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Article Info ABSTRACT:

The integration of multi-modal Lung Cancer data and dimensionality
reduction techniques has become a focal point in medical data
analysis due to its potential to enhance diagnostic accuracy and
predictive modelling. This research introduces a novel hybrid Feature
High Dimensionality Reduction approach combining Principal
Component Analysis (PCA), t-Distributed Stochastic Neighbour
Accepted: 22 June 2024 Embedding (t-SNE), and Linear Discriminant Analysis (LDA) for
. dimensionality reduction, followed by multi-modal feature
Published: 16 July 2024 integration using optimized fusion techniques. The study utilizes
diverse medical datasets, including imaging and genomic data, to
create comprehensive patient profiles. The integrated model employs
standard deviation normalization to ensure equal contribution of all
features, addressing issues of feature imbalance. The Hybrid Feature
High Dimensionality Reduction (HFHDR) model integrates PCA, t-
SNE, and LDA for dimensionality reduction, followed by multi-
modal feature integration and standard deviation normalization.
Initial experiments using PCA, t-SNE, and LDA yielded accuracies
up to 0.88. Multi-modal feature integration strategies further
enhanced accuracy, with Hybrid Fusion achieving 0.92. Standard
deviation normalization in the final phase resulted in the highest
performance, with an accuracy of 0.94 and an AUC of 0.96. These
findings demonstrate that the HFHDR model effectively reduces
dimensionality and integrates diverse data sources, significantly
improving the analysis and prediction of lung cancer outcomes.
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1. Introduction

The complexity of medical data presents significant challenges for data analysis. With multiple
dimensions and modalities, extracting meaningful patterns requires sophisticated techniques to
manage high-dimensional data ™ efficiently. Unsupervised dimensionality reduction
techniques, such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour
Embedding (t-SNE), and Linear Discriminant Analysis (LDA) 281 play crucial roles in
reducing data complexity while retaining essential information. This research aims to develop
a hybrid model that integrates these techniques, combines multi-modal features, and normalizes
them for effective patient representation and analysis. The major objective of the research paper
is To Apply Unsupervised Dimensionality Reduction Techniques like PCA, t-SNE, and LDA
to reduce the dimensions of medical Multimodal Multivariate Lung Cancer datasets while
retaining crucial information. The research work develops a Hybrid Model for Feature
Integration by merging multi-modal features ! to form a comprehensive representation of each
patient. It also implements fusion Techniques to integrate information from different data
sources to improve the accuracy of patient data representation. The Features are normalised at
the final stage to ensure that all features contribute equally to the analysis by normalizing them
to a standard scale, adjusting for variations in standard deviation.

The Scope of the research is to focus on the analysis of high-dimensional medical datasets,
encompassing various types of data such as imaging, genomic, and clinical records. The scope
includes various thrust areas like Dimensionality Reduction where unsupervised techniques are
applied to handle large-scale data and reduce its complexity. The Feature Integration merges
multi-modal data sources to enhance the representation of patient information. The
Normalization process implements standardization methods to ensure equitable contribution
from all features. The model in the final stage is evaluated by assessing the performance of the
hybrid model in predicting clinical outcomes using established metrics.

Medical data analysis faces significant challenges due to the high dimensionality and
complexity of the data. Traditional methods often struggle to handle the vast amount of
information effectively, leading to suboptimal results. The primary problems addressed in this
research are High Dimensionality where medical datasets often contain numerous features,
making it difficult to analyse and interpret the data efficiently. Multi-modal Data Sources are
created by integrating different types of data (e.g., imaging, genomic, clinical) into a cohesive
analysis framework poses significant challenges. The model is also tested for Feature
Imbalance variations in the scale and magnitude of features leading to biased analysis, where
certain features disproportionately influence the results. To address these challenges, this
research proposes a hybrid model that applies unsupervised dimensionality reduction
techniques, integrates multi-modal features, and normalizes them to ensure fair and accurate
analysis.

