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Abstract 
Background: Electroencephalography (EEG) is non-invasive technique 
has the capability to detect minuscule variations in voltage that arise from 
the movement of ionic currents within the neurons present in the cerebral 
cortex. These recordings can help to diagnose brain disorders such as 
tumours, seizures specially epileptic seizures. But these EEG recordings 
are often distorted by undesired noise due to eye movements and blinking, 
known as ocular artifacts.  
Objective: Detection and removal of artifact present in EEG recordings is 
crucial one. These artifacts are of same signal frequencies and overlapped 
with pure EEG signals. During the analysis of these signals, the 
classification results may varies due to non-availability of artifact free 
signals. The proposed study is two-step process that initialize with 
detection and removal of ocular artifact arise due to eye blink and eye 
movement in UCI epileptic dataset. The deep learning based modified 
Gated Recurrent Unit is applied for epileptic seizure classification.   
Methods:The study focused on removing ocular artifacts with 
Independent Component Analysis - Discrete Wavelet Transforms, 
employing an optimized wavelet function. After successfully removing the 
ocular artifact, the next step involved classifying epileptic seizures using a 
deep learning model modified Gated Recurrent Unit (GRU). 
Results:The results of this study are compared to outcomes obtained from 
analysing the contaminated UCI epileptic EEG dataset.The findings 
showed that clean data produced superior results in terms of accuracy, 
precision, recall, and F1-score. Remarkably, the analysis demonstrates 
significant improvement in classification accuracy of 99.50%. 
Conclusion:The Modified-GRU model enhances electroencephalography-
based epileptic seizure classification outcomes, demonstrating its potential 
for developing accurate and reliable real-world EEG-based Brain 
Computer Interface (BCI) and ensures the potential for continued impact 
in the field of medical signal processing. 
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1. Introduction 

Electroencephalography (EEG) is a technique used for recording the brain's natural electrical 
impulses and activity over time. This non-invasive approach provides several benefits, like being 
affordable, readily available, and precisely timing brain activity. [1]The International 10:20 
system a widely accepted method for recording of EEG and for this electrodes are placed on the 
subjects' scalp. Figure 1 depicted visual representation of this system.EEG has the capability to 
detect minuscule variations in voltage that arise from the movement of ionic currents within the 
neurons present in the cerebral cortex. Berger [2] pioneered the utilization of EEG signals for 
capturing brain activity. EEG represents the rhythmic patterns of brain activity at different 
frequencies that provides valuable information about normal and abnormal brain function that 
can help diagnose conditions affecting the brain and nervous system like seizures, tumors and 
brain injuries. Specific frequency ranges related to human behavioral states referred to by these 
signals. In EEG signal processing, identifying and removing artifacts is a crucial fundamental 
step [3], [4], [5]. Researchers have developed various effective methods for eliminating these 
artifacts, with the goal of overcoming the challenge of artifact removal. Figure 2 depicts ocular 
artifact, characterized by high-amplitude voltage peaks, is observable in the frontal electrodes 
such as F7, Fpz, and F8. Adaptive filtering and Kalman filtering are commonly used for filtering 
EEG signals. The signals can be thought of as "waves," and wavelets represent a specific type of 
wave. The wavelets can effectively eliminate noise and helps to improve the clarity of neural 
information [6]. Independent component analysis is considered as a effective technique utilized 
for removing artifacts.  
This is accomplished by successfully isolating the EEG signal, which is composed of statistically 
independent components originating from various sources. The isolated signals from different 
channels are commonly known as independent components (ICs). However, it is worth noting 
that in the conventional approach, directly eliminating ICs that contain artifacts can result  leads 
to loss of information embedded in these signals [7].  

