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ABSTRACT:  

 

The integration of multi-modal Lung Cancer data and dimensionality 

reduction techniques has become a focal point in medical data 

analysis due to its potential to enhance diagnostic accuracy and 

predictive modelling. This research introduces a novel hybrid Feature 

High Dimensionality Reduction approach combining Principal 

Component Analysis (PCA), t-Distributed Stochastic Neighbour 

Embedding (t-SNE), and Linear Discriminant Analysis (LDA) for 

dimensionality reduction, followed by multi-modal feature 

integration using optimized fusion techniques. The study utilizes 

diverse medical datasets, including imaging and genomic data, to 

create comprehensive patient profiles. The integrated model employs 

standard deviation normalization to ensure equal contribution of all 

features, addressing issues of feature imbalance. The Hybrid Feature 

High Dimensionality Reduction (HFHDR) model integrates PCA, t-

SNE, and LDA for dimensionality reduction, followed by multi-

modal feature integration and standard deviation normalization. 

Initial experiments using PCA, t-SNE, and LDA yielded accuracies 

up to 0.88. Multi-modal feature integration strategies further 

enhanced accuracy, with Hybrid Fusion achieving 0.92. Standard 

deviation normalization in the final phase resulted in the highest 

performance, with an accuracy of 0.94 and an AUC of 0.96. These 

findings demonstrate that the HFHDR model effectively reduces 

dimensionality and integrates diverse data sources, significantly 

improving the analysis and prediction of lung cancer outcomes. 
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1. Introduction 

 

The complexity of medical data presents significant challenges for data analysis. With multiple 

dimensions and modalities, extracting meaningful patterns requires sophisticated techniques to 

manage high-dimensional data [1] efficiently. Unsupervised dimensionality reduction 

techniques, such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour 

Embedding (t-SNE), and Linear Discriminant Analysis (LDA) [2][3], play crucial roles in 

reducing data complexity while retaining essential information. This research aims to develop 

a hybrid model that integrates these techniques, combines multi-modal features, and normalizes 

them for effective patient representation and analysis. The major objective of the research paper 

is To Apply Unsupervised Dimensionality Reduction Techniques like PCA, t-SNE, and LDA 

to reduce the dimensions of medical Multimodal Multivariate Lung Cancer datasets while 

retaining crucial information. The research work develops a Hybrid Model for Feature 

Integration by merging multi-modal features [4] to form a comprehensive representation of each 

patient. It also implements fusion Techniques to integrate information from different data 

sources to improve the accuracy of patient data representation. The Features are normalised at 

the final stage to ensure that all features contribute equally to the analysis by normalizing them 

to a standard scale, adjusting for variations in standard deviation. 

The Scope of the research is to focus on the analysis of high-dimensional medical datasets, 

encompassing various types of data such as imaging, genomic, and clinical records. The scope 

includes various thrust areas like Dimensionality Reduction where unsupervised techniques are 

applied to handle large-scale data and reduce its complexity. The Feature Integration merges 

multi-modal data sources to enhance the representation of patient information. The 

Normalization process implements standardization methods to ensure equitable contribution 

from all features. The model in the final stage is evaluated by assessing the performance of the 

hybrid model in predicting clinical outcomes using established metrics. 

Medical data analysis faces significant challenges due to the high dimensionality and 

complexity of the data. Traditional methods often struggle to handle the vast amount of 

information effectively, leading to suboptimal results. The primary problems addressed in this 

research are High Dimensionality where medical datasets often contain numerous features, 

making it difficult to analyse and interpret the data efficiently. Multi-modal Data Sources are 

created by integrating different types of data (e.g., imaging, genomic, clinical) into a cohesive 

analysis framework poses significant challenges. The model is also tested for Feature 

Imbalance variations in the scale and magnitude of features leading to biased analysis, where 

certain features disproportionately influence the results. To address these challenges, this 

research proposes a hybrid model that applies unsupervised dimensionality reduction 

techniques, integrates multi-modal features, and normalizes them to ensure fair and accurate 

analysis. 