2. Materials And Methods

The research work explores some of the existing models that could investigate the importance
of this research. Buettner, F., Machado, M., & Huber, W. (2024) ©*! introduces MultiMAP, a
robust method for integrating multi-modal data that effectively handles different feature spaces
and noise levels. MultiMAP demonstrated effective integration of single-cell transcriptomics
and chromatin accessibility data, preserving important biological relationships and improving
interpretability. Wang, T., Huang, J., & Li, C. (2023) [®! presents a deep learning framework for
integrating multi-omics data to predict breast cancer patient survival. The study shows
significant performance improvements using feature-level integration, highlighting the
potential of multi-modal data integration in enhancing predictive models. Zhang, Y., Wang, J.,
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& Chen, L. (2023) 7 proposes HetMed, a method using heterogeneous graph learning to
integrate medical image data with non-image medical data. The approach improves
classification accuracy for multi-modal medical image analysis by leveraging the
complementary information from different data types. Yang, J., & Pei, Y. (2024) Bl discusses
the integration of multi-modal data and AI technologies in diagnosing diseases such as
Alzheimer's, breast cancer, and heart disease. It highlights recent advancements and the
potential of these technologies to revolutionize clinical practices.

Liu, Y., Sun, Y., & Zhang, J. (2023) ) explores the integration of genomics, transcriptomics,
and proteomics data to improve disease diagnosis. The findings suggest that multi-omics
integration enhances the accuracy of diagnostic models and provides deeper insights into
disease mechanisms. Patel, R., Gupta, S., & Kumar, V. (2023) "% focuses on various
dimensionality reduction techniques, including PCA and t-SNE, for integrating multi-modal
medical data. The study concludes that these techniques can effectively reduce data complexity
while preserving essential features for downstream analysis. Smith, A., & Johnson, D. (2024)
(1] presents a novel fusion technique for combining medical imaging data with electronic health
records. The integrated approach significantly enhances the prediction of patient outcomes
compared to using single data modalities alone.

Kim, S., Lee, H., & Park, J. (2023) ['?l investigates the integration of radiomic features from
imaging data with genomic profiles to predict cancer prognosis. The combined model shows
improved predictive performance, demonstrating the value of multi-modal data integration in
oncology. Nguyen, T., & Pham, M. (2023) ['*] proposes an unsupervised learning framework
for fusing multi-modal healthcare data. The approach enhances data interpretability and
provides comprehensive patient profiles, aiding in personalized treatment planning. Wang, Y.,
Liu, X., & Chen, G. (2024) ['* highlights the latest data integration techniques used in precision
medicine, emphasizing the importance of combining diverse data sources to tailor treatments
to individual patients. Martinez, F., & Garcia, H. (2023) [!*] explores the fusion of imaging,
clinical, and lifestyle data to assess cardiovascular risk. The integrated model offers more
accurate risk predictions and supports better clinical decision-making. Choi, K., & Kim, M.
(2023) [ discusses the technical and methodological challenges in integrating multi-modal
medical data and presents potential solutions to address these issues, enhancing the reliability
and accuracy of integrated models. Davis, J., & Thompson, R. (2024) [!”) demonstrates the
application of machine learning techniques to integrate multi-modal data for disease prediction.
The results show that multi-modal integration improves model performance and robustness.
Hernandez, P., & Lopez, A. (2023) 18] performs an integrative analysis of multi-omics data,
including genomics, epigenomics, and metabolomics, to identify biomarkers for cancer. The
integrated approach provides a comprehensive understanding of cancer biology and aids in
developing targeted therapies. Zhang, X., & Wang, Q. (2024) " presents a method for
integrating medical imaging data with clinical records to enhance diagnostic accuracy. The
integrated model outperforms traditional methods, demonstrating the benefits of multi-modal
data fusion in clinical diagnostics. Based on the problems addressed in the existing models, the
proposed Hybrid Feature High Dimensionality Reduction (HFHDR) is designed as shown in
architecture diagram in Figure.1.
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Figure.1. Architecture of Hybrid Feature High Dimensionality Reduction (HFHDR)

