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ABSTRACT:  

 

Pregnant women all over the globe face the serious health risk of 

gestational diabetes mellitus (GDM). A type of glucose intolerance, 

it is characterized by the development or discovery of high blood 

sugar levels during pregnancy. Not only does gestational diabetes 

mellitus (GDM) affect the mother's health, but it also puts the unborn 

child at risk of complications like macrosomia, birth defects, and the 

need for a cesarean section. The aforementioned issues can be 

addressed with the aid of machine learning. Hot Deck Imputation 

consistently outperforms No Imputation across all models tested 

(Bayes Net, Decision Table, IBK, Multi-Layer Perceptron, and 

Random Forest). The accuracy for Hot Deck Imputation ranges from 

95.97% to 96.97%, while No Imputation accuracy ranges from 

78.33% to 83.27%. This substantial difference is also reflected in 

other metrics such as Precision, Recall, ROC, and PRC, where Hot 

Deck Imputation shows higher values. The MLP model with Hot 

Deck Imputation achieves the highest accuracy at 96.43%, though it 

also has the longest processing time at 7.75 seconds. In contrast, the 

IBK model with Hot Deck Imputation offers a good balance of high 

accuracy (96.97%) and the fastest processing time (0.01 seconds). 

Overall, these results strongly suggest that Hot Deck Imputation 

significantly improves model performance across various algorithms 

compared to using datasets with missing values (No Imputation). 
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1. Introduction 

 

Variations in maternal age, ethnicity, and body mass index (BMI) contribute to the worldwide 

variation in the prevalence of gestational diabetes mellitus (GDM). Gestational diabetes 

mellitus prevalence varies by demographic and geographical area, impacting approximately 

7% of pregnancies globally. Along with the alarming rise in obesity and sedentary lifestyles, 

the incidence of GDM has been steadily climbing over the past few years. 

In order to reduce threats to the health of both the mother and the unborn child, it is essential 

to recognize gestational diabetes at an early stage and to manage the condition effectively. 

Glucose tolerance tests, usually administered in the second trimester of pregnancy, are the gold 

standard for diagnosing gestational diabetes mellitus type 1. On the other hand, new studies are 

looking at how machine learning models can predict GDM, which could lead to better and 

faster ways to identify people at risk. 

Objective: 

The following four areas could potentially guide this research into GDM prediction with ML 

models. 

Evaluate the efficacy of different machine learning models in predicting gestational diabetes 

mellitus (GDM) during pregnancy. These models include K-nearest neighbors (KNN), decision 

trees, random forests, and multi-layer perceptrons. With this goal in mind, we will evaluate 

each model by comparing their respective accuracy, recall, ROC, precision-recall, kappa, F, 

Matthews Correlation Coefficient, Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Relative Root Square Error (RRSE). 

Optimal Model Identification: Find the machine learning model that reliably and accurately 

predicts GDM. In order to improve early detection and intervention for gestational diabetes 

mellitus (GDM) during pregnancy, this objective seeks to determine the model that produces 

the most accurate and consistent predictions. 

Discover what factors influence GDM prediction. Determining how well machine learning 

models predict GDM depends on a number of parameters, including maternal demographics 

(age, ethnicity), maternal health indicators (BMI), and lifestyle factors. In order to develop 

more tailored strategies for evaluating and managing the risks associated with GDM, it is 

important to understand how these factors affect the accuracy of predictions. 

Recommend the best machine learning model for GDM prediction in order to influence clinical 

practice by turning research findings into practical insights. To achieve this goal, we must 

enhance maternal and fetal health outcomes by assisting healthcare practitioners in making 

evidence-based decisions regarding the use of predictive models to identify and treat 

gestational diabetes mellitus (GDM) during pregnancy. In the end, this study's results could 

change clinical practice by revealing the best GDM predictive model, which would allow for 

early diagnosis and treatment to boost fetal and maternal outcomes. 

The following is how the rest of the article is structured: Segment 2 depicts related works, 

whereas Segment 3 depicts materials and procedures. The discussions and results are accessible 

in Segment 4; lastly, in section 5, the conclusion is presented. 