 
Figure1.  An illustration of 10:20 electrode (channel) placement 

Detecting epileptic seizures accurately through EEGis crucial for proper diagnosis and treatment 
of neurological conditions. Visual inspection of EEG data to identify seizures can be slow and 
leads to error. To address this challenge, researchers have designed various machine learning and 
deep learning systems that analyse EEG signals across frequency domains, time scales, and 
additional metrics to automate seizure detection. These computational approaches aim to classify 
signals as epileptic versus non-epileptic with greater precision and efficiency than human review 
alone by leveraging large datasets and advanced algorithms. Definitive diagnosis of brain 
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diseases often necessitates EEG examination. Automated detection tools show promise for 
improving epilepsy diagnosis by streamlining the analysis of these complex electrophysiological 
recordings[8]. The limitations of automated systems in identifying epilepsy can be overcome by 
using deep learning techniques [9]. Deep learning models like CNN, RNN, LSTM, GRU and 
Autoencoders, are extensively employed in the automated identification of epileptic seizures 
[10]. RNNs are well-suited for modeling sequential data like time series due to their "memory" 
of previous computations. They can capture temporal dependencies in variable length sequences. 
[11] reviewed the LSTM, a common architecture of RNN,  as a best performance measures. 
RNNs equipped with a gated mechanism as GRU, have proven to be valuable in the field of 
sequential inputs like speech or EEG [12]. A modified-GRU approach is introduced herein with 
the classification results of EEG data contaminated by ocular (EOG) artifacts and the results are 
also analysed after elimination of EOG artifact utilizing discrete wavelet transform with the 
optimal wavelet, db7.  

 

 
Figure2. Eye blink artifact in frontal electrodes [6] 

The study focuses on classifying epileptic seizures and improving the accuracy of existing deep 
learning models. Despite their high accuracy in seizure classification, models like CNN, RNN, 
LSTM, and GRU are affected by artifacts. EEG recordings, which form the basis of these 
models, often contain both internal and external interferences that distort the EEG signals and 
lead to inaccurate classification results. Many research articles overlook the issue of eliminating 
artifacts in epilepsy classification, but this current article offers a solution by achieving better 
accuracy through the removal of eye blinking and eye movement artifacts. To address the 
challenge of identifying and removing artifacts prior to classification, the study aims to 
accomplish the following objectives: 

1. Evaluate existing methods for removing eye movement (EOG) artifacts. 
2. Assess the efficiency of the ICA-DWT method with optimal wavelet selection. 
3. Analyse the performance of epilepsy seizure classification using contaminated EEG 

recordings and compare it with the results obtained after removing EOG artifacts. 
The research paper is structured into several sections. First section presents an introduction to 
EEG artifacts and the classification of epileptic seizures. The literature review section reviews 
recent techniques for artifact removal, including filtering methods and deep learning strategies 
for seizure classification. The background concepts section, explains the terminology used in the 
methods. The materials and methods section discuss the proposed approach. Lastly, the Results 
and Conclusion sections discuss the findings and performance analysis, highlighting the 
significance of the proposed approach. 
2. Literature  Review  
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The literature review presents a summary on the use of EEG signals and deep learning 
techniques in studying brain wave patterns and diagnosing various conditions. Chaudhary and 
Bhattacharjee[13] highlight the importance of EEG in identifying and diagnosing conditions 
such as brain tumors, epilepsy and sleep disorders. Artifacts, unwanted disturbances in EEG 
signals, can interfere with accurate analysis. Several methods have been proposed to eliminate 
these artifacts. Inuso et al. proposed the wICA approach, that utilizes wavelets to enhance 
independent component analysis [6]. Similarly, Akhtar et al. proposed SCICA method, 
specifically designed to isolate independent components associated solely with artifacts [14]. In 
this approach, wavelet decomposition method was implemented to eliminate brain activity 
artifacts.  
Exceptional outcomes in addressing EOG artifacts by combined ICA and Haar wavelet were 
achieved by Morshed [15]. Furthermore, the wavelet decomposition and ICA approach have 
been explored in subsequent studies to address different artifact types by Yasoda et al. [16] and 
Grobbelaar et al. [17]. A hybrid method with the integration of DWT and non-local means 
estimation was presented by Bhobhriya et al. [18] for the EMG artifacts removal. 
Deep learning techniques found to be valuable in the early diagnose of epilepsy and prompt 
medical decision-making. An automated method LAMSTAR was proposed by Nigam and 
Graupe [19], which achieved a remarkable classification accuracy of 97% in detecting epileptic 
seizures. The use of wavelet coefficients in EEG signals for classifying EEG information was 
explored by Güler and Übeyli [20], and a high accuracy rate of 98.68% was obtained using an 
adaptive neuro-fuzzy inference system.  
Recurrent NN based LSTM architectures with softmax classifier was proposed by 
Golmohammadi et al. [21]. The model obtained satisfactory accuracy of 96.82%. A multilayer 
perceptron NN-based model for epileptic seizures classification was evaluated by Orhan et al. 
[22] using DWT and the K-means. In the same vein, Sharmila et al. [23] suggested DWT with 
the adequate-NN classifier for epilepsy classification. CNN models have shown promise in 
extracting numerous features, as demonstrated by Radenović et al. [24], but they unable to retain 
information from previous time stamps, which can impact their performance in analysing EEG 
signals.  
To address this limitation, recurrent neural networks (RNN) use past outputs as inputs and can 
retain information from previous time stamps, as explained by Choi et al. [25]. TDACNN model 
to extract spatiotemporal features from time-series data and accurately classify emotions was 
demonstrated by Bhanusree et al. [26]. Additionally, Chung et al. [27] proposed a modified 
Gated Recurrent Unit (GRU) model, integrated with an alternative gating mechanism, to address 
problems of slow convergence, low learning rate, and the vanishing gradient problem in the 
GRU model. 
In summary, the literature review showcases various methodologies that integrate EEG signals 
with deep learning techniques to analyze brain wave patterns and diagnose conditions such as 
epilepsy. These studies highlight the effectiveness of methods like wICA, SCICA, wavelet 
decomposition, LSTM architectures, ANFIS, and modified GRU models, each offering unique 
contributions to improving the accuracy and efficiency of diagnosing brain-related conditions. 
2.1. Filtering Methods for Artifact Removal 