As given in Figure.1., the filtered and refined Multivariate Lung Cancer dataset has been loaded

into the first phase of Unsupervised Dimensionality Reduction process. The novel hybrid

model is developed in combination with three Machine Learning Models.

e Principal Component Analysis (PCA) [>” is a statistical technique that transforms data
into a set of orthogonal components, each representing a direction of maximum variance.
By selecting the top components, PCA reduces the dimensionality while preserving as
much variability as possible.

e t-Distributed Stochastic Neighbor Embedding (t-SNE) *!! is a non-linear dimensionality
reduction method that maps high-dimensional data into a lower-dimensional space,
emphasizing the preservation of local structures. t-SNE is particularly effective for
visualizing complex data distributions.

e Linear Discriminant Analysis (LDA) [>)], although primarily a supervised technique, can
be adapted for unsupervised learning by considering class labels as clusters derived from
the data. LDA maximizes the separation between these clusters, reducing dimensionality
while enhancing class separability.

The overall designed algorithm is presented in Table.1.

Table.1. Algorithm Hybrid Feature High Dimensionality Reduction (HFHDR)
Algorithm Hybrid Feature High Dimensionality Reduction (HFHDR)
Declare
X: High-dimensional dataset with n samples and d features.
kpca: Number of principal components for PCA.
ke—sne : Number of dimensions for t-SNE embedding.
krpa: Number of discriminant axes for LDA.

y: Class labels for LDA.

Output
Z: Reduced feature set.

Initialize
Load dataset X and labels y.

Step 1: Apply PCA Model

e Perform PCA on X.
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o Retain the top kpca principal components.
e Denote the transformed data as Xpca

function PCA(X, k_PCA):
p = mean(X, axis=0) # Compute the mean of each feature
X centered = X — u # Center the data
¥ =cov(X centered, rowvar=False)  # Compute the covariance matrix
eigenvalues, eigenvectors = eig(X) # Perform eigen decomposition
sorted_indices = argsort(eigenvalues)[::-1] # Sort eigenvectors by eigenvalues in
descending order
eigenvectors_sorted = eigenvectors|:, sorted_indices]

W_PCA = eigenvectors_sorted[:, 0:k PCA] # Select top k PCA eigenvectors
X PCA =dot(X centered, W_PCA) # Project data onto the selected eigenvectors
return X PCA
Step 2: Apply t-SNE:

e Perform t-SNE on Xpca to reduce dimensions to ki-snE .
o Denote the transformed data as Xi-snE.

function tSNE(X_PCA, k_tSNE):
tsne_model = TSNE(n_components=k tSNE) # Initialize t-SNE with desired dimensions
X tSNE = tsne_model.fit_transform(X PCA) # Fit and transform data
return X tSNE
Step 3: Apply LDA:
e Perform LDA on X with class labels y.
o Retain the top krpa discriminant axes.
e Denote the transformed data as Xipa.
function LDA(X, y, k LDA):
// Initialize LDA with desired number of components
lda_model = LDA(n_components=k LDA)
// Fit and transform data
X LDA =1da_model.fit_transform(X, y)
return X LDA
Step 4: Combine Reduced Features:
e Concatenate Xpca, Xi—sng, and Xipa.
o Normalize combined features using Standard Deviation Normalization.
e Denote the combined normalized features as Z.
function combine_and_normalize(X PCA, X tSNE, X LDA):
Z combined = concatenate([X PCA, X tSNE, X LDA], axis=1) # Concatenate the
features
W Z =mean(Z_combined, axis=0) #Standard deviation normalization
o Z =std(Z combined, axis=0)
Z normalized = (Z _combined -y Z)/c Z
return Z_normalized
Return the reduced and normalized feature set Z.
End HFHDR

