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ABSTRACT:  

Brain tumor segmentation in magnetic resonance imaging 

(MRI) plays a pivotal role in early diagnosis and 

treatment planning. Various segmentation techniques 

have been proposed, with texture analysis emerging as a 

promising method for extracting meaningful features 

from MRI images. This research paper presents a 

comprehensive comparison of existing brain tumor 

segmentation techniques that utilize texture analysis. The 

study covers a range of state-of-the-art methods, 

including statistical, model-based, and deep learning 

approaches, evaluating their performance in terms of 

accuracy, sensitivity, specificity, and computational 

efficiency. We explore the impact of different texture 

features, such as gray-level co-occurrence matrix 

(GLCM), Gray-level run-length matrix (GLRLM), and 

local binary pattern (LBP), on segmentation results. 

Additionally, the research investigates the robustness of 

these techniques across diverse MRI datasets and tumor 

types, considering factors such as image resolution, noise, 

and tumor heterogeneity. The experimental evaluations 

are conducted on benchmark datasets, and the results are 

analysed comprehensively to provide insights into the 

strengths and limitations of each approach. This research 

aims to guide researchers and practitioners in selecting 

appropriate texture-based segmentation methods based on 

specific clinical requirements and imaging conditions. 
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1. INTRODUCTION  

 

Medical image analysis relies heavily on brain tumor segmentation, which is necessary for 

locating tumor-affected regions in the brain. This step is critical for precise location, treatment 

course, and observing disease progression. Due to its high resolution and soft tissue contrast, 

magnetic resonance imaging (MRI) stands out as the preferred non-invasive method for 

detecting brain tumors. In any case, conventional segmentation techniques depending on 

manual techniques are restricted by their incompatibility to image intensity variations, 

requiring extensive manual efforts and bringing about low accuracy. 

 

The segmentation techniques can be comprehensively ordered into manual, semi-automatic, 

and fully automatic techniques. Expert manual segmentation is accurate but time-consuming, 

preventing scalability. Semi-automatic strategies require negligible client mediation yet include 

tedious associations. Machine learning (ML) and deep learning (DL) are fully automatic 

methods that aim to improve efficiency, consistency, and scalability. However, they have the 

tendency to necessitate large annotated datasets and present computational difficulties.  

Utilizing their capacity to automatically learn hierarchical representations from data, 

convolutional neural networks (CNNs) have demonstrated superior performance in medical 

image segmentation tasks in recent years. In spite of this, the understanding of carefully 

assembled features and CNNs in brain tumor segmentation remains underexplored in the 

literature. Our review tends to this shortcoming by proposing an original hybrid approach that 

joins handcrafted features with CNNs, meaning to upgrade the general display of brain tumor 

segmentation in MRI scans. 

 

To achieve high accuracy and robustness, our hybrid model combines CNNs with a variety of 

handcrafted features, such as intensity, texture, and shape-based features. The proposed method 

outperforms both individual CNN-based approaches and conventional handcrafted feature-

based methods in terms of its ability to generalize to data that has not been seen. Performance 

is estimated against cutting edge segmentation models utilizing standard benchmark datasets, 

with results showing high proficiency in view of measurements, for example, segmentation 

accuracy, Dice score, specificity, and sensitivity. Our research has implications for real-world 

clinical applications, where precise and effective segmentation of brain tumors is crucial. 

 

2. LITERATURE REVIEW  

 

Brain tumor segmentation in magnetic resonance imaging (MRI) is the foremost requirement 

in clinical image examination, with applications in diagnosis, therapy planning, and disease 

progression. Different procedures have been utilized to accomplish precise and solid 

segmentation, with a specific spotlight on texture examination techniques. This paper aims to 

give an outline of existing investigations that consider brain tumor segmentation procedures in 

MRI images utilizing texture examination, featuring the qualities, restrictions, and patterns in 

this field. 

 

2.1 Segmentation of Brain Tumors Using Texture Analysis: 

Texture analysis assumes an important part in portraying the spatial distribution of textures in 

clinical pictures, giving important data about tissue heterogeneity. Techniques for texture 

analysis can help distinguish between healthy and pathological tissues in the context of 

segmenting brain tumors. These techniques shed light on the intricate patterns that exist within 

tumor regions. 
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2.2 Conventional High-quality Feature-Based Approaches: 

Early ways to deal with brain tumor segmentation frequently depended on carefully assembled 

texture features extricated from X-ray pictures. Most of the time, intensity-based features like 

mean, median, and standard deviation were used, as well as texture-based features like the 

gray-level co-occurrence matrix (GLCM) and local binary patterns (LBP). Focusing on these 

routine techniques featured their restrictions in dealing with variations in image intensities and 

the requirement for comprehensive manual examination, prompting a loss in segmentation and 

accuracy. 

