modeling the growth of a population of bacterial or tumor cells, and is also used in 

mathematical finance to model stock prices. Here we include a random effect in the model in order 

to improve the real side of these processes, as already mentioned, which allows us to consider both 

system noise and individual differences. A SDME model of the Geometric Brownian motion is 

defined as follows: 

dYt
i = (β + βi)Yt

idt + σYt
idWt

i, Y0
i = y0

i, i = 1,...,M 

(11) 

where Ito solution is given as follows: 
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with βi ∼ N(0,σβ
2), for this example we have: bi = βi, θ = (β,σ2) and ψ = σβ

2. We which to estimate 

(β,σ2,σβ
2) given a set y = (y1,y2,...,yM) of observations. 

B. Maximum Likelihood 

Assume equidistant observations and that each subject has the same number of observations, that 

is, assume  

and ni = n for all 1 ≤ i ≤ M,1 ≤ j ≤ ni. The likelihood function of (11) using (6) and (10) is reported 

in the Appendix. 

The integral in (14) is solved analytically using the gauss integral, and then, we obtain an exact 

estimator of the parameter β while we need a numerical optimization tool to obtain estimates of σ 

and σβ, see the following section: 

 
 

III. IMPLEMENTATION ISSUES 

This section reports the results of applying our estimation method to geometric Brownian motion 

that we perturb with random effects. Using Matlab software, we generate for different sets of 

parameter values and for different choices of M and n, 1000 data sets of dimensions n × M from 

(12) using true values of parameters, i.e. for large data , or for small samples where we have a small 

number of subjects with a small number of repetitions of the experiment on each subject, as is often 

the case in biomedical applications. All the observations were generated by the following code 

algorithm: 

W = wienerproc(M ∗ n);  

for i = 1 : M 

Data(n ∗ (i − 1) + 1) = 100;  

for j = 2 : n 

Data(n∗(i−1)+j) = 100∗exp((β +βi −σ2/2)∗j +σ2 ∗ W(n ∗ (i − 1) + j));  

end  

end 

So, we obtain 1000 sets of estimates of βˆ from (13). Then, for numerical optimization reasons, the 

approximated estimators σˆ and σˆβ are obtained by minimizing the negative log-likelihood 

function (14) giving βˆ using genetic algorithm (GA) see: [52], then we get 1000 estimates of σˆ 

and σˆβ. Note that there were no boundary input arguments or initial values when using the GA 

function: (σˆ2,σˆβ
2) = ga(@(β,σ2,σβ

2)(−log(L(σ2,σβ
2)(M,n,β,σ2,σβ

2,Data,∆)),2), and that the results 

were obtained by searching solutions on the set R. We repeat this for different possibilities of data 

size: (n;M) = (50; 10) and (10; 50). Then, we report the mean of each parameter in Table 1. 

A. TABLE I 

TABLE1: GEOMETRIC BROWNIAN MOTION MAXIMUM LIKELIHOOD 

ESTIMATES (MEAN AND STD()), FROM SIMULATIONS OF MODEL (11), 

SOLVING THE INTEGRAL ANALYTICALLY 

β Parameter values σ2 σβ2  βˆ σˆ2 σˆβ2 

     M=10 n=50  

-0.3 0.5 0.5 Mean -0.401 0.500 0.510 

   Std() (0.106) (0.023) (0.017) 

     M=50 n=10  

-0.3 0.5 0.5 Mean -0.281 0.500 0.500 
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   Std() (0.145) (0.011) (0.032) 

     M=10 n=50  

-0.1 0.4 0.5 Mean -0.126 0.411 0.500 

   Std() (0.174) (0.003) (0.019) 

     M=50 n=10  

-0.1 0.4 0.5 Mean -0.261 0.400 0.500 

   Std() (0.011) (0.045) (0.112) 

 

 

In all simulations we fixed  for all i. From I it is seen that the true parameter values are well 

identified using the exact maximum likelihood estimators of (14). The parameters σ2 and σβ
2 are 

well closed to the true value in particular in the cases (M, n) = (50, 10) where the estimates are 

better than the cases (M, n) = (10, 50), and that, in all cases β is well determined. 

 

2. CONCLUSION 
 

In this paper, we are interested in SDME models, because we believe that such a class of models 

will experience increasing popularity, because it combines the interesting features of mixed effects 

theory (within-subject and between-subject variation), with the ability to disrupt the process 

dynamics by considering random variability within the subject, thus providing a very flexible 

modeling approach. Then, we take the example of GBM as an application in order to estimates the 

model parameters when we include random effects in the model. 

Therefore, we adopt an estimation method as a flexible modeling framework to regularize the 

ill-posed problem of the SDME models, that we apply to the GBM with random effect. The 

proposed parameter estimation method is based on the classical statistical inference by maximizing 

the likelihood function of the model. Therefore, we propose to derive the transition density of the 

process by solving the Fokker Planck equation and using the equation solution proposed in [1], 

that we perform otherwise in order to get an explicit form of the likelihood function. The proposed 

approach is addressed by simulation studies on large and small data, since in the epidemic field the 

data are not sufficiently large and are usually sparse. However, it may be difficult to numerically 

evaluate the integral in (4) when the dimension of B increases, and efficient numerical algorithms 

are needed. 

Finally, simulation studies are addressed to estimate the model parameters of GBM with random 

effect on different artificial data sizes, the simulation results show that the estimates obtained by 

minimizing −logL(β,σ,σβ), are close to the true parameter values, and this result can be achieved 

using even moderate values of M (the number of subjects) and n (the number of observation for a 

given subject). This result is relevant for applications of GBM in situations where large data sets 

are unavailable, as in biomedical applications, and where Mixed-Effects theory is widely applied 
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