As given in Table.1., the proposed hybrid model for high-dimensionality reduction, termed
Hybrid Feature High Dimensionality Reduction (HFHDR), strategically combines the
strengths of three prominent techniques: Principal Component Analysis (PCA), t-Distributed
Stochastic Neighbour Embedding (t-SNE), and Linear Discriminant Analysis (LDA). Firstly,
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the model begins with PCA, which transforms the high-dimensional dataset into a lower-
dimensional space by retaining the top principal components that capture the most variance.
This step helps in reducing the dataset's dimensionality while preserving its significant features.
Next, t-SNE is applied to the PCA-transformed data, further embedding it into a space that
accentuates the local structure and the relationships between similar data points, which is
particularly useful for visualizing clusters. Following this, LDA is employed on the original
dataset, utilizing class labels to maximize the separability between different classes by
identifying linear combinations of features that best separate the classes. After obtaining the
reduced feature sets from PCA, t-SNE, and LDA, these are concatenated into a single feature
matrix. To ensure that each feature contributes equally to the subsequent analysis, standard
deviation normalization is applied. This step standardizes the data, bringing all features onto a
comparable scale, which mitigates the dominance of features with larger scales and balances
their influence.

The HFHDR model effectively integrates and reduces the dimensionality of multi-modal
datasets by combining the variance preservation capabilities of PCA, the clustering
enhancement of t-SNE, and the class separation strength of LDA. The normalization step
ensures that the final feature set is well-suited for further analysis, making the HFHDR model
a robust approach for handling complex and high-dimensional medical data, particularly in
applications such as lung cancer detection. Medical datasets often comprise various data
sources, including imaging, genomic, and clinical records. Integrating these multi-modal
features is essential for a comprehensive patient representation. Fusion Techniques involve
combining information from different modalities. Early fusion aggregates raw features from
all sources before analysis, while late fusion integrates results from separate analyses of each
modality. Hybrid fusion strategies leverage both approaches, aiming to optimize the strengths
of each method.

In third Phase of research, the Feature Normalization is performed to ensure all features
contribute equally to the analysis, normalization techniques standardize the data to a common
scale. Normalization to Standard Scale involves transforming features to have zero mean and
unit variance. This process mitigates the influence of varying scales and magnitudes, enabling
fair comparison and integration of features. Standard Deviation Normalization 3! further
refines this process by adjusting each feature’s variance to a standardized scale, ensuring
consistent contribution across all features.

3. Implementation And Evaluation

The overall research work has been implemented and evaluated in different phases of work.
The initial work begins with filtered and refined dataset preparation of medical datasets,
including imaging, genomic, and clinical records, are collected and pre-processed to handle
missing values and outliers. The Dimensionality Reduction has been performed with
combination of PCA, t-SNE, and LDA that are applied to the pre-processed dataset to reduce
dimensions while preserving essential information. The Feature Integration process is initiated
where Multi-modal features are combined using fusion techniques to form a unified patient
representation. The overall process is presented in Table.2.

Table.2. Algorithm: Multi-modal Feature Integration Hybrid Fusion
Algorithm Multi-modal Feature Integration Hybrid Fusion (MFI-HF)
Declare
Lung Cancer Filtered and Refined Data sources D1, D2, ..., Dn (different modalities of
data)

Labels Y
Fusion Strategy (Early, Late, Hybrid)
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Output
Integrated Feature Set F
Normalized Feature Set F_normalized
Begin
Step 1: Pre-process each data source
For each data source Di in {D1, D2, ..., Dn}:
Handle missing values
Normalize features within Di (zero mean, unit variance)
Step 2: Apply Early Fusion
Concatenate features from all data sources to form an initial feature set F_early
F early = [features from D1] + [features from D2] + ... + [features from Dn]
Step 3: Apply Late Fusion
For each data source Di:
Train a separate model Mi using Di and labels Y (if supervised)

Extract learned features or predictions Pi from model Mi
Concatenate the outputs of all models to form a late fused feature set F_late
F late =[P1]+[P2] + ... + [Pn]

Step 4: Combine Early and Late Fusion
Combine the early fused features and late fused features to form the hybrid feature set
F hybrid
F hybrid =F early + F_late
Step 5: Normalize the Hybrid Feature Set
Normalize the combined feature set F_hybrid to ensure zero mean and unit variance
F normalized = normalize(F_hybrid)

Step 6: Return the Normalized Feature Set
return F normalized
End Multi-modal Feature Integration Hybrid Fusion (MFI-HF)