 

2.3 Progressions in AI Based Strategies: 

AI (ML) methods, especially support vector machines (SVM), Random Forest (RF), and k-

nearest neighbours (k-NN), have been utilized related to texture examination for brain tumor 

segmentation. These strategies expected to further develop effectiveness and versatility via 

automation of the component choice interaction. While these ML-based approaches show 

upgraded performance contrasted with customary techniques, they actually confronted 

difficulties connected with versatility. 

 

2.4 The Rise of Deep Learning and Convolutional Neural Networks (CNNs): 

The appearance of deep learning, especially convolutional neural networks (CNNs), improved 

clinical image segmentation, including brain tumor localization. CNNs consequently gain 

progressive representations from data, catching complex examples and designs. Comparing 

CNN-based segmentation methods for brain tumors, such as U-Net, V-Net, and DeepMedic, 

has been the focus of numerous studies. CNNs exhibited prevalent implementation by utilizing 

location specific highlights, conquering issues connected with intensity varieties, and adjusting 

to different imaging conditions. 

 

2.5 Difficulties and Important Entry Points in Mixture Approaches: 

Patterns in brain tumor segmentation research include the investigation of semi and semi-

automatic methodologies that consolidate handcrafted features with CNNs. These 

methodologies plan to saddle the interpretability and area information on handcrafted features 

while profiting from the inherent learning abilities of CNNs. Hybrid models have the potential 

to improve robustness, precision, and generalization, as evidenced by recent studies' promising 

outcomes. 

 

2.6 Metrics and Benchmark Datasets for Evaluation: 

Similar examinations in tumor segmentation utilize different assessment measurements, 

including segmentation accuracy, Dice score, specificity, and sensitivity. Benchmark datasets, 

like the BraTS challenge datasets, are usually used to evaluate the performance of various 

division procedures. These datasets empower normalized assessments and work with 

reasonable investigations across assorted techniques. 

 

3. METHODOLOGY  

 

In the realm of medical image analysis, handcrafted feature-based methods have been 

extensively employed for tasks such as brain tumor segmentation. These techniques leverage 

machine learning (ML) algorithms to segment images, relying on engineered features that 

characterize various image qualities. Handcrafted features are categorized into three types: 

intensity-based, texture-based, and shape-based. Intensity-based features capture local 

intensity distribution, providing insights into abnormal tissue regions. Texture-based features 

describe spatial arrangements of intensities, offering valuable information on the complexity 
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of tumor regions. Shape-based features elucidate geometric properties, aiding in differentiation 

based on size, shape, and boundary characteristics. ML algorithms like random forests (RF), 

support vector machines (SVM), and k-nearest neighbors (k-NN) are trained post-feature 

extraction. However, the manual tuning required for these methods limits their precision and 

adaptability to diverse imaging conditions. 

On the other hand, convolutional neural network (CNN)-based methods have transformed 

image recognition and segmentation by automatically learning features from data, eliminating 

the need for manual engineering. Comprising layers like convolutional, pooling, and fully 

connected layers, CNNs learn hierarchical representations, enhancing performance in image 

analysis tasks. Architectures like U-Net, V-Net, and DeepMedic have demonstrated success in 

brain tumor segmentation, with U-Net's symmetric encoder-decoder architecture and skip 

connections enabling accurate boundary localization. While CNNs excel in capturing complex 

patterns, they demand large, annotated datasets for training and can be computationally 

expensive. 

To address these challenges, hybrid approaches have emerged, aiming to combine handcrafted 

features and DL techniques for enhanced medical image segmentation. Strategies include 

integrating handcrafted features at different levels of the CNN architecture, such as input 

channels, feature maps, or decision levels. Concatenating handcrafted features with deep 

features or injecting them into intermediate layers allows the model to leverage both types, 

encouraging complementary learning and robust feature representations. Hybrid models have 

shown improved performance compared to individual methods in various medical imaging 

tasks, showcasing the potential of synergizing domain knowledge and automated feature 

learning. 

Various strategies, such as translation, noise addition, rotation, and shearing, have been 

employed to augment MRI datasets, thereby improving the performance of tumor 

segmentation. Khan et al. demonstrated the efficacy of noise addition and shearing in 

expanding the dataset size, resulting in enhanced accuracy for classification and tumor 

segmentation tasks. Similarly, Dufumier et al. utilized rotation, random cropping, noise 

addition, translation, and blurring to augment their dataset, leading to improved performance 

in age and type classification predictions. Elastic deformation, rotation, and scaling were 

identified in different studies as effective techniques to simultaneously enhance tumor 

segmentation and accuracy. The simplicity and effectiveness of these techniques contribute to 

their common use across various studies. 