 

2. Materials And Methods 

 

The research work explores some of the existing models that could investigate the importance 

of this research. Buettner, F., Machado, M., & Huber, W. (2024) [5] introduces MultiMAP, a 

robust method for integrating multi-modal data that effectively handles different feature spaces 

and noise levels. MultiMAP demonstrated effective integration of single-cell transcriptomics 

and chromatin accessibility data, preserving important biological relationships and improving 

interpretability. Wang, T., Huang, J., & Li, C. (2023) [6] presents a deep learning framework for 

integrating multi-omics data to predict breast cancer patient survival. The study shows 

significant performance improvements using feature-level integration, highlighting the 

potential of multi-modal data integration in enhancing predictive models. Zhang, Y., Wang, J., 
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& Chen, L. (2023) [7] proposes HetMed, a method using heterogeneous graph learning to 

integrate medical image data with non-image medical data. The approach improves 

classification accuracy for multi-modal medical image analysis by leveraging the 

complementary information from different data types. Yang, J., & Pei, Y. (2024) [8] discusses 

the integration of multi-modal data and AI technologies in diagnosing diseases such as 

Alzheimer's, breast cancer, and heart disease. It highlights recent advancements and the 

potential of these technologies to revolutionize clinical practices. 

Liu, Y., Sun, Y., & Zhang, J. (2023) [9] explores the integration of genomics, transcriptomics, 

and proteomics data to improve disease diagnosis. The findings suggest that multi-omics 

integration enhances the accuracy of diagnostic models and provides deeper insights into 

disease mechanisms. Patel, R., Gupta, S., & Kumar, V. (2023) [10] focuses on various 

dimensionality reduction techniques, including PCA and t-SNE, for integrating multi-modal 

medical data. The study concludes that these techniques can effectively reduce data complexity 

while preserving essential features for downstream analysis. Smith, A., & Johnson, D. (2024) 
[11] presents a novel fusion technique for combining medical imaging data with electronic health 

records. The integrated approach significantly enhances the prediction of patient outcomes 

compared to using single data modalities alone. 

Kim, S., Lee, H., & Park, J. (2023) [12] investigates the integration of radiomic features from 

imaging data with genomic profiles to predict cancer prognosis. The combined model shows 

improved predictive performance, demonstrating the value of multi-modal data integration in 

oncology. Nguyen, T., & Pham, M. (2023) [13] proposes an unsupervised learning framework 

for fusing multi-modal healthcare data. The approach enhances data interpretability and 

provides comprehensive patient profiles, aiding in personalized treatment planning. Wang, Y., 

Liu, X., & Chen, G. (2024) [14] highlights the latest data integration techniques used in precision 

medicine, emphasizing the importance of combining diverse data sources to tailor treatments 

to individual patients. Martinez, F., & Garcia, H. (2023) [15] explores the fusion of imaging, 

clinical, and lifestyle data to assess cardiovascular risk. The integrated model offers more 

accurate risk predictions and supports better clinical decision-making. Choi, K., & Kim, M. 

(2023) [16] discusses the technical and methodological challenges in integrating multi-modal 

medical data and presents potential solutions to address these issues, enhancing the reliability 

and accuracy of integrated models. Davis, J., & Thompson, R. (2024) [17] demonstrates the 

application of machine learning techniques to integrate multi-modal data for disease prediction. 

The results show that multi-modal integration improves model performance and robustness. 

Hernandez, P., & Lopez, A. (2023) [18] performs an integrative analysis of multi-omics data, 

including genomics, epigenomics, and metabolomics, to identify biomarkers for cancer. The 

integrated approach provides a comprehensive understanding of cancer biology and aids in 

developing targeted therapies. Zhang, X., & Wang, Q. (2024) [19] presents a method for 

integrating medical imaging data with clinical records to enhance diagnostic accuracy. The 

integrated model outperforms traditional methods, demonstrating the benefits of multi-modal 

data fusion in clinical diagnostics. Based on the problems addressed in the existing models, the 

proposed Hybrid Feature High Dimensionality Reduction (HFHDR) is designed as shown in 

architecture diagram in Figure.1.  
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Figure.1. Architecture of Hybrid Feature High Dimensionality Reduction (HFHDR) 

As given in Figure.1., the filtered and refined Multivariate Lung Cancer dataset has been loaded 

into the first phase of Unsupervised Dimensionality Reduction process. The novel hybrid 

model is developed in combination with three Machine Learning Models.  

 Principal Component Analysis (PCA) [20] is a statistical technique that transforms data 

into a set of orthogonal components, each representing a direction of maximum variance. 