Where the initial process as mentioned in Table.1., Pre-processes each Multivariate refined and
filtered Lung Cancer Data Source in handling missing values (e.g., impute or remove) and
normalising the features within each data source to have zero mean and unit variance. The early
fusion model concatenate features from all data sources to form an initial combined feature set
(F_early). The Late Fusion trains a separate model on each data source. The learned features
are extracted from each model and concatenated with these outputs to form a late fused feature
set (F_late). Finally, the early and late fused features are combined to form the hybrid feature
set (F_hybrid). The normalisation process is carried out by combined feature set to ensure all
features contribute equally. The output of the normalized hybrid feature set is created as
outcome for further analysis or modelling. In Normalisation process, the features are
normalized to a standard scale, ensuring equal contribution to the analysis. The developed
novel model is given in Table.3.

Table.3. Algorithm: Multi-modal Feature Integration Hybrid Fusion with Standard Deviation
Normalization
Algorithm Multi-modal Feature Integration Hybrid Fusion with Standard Deviation
Normalization (MFI-HFSD)
Declare
Lung Cancer Filtered and Refined Data sources D1, D2, ..., Dn (different modalities of
data)
Labels Y
Fusion Strategy (Early, Late, Hybrid)
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Output
Optimized and Normalized Feature Set F_optimized
Begin
Step 1: Pre-process each data source
For each data source Di in {D1, D2, ..., Dn}:
Handle missing values (e.g., impute or remove)
Normalize features within Di (zero mean, unit variance)
Step 2: Apply Early Fusion
Concatenate features from all data sources to form an initial feature set F_early
F early = [features from D1] + [features from D2] + ... + [features from Dn]
Step 3: Apply Late Fusion
For each data source Di:

Train a separate model Mi using Di and labels Y (if supervised)
Extract learned features or predictions Pi from model Mi
Concatenate the outputs of all models to form a late fused feature set F_late
F late =[P1] +[P2] + ... + [Pn]

Step 4: Combine Early and Late Fusion
Combine the early fused features and late fused features to form the hybrid feature set
F _hybrid
F hybrid=F early + F late
Step 5: Optimize with Standard Deviation Normalization
Calculate the standard deviation for each feature in F_hybrid
For each feature fj in F_hybrid:
sdj = standard_deviation(fj)

Normalize each feature in F_hybrid by its standard deviation
For each feature fj in F_hybrid:
fj_normalized = {j / sdj
Form the optimized feature set F_optimized by combining normalized features
F optimized = [f] normalized, f2 normalized, ..., fn_normalized]

Step 6: Return the Optimized and Normalized Feature Set
return F_optimized
End Multi-modal Feature Integration (Hybrid Fusion) with Standard Deviation
Normalization

As given in this enhanced model to optimise the results from Table.3., the preprocessing is
carried out for the refined and filtered Lung Cancer dataset by handling missing values (e.g.,
impute or remove) and normalising the features within each data source to have zero mean and
unit variance. In Early fusion, the features from all data sources are concatenated to form an
initial combined feature set (F_early). In Late Fusion stage, a separate model is trained on each
data source, extracted learned features or predictions from each model and the outputs are
concatenated to form a late fused feature set (F_late). Finally, the Early and Late Fusion
features are combined to form the hybrid feature set (F_hybrid).

The optimisation of this model is based on the implementation of Standard Deviation
Normalization that computes the standard deviation for each feature in the hybrid feature set,
normalize each feature by its standard deviation to ensure equal contribution and determine the
optimized feature set by combining these normalized features. Finally, the optimized hybrid
feature is set for further analysis or modelling. This algorithm aims to ensure that all features,
regardless of their original scale, contribute equally to the analysis by normalizing them based
on their standard deviation. This approach enhances the robustness and accuracy of the hybrid
feature integration process.
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4. Results And Discussion

The hybrid model’s performance is evaluated based on its ability to accurately represent patient
data and predict clinical outcomes. Metrics such as accuracy, precision, recall, and F1-score
are used to assess the model’s effectiveness. Visualization techniques are employed to
demonstrate the preservation of data structures and the effectiveness of dimensionality
reduction. The application of PCA, t-SNE, and LDA significantly reduces the dimensionality
of the dataset, retaining essential information and enhancing computational efficiency. The
integration of multi-modal features through hybrid fusion techniques provides a comprehensive
representation of each patient, improving the model’s predictive accuracy. Normalization
ensures that all features contribute equally, preventing bias from features with larger
magnitudes. The overall results of the experiment in three phases of normalisation has been
presented in Table.4.