Beyond traditional augmentation methods, researchers have explored the generation of 

synthetic images to fulfil specific tasks. Notably, the hybrid method has gained popularity, 

involving the combination of patches from two randomly selected images to generate new 

synthetic images. While the literature showcases the application of diverse datasets, each with 

varying image quantities, researchers have also employed different network architectures in 

their studies. Consequently, the results obtained are dependent upon the specific techniques 

chosen by individual researchers.  

 

3.1  Preprocessing 

The preprocessing stage is fundamental in preparing MR images for subsequent human or 

machine vision system processing. Its objectives include enhancing the visual quality of MR 

images, improving the signal-to-noise ratio, eliminating irrelevant noise and undesired 

background components, smoothing the inner regions, and preserving edges. A key method 

employed for signal-to-noise ratio enhancement involves adaptive contrast enhancement using 

a modified sigmoid function. 
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Skull stripping is a critical step in biomedical image analysis, particularly for examining brain 

tumors in MR images. This process involves removing non-brain tissues, such as fat, skin, and 

skull, to facilitate effective analysis. Various techniques exist for skull stripping, including 

automatic methods using image contours, segmentation and morphological operations, and 

those based on histogram analysis or a threshold value. This study adopts a threshold-based 

skull stripping technique, eliminating extraneous tissues through a threshold operation.  

 

Segmentation and morphological operations are pivotal for identifying infected brain MR 

regions. In the segmentation process, the pre-processed brain MR image undergoes 

thresholding, with pixel values exceeding the chosen threshold mapped to white and others to 

black. This results in the creation of distinct regions around infected tumor tissues. 

Subsequently, an erosion operation is applied to eliminate white pixels. The eroded region and 

the original image are then divided into two equal parts, with the black pixel region from the 

erosion operation serving as a brain MR image mask. Berkeley wavelet transformation is 

employed for effective segmentation, wherein wavelets are utilized as functions defined over 

finite time intervals with an average value of zero. This transformation allows the study of 

different frequency components separately, contributing to precise segmentation of brain MR 

images. 

 
The Berkeley wavelet transform (BWT), as explained in the literature is described as a two-

layered triadic wavelet transform relevant to flag or picture handling. Like other wavelet 

changes, for example, the mother wavelet change, the BWT calculation works with the 

transformation of information from a spatial structure into the transitory space recurrence. The 

BWT stands apart for its viability in addressing picture changes, offering a total and 

orthonormal portrayal. This indicates that the transform keeps the original data's orthogonality 

and completeness, making it a reliable tool for signal and image processing applications. The 

usage of triadic wavelets in the BWT improves its capacity to catch complex specimens and 

designs inside images, adding to a far reaching and productive depiction in the transient space. 

 
The essence of morphological operations lies in rearranging the relative order of pixel values, 

focusing on their spatial arrangement rather than their mathematical values. As such, these 

operations are particularly well-suited for processing binary images. The fundamental 

morphological operations are dilation and erosion. Dilation operations are designed to expand 

the pixel boundaries of an object, effectively adding pixels to the object's boundary region. 

Conversely, erosion operations aim to reduce the pixels from the boundary region of objects, 

refining the object's shape. The decision to add or remove pixels is contingent upon the 

structuring element defined by the selected image, allowing for precise adjustments to the 

boundary regions based on the structural characteristics of the image. 

 

Feature Extraction 

Texture analysis, a step vital to image understanding, includes extricating more higher-level 

data from images, incorporating limitations like shape, surface, variety, and difference. This 

examination fills in as a significant component in both human visual discernment and AI 

frameworks. A fundamental work by Haralick et al. presented the Gray Level Cooccurrence 

Matrix (GLCM) and surface elements as broadly involved devices in image examination 

applications. This strategy includes a two-step process for feature extraction from clinical 
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pictures. At first, the GLCM is processed followed by the determination of texture features 

extracted from GLC. Given the unpredictable designs of different brain tissues like white 

matter (WM), grey matter (GM), and cerebrospinal liquid (CSF) in brain MRI images, the 

extraction of applicable features becomes pivotal. Textural discoveries and examination 

assume an important part in further developing finding, tumor development at various stages, 

and evaluating treatment responses. A few fundamental accurate features, including Mean (M), 

are processed by adding all pixel values in a picture and dividing by the complete number of 

pixels. 

 
Standard Deviation (SD). The standard deviation is the second focal acting as a measure of 

inhomogeneity. A higher cost shows better differentiation of edges of a image. 