 

2. Literature Survey 

 

Several studies have shown that ML-based models can be useful for predicting the risk of GDM 

and for clinical decision-making. These models use a variety of ML techniques, including as 

logistic regression, decision trees, and support vector machines, all of which have their 

advantages in terms of interpretability, scalability, and prediction performance. Notably, 

combining ML with other computational methods, such as genetic algorithms or deep learning, 

can make GDM prediction models even more accurate and widely used.[1-5]  Despite the 



T.Sujatha/ Afr.J.Bio.Sc. 6(6) (2024) 7074-7086                                                   Page 7076 to 13 

7076 

 

benefits, ML has not yet been applied to the prediction and management of GDM due to 

concerns over data quality, the interpretability of models, and clinical implementation. 

Thoroughly investigating ethical considerations, privacy concerns, and legal constraints is also 

essential before implementing ML-based healthcare solutions. However, there is significant 

hope that ML in conjunction with clinical expertise can revolutionize the treatment of GDM, 

paving the way for more targeted and personalized therapy that meets the specific requirements 

of each patient.  

By detecting subtle patterns in maternal health data, ML approaches can aid in the early 

detection of gestational diabetes mellitus (GDM), which may exist before the condition 

manifests clinically. the years 2011–2014 Nutritional counseling and glucose monitoring are 

two early treatments that can help limit the dangers of uncontrolled hyperglycemia during 

pregnancy, which can be made possible by early prediction of GDM. In addition, ML 

algorithms can enhance personalization of GDM management methods, optimization of 

treatment regimens, and maternal and fetal outcomes by analyzing patient-specific data.[5-10]. 

From 2019 to 2021, 489 individuals took part in this research. Prior to participating, patients 

provided their informed permission. The GD clinical decision support system made use of 

Bayesian optimization and deep learning. A decision-support model was developed by 

Bayesian optimization using RNN-LSTM. The model's specificity was 99% and sensitivity 

was 95% when it came to identifying patients at risk of GD. The area under the curve (AUC) 

for the model was 0.95 with a 95% confidence interval of 1.00. 0.001 is the p-value. In order 

to save time, cut expenses, and minimize side effects, the clinical diagnosis procedure avoids 

doing OGTT that is not necessary for patients who do not have a risk of GD [9]. A birth cohort 

with several features was used to evaluate AI models for GDM prediction. A possible etiology 

for gestational diabetes mellitus was explored in the research [10]. Diabetic machine learning 

approaches were deemed inadequate in this investigation. Predictive models for diabetes using 

machine learning were covered in this article. Clinical decision support for diabetes using 

machine learning was one of the many medical and technological concerns tackled in this study 

[11]. By utilizing robust machine learning methods, the GDM Predictor endeavors to foretell 

the occurrence of GDM in pregnant women. Biochemical markers including A1MG, TBA, 

BMG, CysC FPG, CO2, and CREA are also considered while designing a patient's treatment 

plan. [12]. Through the utilization of early trimester patient data and machine learning, Wu et 

al. developed an algorithm for the prediction of gestational diabetes. Within that range, the 

model's AUC was between 0.70 and 0.77. A smartphone app was able to detect gestational 

diabetes by utilizing conventional machine learning techniques. The program made use of 

information from 12,304 pregnant women [13]. A New-Stacking model was created in this 

study, and it has the potential to beat current models in terms of ROC, specificity, and accuracy. 

On the other hand, the SVM model was suggested for clinical prediction because to its high 

sensitivity [14]. The study discovered that placental dysfunction may impact fetal growth and 

development in gestational diabetes mellitus. Since there are no effective treatments for GDM 

and LGA at the moment, it may be worthwhile to investigate pathway inhibitors associated 

with factor alterations [15]. Algorithms developed for predicting infant development accurately 

identify gestational diabetes mellitus in pregnant mothers during the first trimester. Body 

composition and risk variables are part of the model. In order to identify high-risk pregnancies 

and refer moms for specialized care, hospitals may employ this technique [16]. Of the 735 

women surveyed, 190 were expecting a child. Pregnant women were included in both the test 

and training groups. An area under the curve (AUC) of 0.946 and a prediction accuracy of 