By selecting the top components, PCA reduces the dimensionality while preserving as 

much variability as possible. 

 t-Distributed Stochastic Neighbor Embedding (t-SNE) [21] is a non-linear dimensionality 

reduction method that maps high-dimensional data into a lower-dimensional space, 

emphasizing the preservation of local structures. t-SNE is particularly effective for 

visualizing complex data distributions. 

 Linear Discriminant Analysis (LDA) [23], although primarily a supervised technique, can 

be adapted for unsupervised learning by considering class labels as clusters derived from 

the data. LDA maximizes the separation between these clusters, reducing dimensionality 

while enhancing class separability. 

The overall designed algorithm is presented in Table.1. 

  

Table.1. Algorithm Hybrid Feature High Dimensionality Reduction (HFHDR) 

Algorithm Hybrid Feature High Dimensionality Reduction (HFHDR) 

Declare 
X: High-dimensional dataset with n samples and d features. 

kPCA: Number of principal components for PCA. 

kt−SNE : Number of dimensions for t-SNE embedding. 

kLDA: Number of discriminant axes for LDA. 

y: Class labels for LDA. 

Output 
Z: Reduced feature set. 

Initialize 
Load dataset X and labels y. 

Step 1: Apply PCA Model 
 Perform PCA on X. 



Amen Raj M / Afr.J.Bio.Sc. 6(6) (2024) 7177-7186                                              Page 7180 to 10 

 Retain the top kPCA principal components. 

 Denote the transformed data as XPCA  

 

function PCA(X, k_PCA): 

μ = mean(X, axis=0)   # Compute the mean of each feature 

X_centered = X – μ  # Center the data 

Σ = cov(X_centered, rowvar=False)      # Compute the covariance matrix 

eigenvalues, eigenvectors = eig(Σ)    # Perform eigen decomposition 

sorted_indices = argsort(eigenvalues)[::-1]  # Sort eigenvectors by eigenvalues in 

descending order 

eigenvectors_sorted = eigenvectors[:, sorted_indices] 

W_PCA = eigenvectors_sorted[:, 0:k_PCA]    # Select top k_PCA eigenvectors 

X_PCA = dot(X_centered, W_PCA) # Project data onto the selected eigenvectors 

return X_PCA 

Step 2: Apply t-SNE: 
 Perform t-SNE on XPCA to reduce dimensions to kt−SNE . 

 Denote the transformed data as Xt−SNE. 

 

function tSNE(X_PCA, k_tSNE): 

tsne_model = TSNE(n_components=k_tSNE)    # Initialize t-SNE with desired dimensions 

X_tSNE = tsne_model.fit_transform(X_PCA) # Fit and transform data 

return X_tSNE 

Step 3: Apply LDA: 
 Perform LDA on X with class labels y. 

 Retain the top kLDA discriminant axes. 

 Denote the transformed data as XLDA. 

function LDA(X, y, k_LDA): 

// Initialize LDA with desired number of components 

lda_model = LDA(n_components=k_LDA) 

// Fit and transform data 

X_LDA = lda_model.fit_transform(X, y) 

return X_LDA 

Step 4: Combine Reduced Features: 
 Concatenate XPCA, Xt−SNE, and XLDA. 

 Normalize combined features using Standard Deviation Normalization. 

 Denote the combined normalized features as Z. 

function combine_and_normalize(X_PCA, X_tSNE, X_LDA): 

Z_combined = concatenate([X_PCA, X_tSNE, X_LDA], axis=1)    # Concatenate the 

features 

μ_Z = mean(Z_combined, axis=0)  #Standard deviation normalization 

σ_Z = std(Z_combined, axis=0) 

Z_normalized = (Z_combined - μ_Z) / σ_Z 

return Z_normalized 

Return the reduced and normalized feature set Z. 

End HFHDR 

 

As given in Table.1., the proposed hybrid model for high-dimensionality reduction, termed 

Hybrid Feature High Dimensionality Reduction (HFHDR), strategically combines the 

strengths of three prominent techniques: Principal Component Analysis (PCA), t-Distributed 

Stochastic Neighbour Embedding (t-SNE), and Linear Discriminant Analysis (LDA). Firstly, 
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the model begins with PCA, which transforms the high-dimensional dataset into a lower-

dimensional space by retaining the top principal components that capture the most variance. 