The section discuss the filter based ocular artifact removal and deep learning based epileptic 
classification approaches. 
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2.1.1. Independent Component Analysis (ICA) 

ICA can be seen as an advancement of Principal Component Analysis (PCA). This technique 
allows for the observed signal to be divided into independent components. Introduced by Herault 
and Jutten in 1983, ICA has certain limitations. It only enforces independence up to the second 
order. Moreover, it interprets these components as orthogonal [28]. The clean signals are 
reconstructed by eleminating the ICs identified as artifacts. Once these components are extracted 
from the original signals, it becomes possible to reconstruct the clean signals. These ICs are 
assumed to be non-Gaussian and statistically independent of others signals. ICA is a powerful 
method for reconstructing original signal sources, provided these signals are statistically 
independent. The foundations of ICA rest on two key principles [29]:  

(i) maximizing non-Gaussianity and 
(ii) minimise mutual information  

The observed signals are x1, x2,…. xn and source signal consists of the elements s1, s2,…. sn, and a 
mixing matrix called A, with element aij[30] as described in (1). 

In the given scenario, matrix A represents an unidentified mixing matrix, while vector x(t) 
represents the observed signals and vector s(t) represents the source signals at time, t. The nature 
of this technology appears to be characterized by a lack of prior knowledge concerning both the 
mixing matrix and the independent signal sources, as depicted in Figure 3. 

 
Figure3. Mixing Matrix in ICA [29] 

To estimate the independent components, find the suitable linear combinations of the mixed 
variables using the inverse matrix W, where W=A

-1 mentioned in (2). 

2.1.2. Discrete Wavelet Transform (DWT) 

Wavelets are transient waveforms with a mean value of zero that serve as mathematical 
functions. DWT possesses the capacity to effectively determine the specific location of a 
function, concurrently in the realms of time and frequency [31]. The wavelet transform is 
commonly used approach for analysing EEG signals. Through examining the connection 
between translating and scaling the core wavelet function, WT facilitates the decomposition of a 
signal in different scales (denoting frequency content) and temporal instances [32]. Donoho and 
Johnstone [33] introduced the wavelet method for artifact removal. The WT is expressed in (3). 