0.875 were achieved by the 20-predictor XG Boost ML model. The standard logistic regression 

(LR) model, on the other hand, relied on just four variables. Prediction accuracy was 0.786 and 

area under the curve was 0.752. In order to calibrate both variants, the HL test and calibration 

tables are utilized. According to DCA, the XG Boost ML model prioritizes treating high-risk 
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GDM women over all other women, or none at all. When it came to discriminatory prediction, 

the XG Boost machine learning model was ahead of the logistic regression model [17]. 

Accurately adjusted the settings on both instruments. Random forest regression was used to 

forecast GDM. Laboratory indicators, personal and family medical history, and the results of a 

physical examination were all part of the model. Early gestational diabetes mellitus (GDM) is 

accurately predicted in pregnant women by the trained prediction model [18]. In order to use 

the random forest approach to forecast early-stage GDM, you need to provide the positive and 

negative case distribution criteria in your sample datasets. In comparison to Xinhua Hospital 

Chongming branch (XHCM), SPNPH had 27,95 pregnancies.  

 

3. Materials and Methods 

 

Dataset Collection: 

This study analyzes a Kaggle dataset on Gestational Diabetes Mellitus (GDM). The collection 

contains 3525 cases with 17 variables that provide relevant GDM risk factor information. The 

GDM dataset meta data follows:  

 Case Number: Patient ID, a numeric value. 

 Patient Age: Ranging from 20 to 45 years, displayed as a number.  

 The number of pregnancies is specified as {0, 1, 2, 3, 4} as a numeric value.  

 Previous pregnancy gestation: categorized as {0, 1, 2}, represented as a numeric value. 

 The Body Mass Index (BMI) ranges from 13.3 to 45 as a quantitative value.  

 High-Density Lipoprotein levels (HDL) range from 15 to 70, expressed numerically. 

 Family History: Diabetes history (0=No, 1=Yes), represented as a numeric value. 

 The presence of unexplained prenatal loss is indicated by a numeric value (0=No, 1=Yes).  

 The history of huge child or birth default is classed as {0=No, 1=Yes} and expressed as a 

number value.  

 Polycystic Ovary Syndrome (PCOS) is categorized as {0=No, 1=Yes} as a numeric 

number.  

 The Systolic Blood Pressure (Sys BP) ranges from 90 to 185 and is represented 

numerically.  

 Dia BP: Numeric value representing Diastolic Blood Pressure (60-124).  

 Oral Glucose Tolerance Test (OGTT) results (80-403) are reported as numeric values. 

 The hemoglobin levels range from 8.8 to 18 and are expressed as a numeric value.  

 The presence of a sedentary lifestyle is indicated by a numeric number (0=No, 1=Yes). 

 Presence of prediabetes is categorized as {0=No, 1=Yes} and given as a numeric value.  

 Result (GDM/Non GDM): A string representing the outcome (0=Non GDM, 1=GDM).  

Despite its initial classification as a numeric data type, the outcome variable in this study—

which determines whether the individual has Gestational Diabetes Mellitus (GDM) or not—is 

treated as a string variable. One possible explanation is that the outcome variable is categorical, 

with 0 indicating no GDM and 1 indicating the existence of GDM. 

 

4. Methods 

 

Efficient strategies were implemented in Weka 3.9.5, one of the top open-source software, to 

achieve optimal results. [19-28] This study utilizes a mere 10% of the complete dataset and 

employs 10-fold cross validation for all categories. 
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Figure 1: Proposed System 
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5. Results and Discussions 

 

This section will now delve into the results and discussion of this work. Utilizing ML 

algorithms are employed to achieve optimal results. The abbreviations represent various 

models: BN (Bayesian Network), DT (Decision Tree), IBK (Instance-Based Learning), MLP 

(Multi-Layer Perceptron), and RF (Random Forest). 