 
 

Support Vector Machine (Svm) 

The original Support Vector Machine (SVM) algorithm, credited to Vladimir N. Vapnik, went 

through additional improvement by Cortes and Vapnik in 1993. This calculation, established in 

regulated learning methods, is flexible in its application, going from one-class grouping issues 

to n-class order issues. The center target of the SVM calculation is to address nonlinear order 

difficulties by changing them into straight changes through the usage of a portion capability, 

and in this review, we utilized the Gaussian piece capability. The classification procedure is 

made simpler by this transformation, which improves the separation of nonlinear samples or 

data. According to the study's definition, the SVM algorithm basically creates a hyperplane that 

effectively separates two training classes. 

 
The SVM calculation's presentation can be assessed regarding exactness, awareness, and 

explicitness. 

 

4. RESULT  

 

To evaluate the viability of our calculation, we used two benchmark datasets alongside an extra 

dataset obtained from master radiologists. The last dataset included example pictures from 15 

patients, each containing 9 slices, and was organized by master radiologists. The primary 

benchmark dataset, the Digital Imaging and Communications in Medicine (DICOM) dataset, 

this dataset needed ground truth images for approval. The subsequent benchmark, the Brain 

Web dataset, comprised of three-dimensional simulated brain MR information acquired from 

different modalities, including T1-weighted, T2-weighted, and proton density weighted MR 

images. This dataset used different constraints, for example, slice thickness, noise levels, and 

intensity nonuniformity. Expert radiologists provided the third dataset, which included ground 

truth images for comparison of results and 135 images from 15 patients across all modalities.  
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Figure 1. MRI scan showing Glioblastoma 

 

The image segmentation proposed in this study was carried out utilizing Matlab 7.12.0 

(R2011a), working on the Windows 8 platform with an Intel Core i3 processor and 4 GB RAM. 

The original image, enhanced image, skull-stripped image, wavelet decomposed image, cluster 

(intense) segmented image, dice overlap image, and the tumor region with extracted area marks 

are all shown in Figures 1, 2, and 3. Assessment measurements like Mean Squared Error 

(MSE), PSNR, and Dice coefficient were utilized. A lower MSE and higher PSNR demonstrate 

better sign to-commotion proportion, while the Dice coefficient estimates the cross-over among 

automatic and manual segmentation. 

 

 
Figure 2. MRI scan in axial view showing the deformation of the brain structure due to 

a particularly infiltrating tumor mass 
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The k-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Adaptive Fuzzy Inference 

System (ANFIS), and Back Propagation accuracy values, both with and without feature 

extraction are considered. Notably, feature extraction exhibited implementation improvement 

across all classifiers, upgrading tumor localization precision from brain MR pictures. 

Our segmentation outranks cutting edge procedures, displaying predominant accuracy, 

sensitivity, and practically identical specificity. The significance of our proposed segmentation 

strategy in advancing brain tumour diagnosis from MR images is emphasized by the significant 

increase in sensitivity, which is especially important for radiologists and clinical doctors in 

surgical planning. 

 

 
Figure 3. Saggital view of the infiltrating tumor mass shown in figure 2 

 

5. CONCLUSION 

 

In patients with glial tumors, this study focused on the segmentation of brain tissues in MR 

images, separating normal tissues (white matter, gray matter, cerebrospinal fluid - background) 

from tumor-infected tissues. Tumor-infected tissues included both benign and malignant 

stages. Images of fifteen patients were utilized in the review, adding to the examination. 

Preprocessing methods were utilized to improve the SNR and relieve the effect of undesirable 

clutter. An edge-based skull stripping algorithm was applied for further enhancing 

segmentation results, trailed by the use of the Berkeley wavelet change for picture division. 

The characterization of cancer stages was accomplished utilizing a Support Vector Machine 

(SVM), which examined highlight vectors and growth region. 

The examination considered both texture based and histogram-based highlights, combined with 

a versatile classifier, for the tumor growth characterization in MR pictures. Experimental 

outcomes displayed the proficiency and exactness of the proposed calculation contrasted with 

manual recognition by radiologists or clinical specialists. Different execution measurements, 

including mean, Mean Squared Error (MSE), PSNR, accuracy, and Dice coefficient, showed 

the prevalent consequences of the proposed calculation. The proposed method's ability to 
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distinguish between normal and abnormal tissues in MR images is demonstrated by its 96.51% 

accuracy. Based on these findings, it appears that the proposed approach has a significant 

amount of potential for integration into clinical result support systems, facilitating radiologists' 

or clinical experts' primary screening and diagnosis. 

By investigating a selective scheme for the classifier, possibly combining multiple classifiers, 

and incorporating feature selection techniques, future efforts will focus on improving 

classification accuracy. This continuous investigation expects to additionally refine and 

upgrade the proposed approach for further developed brain tumor location and characterization 

in MR images. 
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