     , , , ,
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𝑥(𝑡) = 𝐴𝑠(𝑡) (1) 

ŝ(t) = 𝑊𝑥(𝑡) (2) 
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where Aj,k = approximation and Dj,k = detailed coefficients, J=decompose-level; φ(t)=time-
window at time t; n=signal length; Φ= wavelet function and Γ= low and high pass filter. In the 
DWT, a bandpass filter is utilized for the input signal, which is comprised of a high and low-pass 
filter designed to operate within defined frequency bands. This filtering separates the input into 
components based on frequency content. In the process of decomposition, the input signal 
undergoes division into two coefficients: the Approximation cA[n] and the Detailed cD[n]. [34]. 
The cD[n] coefficient represents the high-frequency component, while cA[n] represents the low-
frequency component [31]. At this initial decomposition stage, these are denoted as A1 and D1. 
The signals are decomposed at other level, such as A2, D2, A3, D3 based on particular frequecny. 
The frequency accuracy of the signal is doubled while the required time is halved at each level. 
Figure 4 depicted the wavelet transform with decompostion and synthesis process. 

 
Figure4. The process of Discrete Wavelet Transform 

2.2. Deep Learning Approaches for Seizure Classification 

Deep neural networks are constructed upon the foundations of the perceptron model, comprising 
synthetic neurons. These neurons engage in linear transformations of the input data, with the 
resultant output being conveyed to the subsequent layer by means of a non-linear activation 
function [34]. The term "deep" denotes the presence of multiple layers, which provides depth to 
the neural network architecture. Deep learning technology overcomes the constraints of 
conventional denoising approaches by automatically detecting and removing artifacts without 
requiring manual intervention. These are classified as a type of machine learning that implements 
a layered structure for hierarchical information processing[35]. 
2.2.1. Long Short Term Memory (LSTM) 

LSTM, introduced by [36], offer an efficient solution for modeling and analyzing sequential 
data, effectively tackling the challenges of capturing long-range dependencies and handling 
vanishing gradients in traditional RNN architectures. RNNs often struggle to effectively transmit 
information from prior time steps to subsequent stages in lengthy sequences, potentially 
overlooking crucial processed data [37]. The LSTM network is capable of preserving 
information from the past over an extended period through the use of specialized memory cells. 
Besides overcoming short-term memory, LSTM gates also regulate data flow. These gates allow 
the storage of lengthy relevant sequences while ignoring redundant information. The LSTM 
memory block is composed of three gates: input gate, output gate, and forget gate, as depicted in 
Figure 5. Here, g and h are the activation function as sigmoid and tanh. The forget gate enables 
deciding whether to retain or discard information deemed superfluous. 
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Figure5. The Representation of LSTM Unit 

 
2.2.2. Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is a type of recurrent neural network. It shares similarities with 
the LSTM, yet it is a streamlined variation which omits the presence of a distinct memory cell. 
GRU addresses the issue of vanishing gradients by implementing a standardized LSTM approach 
[27]. The GRU architecture incorporates update and reset gates. The initial reset gate determines 
how much hidden state information from prior time steps to preserve for the next, while the 
update gate decides data for output [37]. Various variations of the GRU model's gates are 
investigated, demonstrating changes in gate mechanisms [27]. Figure 6 depicts the architecture 
of the GRU. 

 
Figure6. Gated Recurrent UnitDetailed Architecture 

Reset gate: The reset gate, referred to as rt, decides how much significance should be given to the 
previous information. It operates in a dissimilar manner compared to the update gate, possessing 
unique weights and implementation. The multiplication of two inputs, xt and ht−1, with 
corresponding weights in (4). The resultant values are then summed and subsequently passed 
through the sigmoid function [38]. 𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑟[ℎ𝑡−1, 𝑥𝑡]) (4) 
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Update gate: The purpose of update gate is to determine the amount of information required 
forward to next state [39]. The update gate zt is involved as in (5), which expresses the 
multiplication of the input xt and the output from the previous unit ht-1 with the weight Wz.  The 

output is constrained to a range of 0 to 1 with the sigmoid function. 
3. Method 

This section discusses the methodology for EOG artifact removal from the UCI EEG dataset 
using DWT and modified GRU approach for classification. It also provides a description of the 
publicly available UCI Machine Learning Repository dataset. 