 

Table 1: Performance of selected Machine Learning Algorithms by HDI Vs NI 

S.No Category Model Accuracy Precision Recall ROC PRC Time 

1 Hot Deck Imputation BN 96.91% 0.97 0.97 0.99 0.99 0.09 

2 No imputation BN 82.13% 0.89 0.82 0.88 0.88 0.13 

3 Hot Deck Imputation DT 95.97% 0.96 0.96 0.99 0.99 0.5 

4 No imputation DT 82.70% 0.83 0.83 0.89 0.88 0.41 

5 Hot Deck Imputation IBK 96.97% 0.97 0.97 0.97 0.96 0.01 

6 No imputation IBK 83.27% 0.83 0.83 0.75 0.8 0 

7 Hot Deck Imputation MLP 96.43% 0.96 0.96 0.98 0.99 7.75 

8 No imputation MLP 81.18% 0.81 0.81 0.85 0.87 1.34 

9 Hot Deck Imputation RF 96.82% 0.97 0.97 0.97 0.99 1.16 

10 No imputation RF 78.33% 0.79 0.79 0.87 0.87 0.58 

 

The above Table 1 shows that the performance of selected machine learning algorithm by using 

HDI and NI methods. 

HDI with BN model has accuracy (96.91%), precision (0.97), recall (0.99), ROC (0.99), PRC 

(0.99), time complexity (0.09 seconds); NI with DT model has accuracy (82.13%), precision 

(0.89), recall (0.82), ROC (0.88), PRC (0.88), time complexity (0.13 seconds);HDI with DT 

model has accuracy (95.97%), precision (0.96), recall (0.96), ROC (0.99), PRC (0.99), time 

complexity (0.5 seconds); NI with DT model has accuracy (82.70%), precision (0.83), recall 

(0.83), ROC (0.89), PRC (0.88), time complexity (0.41 seconds);HDI with IBK model has 

accuracy (96.97%), precision (0.97), recall (0.97), ROC (0.97), PRC (0.96), time complexity 

(0.01 seconds); NI with IBK model has accuracy (83.27%), precision (0.83), recall (0.83), ROC 

(0.75), PRC (0.80), time complexity (0 seconds);HDI with MLP model has accuracy (96.43%), 

precision (0.96), recall (0.96), ROC (0.98), PRC (0.99), time complexity (7.75 seconds); NI 

with MLP model has accuracy (81.18%), precision (0.81), recall (0.81), ROC (0.85), PRC 

(0.87), time complexity (1.34 seconds);HDI with MLP model has accuracy (96.82%), precision 

(0.97), recall (0.97), ROC (0.97), PRC (0.99), time complexity (1.16 seconds); NI with MLP 

model has accuracy (78.33%), precision (0.79), recall (0.79), ROC (0.87), PRC (0.87), time 

complexity (0.58 seconds). 
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Figure 2: Accuracy performance of selected learning by by HDI Vs NI methods 

 

The above diagram 2 shows that the performance of accuracy on selected ML models by HDI 

and NI methods. 

This bar graph compares the accuracy of five different machine learning models (BN, DT, IBK, 

MLP, and RF) under two conditions: Hot Deck Imputation (HDI) and No Imputation (NI). For 

each model, the accuracy with Hot Deck Imputation (HDI) is noticeably higher than with No 

Imputation (NI).All models using HDI achieve accuracies above 95%, with IBK showing the 

highest at 96.97%.Without imputation, accuracies range from about 78% to 83%, significantly 

lower than their HDI counterparts.The Random Forest (RF) model shows the most dramatic 

difference between HDI (96.82%) and NI (78.33%), an improvement of over 18 percentage 

points.The Decision Tree (DT) model has the smallest difference between HDI (95.97%) and 

NI (82.70%), though it's still a substantial improvement of over 13 percentage points.The 

pattern of improvement with HDI is consistent across all five models, suggesting that Hot Deck 

Imputation is effective regardless of the specific machine learning algorithm used. The IBK 

model with HDI shows the highest accuracy at 96.97%, closely followed by BN and RF with 

HDI. This visualization clearly demonstrates the significant positive impact of Hot Deck 

Imputation on model accuracy across various machine learning algorithms, reinforcing the 

importance of addressing missing data in improving model performance. 