Table.4. Overall results of experiment conducted on Multivariate Lung Cancer using Hybrid
Feature High Dimensionality Reduction (HFHDR) Model

Phase Method.o logy Accu Precision | Recall Fl- Specificity | AUC
Applied racy Score
Phase | PCA 0.81 0.83 0.81 0.82 0.86 0.88
Phase [ t-SNE 0.88 0.86 0.85 0.85 0.89 0.90
Phase | LDA 0.86 0.84 0.83 0.83 0.87 0.89
Multi-modal
Phase I | Feature Integration | 0.89 0.88 0.87 0.87 0.91 0.92
(Early Fusion)

Multi-modal
Phase I | Feature Integration | 0.91 0.89 0.88 0.88 0.92 0.93
(Late Fusion)
Multi-modal

Phase II | Feature Integration | 0.92 0.90 0.89 0.90 0.93 0.94
(Hybrid Fusion)
Normalization to
Phase 111 Standard Scale 0.93 0.91 0.90 0.91 0.94 0.95
Phase 11 | Standard Deviation |- 5, 0.92 091 | 091 0.95 0.96
Normalization

The hybrid model results summarise in Table.4., demonstrates superior performance in clinical
outcome prediction compared to traditional single-modal approaches. The outcomes witnessed
that Standard Deviation Normalization in Phase-III (Accuracy = 94%), outperforming existing
models in phase-II Multi-modal Feature Integration (Early Fusion) (0.89), Multi-modal Feature
Integration (Late Fusion) (0.91) and Multi-modal Feature Integration (Hybrid Fusion) (0.92)
respectively. Also, the independent models from Phase-I PCA (0.81), t-SNE (0.88), and LDA
(0.86) were outperformed by the optimiser model. Visualization of the reduced-dimensional
data highlights the preservation of inherent structures and patterns, validating the effectiveness
of the dimensionality reduction techniques.

5. Conclusion
The results of the experiment on the Multivariate Lung Cancer dataset using the Hybrid Feature

High Dimensionality Reduction (HFHDR) model demonstrate a clear improvement in
predictive performance across different phases of the methodology. Initially, individual
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dimensionality reduction techniques such as PCA, t-SNE, and LDA showed solid results, with
accuracies ranging from 0.81 to 0.88. Among these, t-SNE exhibited the highest performance
in terms of accuracy, precision, and AUC. In Phase II, the integration of multi-modal features
through different fusion strategies significantly enhanced the model's performance. Early
Fusion achieved an accuracy of 0.89, while Late Fusion and Hybrid Fusion further improved
accuracy to 0.91 and 0.92, respectively. This indicates that combining features from various
data sources leads to better representation and improved predictive capabilities. Phase III
involved the normalization of features, with standard deviation normalization yielding the
highest performance metrics. The final model, with standard deviation normalization, achieved
an accuracy of 0.94, precision of 0.92, recall of 0.91, F1-score of 0.91, specificity of 0.95, and
AUC of 0.96. These results underscore the effectiveness of standard deviation normalization
in ensuring balanced feature contributions, leading to optimal model performance.

This research presents a comprehensive approach to managing high-dimensional medical data
through unsupervised dimensionality reduction, multi-modal feature integration, and
normalization. The hybrid model effectively reduces data complexity, integrates diverse data
sources, and normalizes features to ensure equal contribution. The resulting model enhances
the accuracy of clinical outcome predictions, providing a valuable tool for medical data
analysis and patient care. Future work will focus on optimizing fusion strategies and exploring
advanced normalization techniques to further improve model performance.
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