3.1 General Process for Epileptic Seizure Classification 

Epileptic seizure classification in EEG involves several steps. First, electrical brain activity is 
recorded using EEG electrodes placed on the scalp. The data collected is then processed to 
remove any noise or artifacts, enhancing the signal quality. Next, relevant features are extracted 
from the preprocessed EEG signals, capturing patterns and characteristics associated with 
seizures. Using deep learning or classification algorithms, the EEG signals are categorized as 
either epileptic seizure or normal seizure types based on these selected features. The performance 
of the classification model is evaluated using various metrics such as accuracy, precision, recall, 
and F1 score. If necessary, the model is optimized and refined. This iterative process aims to 
achieve precise and reliable classification of seizures in EEG recordings, which in turn helps in 
diagnosing and treating epilepsy. Figure 7 illustrates the general process of epileptic seizure 
classification. 

 
Figure7.  General Process for Seizure Classification 

3.2 Dataset Description 

The experiments utilized a dataset for epileptic seizure detection acquired from the UCI Machine 
Learning Repository, a publicly available database. Andrzejak et al. [40] provided an in-depth 
characterization of this dataset. The dataset has been pre-processed using DWT with an optimal 
daubechies wavelet (db7) and restructured for epileptic seizure identification. Table 1 displays 
the five subset classes of patients. Each subset comprises 100 single-channel EEG segments 
lasting 23.6 seconds. 

 
 
 

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑧[ℎ𝑡−1, 𝑥𝑡]) (5) 
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Table 1. UCI Machine Learning Repository Dataset Description 
 

 
 
 
 
 
 
 
 

4. Results 

The evaluation of the results was performed on both versions of the dataset. Initially, the 
experiment was carried out using an EEG dataset that was contaminated with artifacts. The 
results depicted in Table 2 that indicates with three phases of training, testing and validation of 
results. Table 3 illustrated the parameter results on EEG dataset after EOG artifact removal. The 
EEG dataset was cleaned with DWT approach after selection of optimal wavelet. Table 2 
illustrates the performance of a Modified GRU model on an EEG dataset containing artifacts. It 
obtained the accuracy of 98.8% , precision 96.9% and 97.1% recall on the test data set.  

Table2.Modified GRU with Contaminated EEG Dataset 

 
Table3. Modified GRU with Artifact-Free EEG Dataset 

Table 4 presents the performance of a Modified-GRU model on two classes of EEG data: Class 0 
(with artifacts) and Class 1 (artifacts-free). The Modified-GRU model achieves high 
performance on both classes of data, with accuracy scores above 98% and F1-scores above 97%. 
However, the model performs slightly better on the artifacts-free data, with accuracy and F1-
scores of 99.50% and 97.60%, respectively.  

 
 
 
 
 

Cl

ass 
Class Description Patient state 

Ca

ses 

1 Eyes opened Healthy 
230

0 

2 Eyes closed Healthy 
230

0 

3 EEG (healthy area)  Partial Epilepsy 
230

0 

4 
EEG (tumour identified 

area)  
Partial Epilepsy 

230
0 

5 EEG (Seizure activity) 
Epilepsy with 

seizure 
230

0 

EEG Dataset Acc. (%) Pre. (%) Recall (%) F1-Score (%) 

Training 97.5 95.4 97.6 96.5 
Test 98.8 96.9 97.1 97 
Validation 96.8 95.2 97.1 96.5 

EEG Dataset Acc. (%) Pre.(%) Recall (%) F1-Score (%) 

Training 99.2 97.9 99.5 98.7 
Test 99.5 97.4 97.8 97.6 
Validation 98.8 97.6 99.2 98.7 
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Table 4.Performance Metrices on Modified-GRU Classification Model 

EEG Dataset Acc. (%) Pre. (%) Recall (%) F1-Score (%) 

Class-0 98.8 96.9 97.1 97 
Class-1 99.5 97.4 97.8 97.6 
Where class-0 = Modified-GRU with contaminated EEG  and class-1 = Modified-GRU with 
EOG Artifact Free EEG 
Figure10 represents a comparative analysis with modified GRU (M-GRU) methodology with the 
presence of artifact and subsequent to the elimination of EOG artifacts. 