Figure 3: Precision performance of selected learning by by HDI Vs NI methods 
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The above diagram 4 shows that the performance of precision on selected ML models by HDI 

and NI methods. This bar graph compares the precision of five different machine learning 

models (BN, DT, IBK, MLP, and RF) under two conditions: Hot Deck Imputation (HDI) and 

No Imputation (NI). For each model, the precision with Hot Deck Imputation (HDI) is higher 

than with No Imputation (NI). Models using HDI achieve precision scores of 0.96 or 0.97, 

indicating very high precision.Without imputation, precision scores range from 0.79 to 0.89, 

which are noticeably lower than their HDI counterparts. The Random Forest (RF) model shows 

the most significant difference between HDI (0.97) and NI (0.79), an improvement of 0.18.The 

Bayesian Network (BN) model has the smallest difference between HDI (0.97) and NI (0.89), 

though it's still a notable improvement of 0.08.The pattern of improvement with HDI is 

consistent across all five models, suggesting that Hot Deck Imputation effectively enhances 

precision regardless of the specific algorithm used.BN, IBK, and RF models with HDI all 

achieve the highest precision score of 0.97. This visualization clearly demonstrates that Hot 

Deck Imputation significantly improves model precision across various machine learning 

algorithms. Higher precision indicates that when these models predict a positive class, they are 

more likely to be correct, which is crucial in many real-world applications where false positives 

can be costly or problematic. 

Figure 4: Recall performance of selected learning by by HDI Vs NI methods 

 

The above diagram 4 shows that the performance of recall on selected ML models by HDI and 

NI methods. This bar graph compares the recall of five different machine learning models (BN, 

DT, IBK, MLP, and RF) under two conditions: Hot Deck Imputation (HDI) and No Imputation 

(NI). For each model, the recall with Hot Deck Imputation (HDI) is higher than with No 

Imputation (NI). Models using HDI achieve recall scores of 0.96 or 0.97, indicating very high 

precision. Without imputation, recall scores range from 0.79 to 0.83, which are noticeably 

lower than their HDI counterparts. The Random Forest (RF) model shows the most significant 

difference between HDI (0.97) and NI (0.79), an improvement of 0.18. The IBK (BN) model 

has the smallest difference between HDI (0.97) and NI (0.83). The pattern of improvement 

with HDI is consistent across all five models, suggesting that Hot Deck Imputation effectively 

enhances precision regardless of the specific algorithm used.BN, IBK, and RF models with 

HDI all achieve the highest precision score of 0.97. This visualization clearly demonstrates that 

Hot Deck Imputation significantly improves model precision across various machine learning 

algorithms. Higher precision indicates that when these models predict a positive class, they are 

more likely to be correct, which is crucial in many real-world applications where false positives 

can be costly or problematic. 
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Figure 5: ROC performance of selected learning by by HDI Vs NI methods 

 

The above diagram 5 shows that the Performance of ROC levels on selected ML models by 

HDI and NI methods. This bar graph compares the ROC (Receiver Operating Characteristic) 

scores of five different machine learning models (BN, DT, IBK, MLP, and RF) under two 

conditions: Hot Deck Imputation (HDI) and No Imputation (NI). For each model, the ROC 

score with Hot Deck Imputation (HDI) is higher than with No Imputation (NI). Models using 

HDI achieve very high ROC scores, ranging from 0.97 to 0.99. This indicates excellent 

discriminative ability. Without imputation, ROC scores range from 0.75 to 0.89, which are 

noticeably lower than their HDI counterparts. The IBK model shows the most significant 

difference between HDI (0.97) and NI (0.75), an improvement of 0.22. The BN model has the 

smallest difference between HDI (0.99) and NI (0.88), though it's still a notable improvement 

of 0.11.The pattern of improvement with HDI is consistent across all five models, suggesting 

that Hot Deck Imputation effectively enhances the ROC score regardless of the specific 

algorithm used.BN and DT models with HDI achieve the highest ROC score of 0.99, closely 

followed by MLP at 0.98.This visualization clearly demonstrates that Hot Deck Imputation 

significantly improves the ROC scores across various machine learning algorithms. Higher 

ROC scores indicate better model performance in distinguishing between classes, regardless of 

the chosen classification threshold. This improvement in discriminative ability is crucial for 

creating more reliable and effective predictive models. 