This step helps in reducing the dataset's dimensionality while preserving its significant features. 

Next, t-SNE is applied to the PCA-transformed data, further embedding it into a space that 

accentuates the local structure and the relationships between similar data points, which is 

particularly useful for visualizing clusters. Following this, LDA is employed on the original 

dataset, utilizing class labels to maximize the separability between different classes by 

identifying linear combinations of features that best separate the classes. After obtaining the 

reduced feature sets from PCA, t-SNE, and LDA, these are concatenated into a single feature 

matrix. To ensure that each feature contributes equally to the subsequent analysis, standard 

deviation normalization is applied. This step standardizes the data, bringing all features onto a 

comparable scale, which mitigates the dominance of features with larger scales and balances 

their influence. 

The HFHDR model effectively integrates and reduces the dimensionality of multi-modal 

datasets by combining the variance preservation capabilities of PCA, the clustering 

enhancement of t-SNE, and the class separation strength of LDA. The normalization step 

ensures that the final feature set is well-suited for further analysis, making the HFHDR model 

a robust approach for handling complex and high-dimensional medical data, particularly in 

applications such as lung cancer detection. Medical datasets often comprise various data 

sources, including imaging, genomic, and clinical records. Integrating these multi-modal 

features is essential for a comprehensive patient representation. Fusion Techniques involve 

combining information from different modalities. Early fusion aggregates raw features from 

all sources before analysis, while late fusion integrates results from separate analyses of each 

modality. Hybrid fusion strategies leverage both approaches, aiming to optimize the strengths 

of each method. 

In third Phase of research, the Feature Normalization is performed to ensure all features 

contribute equally to the analysis, normalization techniques standardize the data to a common 

scale. Normalization to Standard Scale involves transforming features to have zero mean and 

unit variance. This process mitigates the influence of varying scales and magnitudes, enabling 

fair comparison and integration of features. Standard Deviation Normalization [23] further 

refines this process by adjusting each feature’s variance to a standardized scale, ensuring 

consistent contribution across all features. 

 

3. Implementation And Evaluation 

The overall research work has been implemented and evaluated in different phases of work. 

The initial work begins with filtered and refined dataset preparation of medical datasets, 

including imaging, genomic, and clinical records, are collected and pre-processed to handle 

missing values and outliers. The Dimensionality Reduction has been performed with 

combination of PCA, t-SNE, and LDA that are applied to the pre-processed dataset to reduce 

dimensions while preserving essential information. The Feature Integration process is initiated 

where Multi-modal features are combined using fusion techniques to form a unified patient 

representation. The overall process is presented in Table.2.  

 

Table.2. Algorithm: Multi-modal Feature Integration Hybrid Fusion 

Algorithm Multi-modal Feature Integration Hybrid Fusion (MFI-HF) 

Declare 

Lung Cancer Filtered and Refined Data sources D1, D2, ..., Dn (different modalities of 

data) 

Labels Y 

Fusion Strategy (Early, Late, Hybrid) 
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Output 

Integrated Feature Set F 

Normalized Feature Set F_normalized 

Begin 

Step 1: Pre-process each data source 

For each data source Di in {D1, D2, ..., Dn}: 

Handle missing values 

Normalize features within Di (zero mean, unit variance) 

Step 2: Apply Early Fusion 

Concatenate features from all data sources to form an initial feature set F_early 

F_early = [features from D1] + [features from D2] + ... + [features from Dn] 

Step 3: Apply Late Fusion 

For each data source Di: 

Train a separate model Mi using Di and labels Y (if supervised) 

Extract learned features or predictions Pi from model Mi 

Concatenate the outputs of all models to form a late fused feature set F_late 

F_late = [P1] + [P2] + ... + [Pn] 

Step 4: Combine Early and Late Fusion 

Combine the early fused features and late fused features to form the hybrid feature set 

F_hybrid 

F_hybrid = F_early + F_late 

Step 5: Normalize the Hybrid Feature Set 

Normalize the combined feature set F_hybrid to ensure zero mean and unit variance 

F_normalized = normalize(F_hybrid) 

Step 6: Return the Normalized Feature Set 

return F_normalized 

End Multi-modal Feature Integration Hybrid Fusion (MFI-HF) 