 
Figure10. Comparative analysis of M-GRU with contaminated and Artifact-Free dataset 

5. Discussion 

The research work focuses on enhancing EEG signal analysis for epileptic seizure diagnosis by 
addressing the prevalent challenge of artifact contamination and utilizing advanced analytical 
techniques in hybrid approach for ocular artifact removal and deep learning to improve 
classification accuracy. The study begins by discussing the significance of EEG signals in 
clinical diagnosis and delves into the various types of artifacts that commonly disrupt these 
readings, evaluating existing denoising strategies to highlight their inadequacies. Subsequent 
efforts were directed towards a comprehensive literature review that scrutinizes past approaches 
to EEG denoising and seizure classification, which lays the groundwork for the thesis by 
identifying the current gaps in research. 
A novel denoising technique that integrate ICA and DWT to remove ocular artifacts and a newly 
enhanced deep learning model - a Modified Gated Recurrent Unit (MGRU) designed to 
overcome prevalent issues in seizure classification, such as slow convergence rates and low 
learning efficiency. The results of this empirical evaluation demonstrate the superiority of the 
new approaches, which not only enhance the purity of EEG signals post-artifact removal but also 
improve the accuracy and reliability of seizure classification outcomes. The cleaned EEG data 
leads to a notable increase in classification accuracy, attaining an impressive 99.50% compared 
to 98.84% with the existing M-GRU approach. The proposed method classification results show 
an accuracy of 99.5%.  Fukumori et al. [43] claimed an accuracy of 90.2% with a neural network 
method, RNN. Pisano et al. [44] achieved 98.84% accuracy with CNN. Liu et al. [45] designed a 
model with an accuracy of 96% by using CNN, LSTM, and GRU. Further, Jaafar and 
Mohammadi [46] presented an LSTM-based model with 97.75% accuracy. Two other models, 
1D-CNN, LSTM, and GRU, were proposed by Chen et al. [11] and Acharya et al. [47] with 
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96.82% accuracy with GRU and 88.67% accuracy with CNN, respectively.The comparative 
analysis with other DL models is depicts in Figure11. 

 
Figure11. A Comparative Analysis of Existing DL Methods For Seizure Classification 

 
6. Conclusions& Future directions 

Electroencephalography or EEG is a technique routinely used for recording the natural electrical 
impulses and functioning of the brain over time. This non-invasive method offers various 
advantages, including affordability, widespread availability, and precise timing of brain activity. 
These signals are mostly contaminated with artifacts such as ocular, muscle and due to body 
movement or some external environmental interferences. This article discusses the use of the 
Discrete Wavelet Transform (DWT) approach, with the optimal 'db7' wavelet family, for 
removing ocular (EOG) artifacts from EEG datasets. In addition to that, we also applied a deep 
learning model known as a modified GRU to classify seizure patterns within the EEG signals—
distinguishing whether they were epileptic or normal. The results were assessed on two different 
types of EEG sets—those with artifacts and those with cleaned signals. The findings showed that 
clean data produced superior results in terms of accuracy, precision, recall, and F1-score for the 
Modified GRU model. In summary, through pre-processing elimination of artifacts enables the 
identical model to attain superior outcomes, highlighting the importance of artifact removal for 
electroencephalography-based classification. The proposed Modified-GRU model is capable of 
learning robust EEG features. This indicates that the model has the potential to develop accurate 
and reliable EEG-based BCIs in real-world settings. In the conclusion section, The authors 
should explicitly write down the manuscript's contribution based on the results to answer the 
research questions. The conclusion contains a summary of what is learned from the results 
obtained, what needs to be improved in further study. Other common features of the conclusions 
are the benefits and applications of the research, limitation, and the recommendations based on 
the results obtained.  
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