Figure 6: PRC performance of selected learning by by HDI Vs NI methods 
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The above diagram 6 shows that the Performance of PRC levels on selected ML models by 

HDI and NI methods. This bar graph compares the PRC (Precision-Recall Curve) scores of 

five different machine learning models (BN, DT, IBK, MLP, and RF) under two conditions: 

Hot Deck Imputation (HDI) and No Imputation (NI). For each model, the PRC score with Hot 

Deck Imputation (HDI) is higher than with No Imputation (NI). The Models using HDI achieve 

very high PRC scores, ranging from 0.96 to 0.99. This indicates excellent performance in 

balancing precision and recall. Without imputation, PRC scores range from 0.80 to 0.88, which 

are noticeably lower than their HDI counterparts. The IBK model shows the most significant 

difference between HDI (0.96) and NI (0.80), an improvement of 0.16.The DT model has the 

smallest difference between HDI (0.99) and NI (0.88), though it's still a notable improvement 

of 0.11.The pattern of improvement with HDI is consistent across all five models, suggesting 

that Hot Deck Imputation effectively enhances the PRC score regardless of the specific 

algorithm used.BN, DT, MLP, and RF models with HDI all achieve the highest PRC score of 

0.99, with IBK following closely at 0.96. This visualization clearly demonstrates that Hot Deck 

Imputation significantly improves the PRC scores across various machine learning algorithms. 

Higher PRC scores indicate better model performance in maintaining both high precision and 

high recall, which is particularly important in imbalanced classification problems or when the 

cost of false positives and false negatives differs. The consistent improvement across all models 

underscores the effectiveness of Hot Deck Imputation in enhancing overall model  

Figure 7: Time Consumption performance of selected learning by HDI Vs NI methods 

 

The above diagram 7 shows that the Performance of Time Consumptions to construct models 

on selected ML models by HDI and NI methods. The bar chart compares different machine 

learning models based on their processing time. The tallest bar corresponds to MLP (NI), 

indicating that this model takes significantly more time than others. The BN (HDI) model and 

BN (NI) model have similar processing times. The DT (HDI) model and DT (NI) model also 

show similar performance. The IBK (HDI) model and IBK (NI) model have comparable 

processing times. The RF (HDI) model and RF (NI) model exhibit similar behavior. 
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points (for RF). This indicates that Hot Deck Imputation is highly effective in improving model 

performance, likely by preserving important data relationships and distributions. 

Research work finds : 

 BN (Bayesian Network): Shows a 14.78% improvement in accuracy with imputation. 

 DT (Decision Tree): Accuracy increases by 13.27% with imputation. 

 IBK (Instance-Based K-nearest neighbor): Demonstrates a 13.70% accuracy boost. 

 MLP (Multi-Layer Perceptron): Exhibits a 15.25% increase in accuracy. 

 RF (Random Forest): Shows the most dramatic improvement, with an 18.49% increase in 

accuracy. 

Beyond accuracy, other metrics (Precision, Recall, ROC, PRC) consistently show better 

performance with Hot Deck Imputation. This suggests that the imputation method not only 

improves overall accuracy but also enhances the models' ability to correctly identify positive 

cases (precision) and capture all positive cases (recall). 

The time taken for model processing varies, with MLP taking significantly longer than other 

models, especially with imputation. The IBK model with Hot Deck Imputation stands out for 

its combination of high accuracy (96.97%) and extremely fast processing time (0.01 seconds). 

These results strongly support the use of Hot Deck Imputation as a preprocessing step in 

machine learning pipelines, especially when dealing with datasets that have missing values. It 

appears to be a robust method that can significantly enhance model performance across various 

algorithms and evaluation metrics. 
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