 

Where the initial process as mentioned in Table.1., Pre-processes each Multivariate refined and 

filtered Lung Cancer Data Source in handling missing values (e.g., impute or remove) and 

normalising the features within each data source to have zero mean and unit variance. The early 

fusion model concatenate features from all data sources to form an initial combined feature set 

(F_early). The Late Fusion trains a separate model on each data source. The learned features 

are extracted from each model and concatenated with these outputs to form a late fused feature 

set (F_late). Finally, the early and late fused features are combined to form the hybrid feature 

set (F_hybrid). The normalisation process is carried out by combined feature set to ensure all 

features contribute equally. The output of the normalized hybrid feature set is created as 

outcome for further analysis or modelling. In Normalisation process, the features are 

normalized to a standard scale, ensuring equal contribution to the analysis. The developed 

novel model is given in Table.3.  

 

Table.3. Algorithm: Multi-modal Feature Integration Hybrid Fusion with Standard Deviation 

Normalization 

Algorithm Multi-modal Feature Integration Hybrid Fusion with Standard Deviation 

Normalization (MFI-HFSD) 

Declare 

Lung Cancer Filtered and Refined Data sources D1, D2, ..., Dn (different modalities of 

data) 

Labels Y 

Fusion Strategy (Early, Late, Hybrid) 
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Output 

Optimized and Normalized Feature Set F_optimized 

Begin 

Step 1: Pre-process each data source 

For each data source Di in {D1, D2, ..., Dn}: 

Handle missing values (e.g., impute or remove) 

Normalize features within Di (zero mean, unit variance) 

Step 2: Apply Early Fusion 

Concatenate features from all data sources to form an initial feature set F_early 

F_early = [features from D1] + [features from D2] + ... + [features from Dn] 

Step 3: Apply Late Fusion 

For each data source Di: 

Train a separate model Mi using Di and labels Y (if supervised) 

Extract learned features or predictions Pi from model Mi 

Concatenate the outputs of all models to form a late fused feature set F_late 

F_late = [P1] + [P2] + ... + [Pn] 

Step 4: Combine Early and Late Fusion 

Combine the early fused features and late fused features to form the hybrid feature set 

F_hybrid 

F_hybrid = F_early + F_late 

Step 5: Optimize with Standard Deviation Normalization 

Calculate the standard deviation for each feature in F_hybrid 

For each feature fj in F_hybrid: 

sdj = standard_deviation(fj) 

Normalize each feature in F_hybrid by its standard deviation 

For each feature fj in F_hybrid: 

fj_normalized = fj / sdj 

Form the optimized feature set F_optimized by combining normalized features 

F_optimized = [f1_normalized, f2_normalized, ..., fn_normalized] 

Step 6: Return the Optimized and Normalized Feature Set 

return F_optimized 

End Multi-modal Feature Integration (Hybrid Fusion) with Standard Deviation 

Normalization 

 

As given in this enhanced model to optimise the results from Table.3., the preprocessing is 

carried out for the refined and filtered Lung Cancer dataset by handling missing values (e.g., 

impute or remove) and normalising the features within each data source to have zero mean and 

unit variance. In Early fusion, the features from all data sources are concatenated to form an 

initial combined feature set (F_early). In Late Fusion stage, a separate model is trained on each 

data source, extracted learned features or predictions from each model and the outputs are 

concatenated to form a late fused feature set (F_late). Finally, the Early and Late Fusion 

features are combined to form the hybrid feature set (F_hybrid).  

The optimisation of this model is based on the implementation of Standard Deviation 

Normalization that computes the standard deviation for each feature in the hybrid feature set, 

normalize each feature by its standard deviation to ensure equal contribution and determine the 

optimized feature set by combining these normalized features. Finally, the optimized hybrid 

feature is set for further analysis or modelling. This algorithm aims to ensure that all features, 

regardless of their original scale, contribute equally to the analysis by normalizing them based 

on their standard deviation. This approach enhances the robustness and accuracy of the hybrid 

feature integration process. 
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4. Results And Discussion 

 

The hybrid model’s performance is evaluated based on its ability to accurately represent patient 

data and predict clinical outcomes. Metrics such as accuracy, precision, recall, and F1-score 

are used to assess the model’s effectiveness. Visualization techniques are employed to 

demonstrate the preservation of data structures and the effectiveness of dimensionality 

reduction. The application of PCA, t-SNE, and LDA significantly reduces the dimensionality 

of the dataset, retaining essential information and enhancing computational efficiency. The 

integration of multi-modal features through hybrid fusion techniques provides a comprehensive 

representation of each patient, improving the model’s predictive accuracy. Normalization 

ensures that all features contribute equally, preventing bias from features with larger 

magnitudes. The overall results of the experiment in three phases of normalisation has been 

presented in Table.4.  

 

Table.4. Overall results of experiment conducted on Multivariate Lung Cancer using Hybrid 

Feature High Dimensionality Reduction (HFHDR) Model 

Phase 
Methodology 

Applied 

Accu

racy 
Precision Recall 

F1-

Score 
Specificity AUC 

Phase I PCA 0.81 0.83 0.81 0.82 0.86 0.88 

Phase I t-SNE 0.88 0.86 0.85 0.85 0.89 0.90 

Phase I LDA 0.86 0.84 0.83 0.83 0.87 0.89 

Phase II 

Multi-modal 

Feature Integration 

(Early Fusion) 

0.89 0.88 0.87 0.87 0.91 0.92 

Phase II 

Multi-modal 

Feature Integration 

(Late Fusion) 

0.91 0.89 0.88 0.88 0.92 0.93 

Phase II 

Multi-modal 

Feature Integration 

(Hybrid Fusion) 

0.92 0.90 0.89 0.90 0.93 0.94 

Phase III 
Normalization to 

Standard Scale 
0.93 0.91 0.90 0.91 0.94 0.95 

Phase III 
Standard Deviation 

Normalization 
0.94 0.92 0.91 0.91 0.95 0.96 

 

The hybrid model results summarise in Table.4., demonstrates superior performance in clinical 

outcome prediction compared to traditional single-modal approaches. The outcomes witnessed 

that Standard Deviation Normalization in Phase-III (Accuracy = 94%), outperforming existing 

models in phase-II Multi-modal Feature Integration (Early Fusion) (0.89), Multi-modal Feature 

Integration (Late Fusion) (0.91) and Multi-modal Feature Integration (Hybrid Fusion) (0.92) 

respectively. Also, the independent models from Phase-I PCA (0.81), t-SNE (0.88), and LDA 

(0.86) were outperformed by the optimiser model. Visualization of the reduced-dimensional 

data highlights the preservation of inherent structures and patterns, validating the effectiveness 

of the dimensionality reduction techniques.  

 

5. Conclusion 

 

The results of the experiment on the Multivariate Lung Cancer dataset using the Hybrid Feature 

High Dimensionality Reduction (HFHDR) model demonstrate a clear improvement in 

predictive performance across different phases of the methodology. Initially, individual 
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dimensionality reduction techniques such as PCA, t-SNE, and LDA showed solid results, with 

accuracies ranging from 0.81 to 0.88. Among these, t-SNE exhibited the highest performance 

in terms of accuracy, precision, and AUC. In Phase II, the integration of multi-modal features 

through different fusion strategies significantly enhanced the model's performance. Early 

Fusion achieved an accuracy of 0.89, while Late Fusion and Hybrid Fusion further improved 

accuracy to 0.91 and 0.92, respectively. This indicates that combining features from various 

data sources leads to better representation and improved predictive capabilities. Phase III 

involved the normalization of features, with standard deviation normalization yielding the 

highest performance metrics. The final model, with standard deviation normalization, achieved 

an accuracy of 0.94, precision of 0.92, recall of 0.91, F1-score of 0.91, specificity of 0.95, and 

AUC of 0.96. These results underscore the effectiveness of standard deviation normalization 

in ensuring balanced feature contributions, leading to optimal model performance. 

This research presents a comprehensive approach to managing high-dimensional medical data 

through unsupervised dimensionality reduction, multi-modal feature integration, and 

normalization. The hybrid model effectively reduces data complexity, integrates diverse data 

sources, and normalizes features to ensure equal contribution. The resulting model enhances 

the accuracy of clinical outcome predictions, providing a valuable tool for medical data 

analysis and patient care. Future work will focus on optimizing fusion strategies and exploring 

advanced normalization techniques to further improve model performance. 
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