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1. INTRODUCTION 

Because of the growing global population and improving living standards in emerging 

nations, there are now significantly more cars on the road. On the other hand, owing to the 

depletion of fossil fuels and the rise in air pollution brought on by the creation of hazardous 

gases, traditional diesel/petrol vehicles are becoming less efficient and less popular. The primary 

source of air pollution and global warming is CO2, which is emitted by conventional internal 

combustion engine-based vehicles. Due to their reduced cost, efficiency, and absence of 

pollution, electric cars have lately seen a boom in popularity. Despite this, all-electric vehicle 

adoption is difficult [5], [11], [13] due to their short range. 

ABSTRACT 

Future transportation advancements are anticipated to be dependent on 

electric cars (EVs). The performance of batteries in terms of power density 

and energy density, however, remains a barrier to the widespread use of 
electric cars. The energy management system (EMS) of a hybrid electric 

vehicle (HEV) is necessary for the conversion from a conventional 

automobile to a pure electric vehicle (PEV). As hybrid electrical sources 
are often used to power HEVs, choosing the best one is essential for 

improving HEV performance, cutting fuel use, and lowering nitrogen oxide 

and hydrocarbon emissions. This research introduces the improved Grey 
Wolf Optimization (GWO), which replaced weak member strategy and 

spiralized learning scheme to enhance the exploitation and solution 

diversity of the proposed GWO approach to control the power sources in 
HEVs based on power demand and economy. The recommended GWO-

based EMS provides economical, pollution-free HEV management in 

addition to effective power source switching. 
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The current generation of electric vehicles can only drive 150–200 kilometres on a single 

battery charge, which limits their ability to travel large distances. By combining an internal 

combustion engine (ICE) with electrical power sources to power the vehicle, hybrid electric 

vehicles increase HEV performance in high-stakes situations. Researchers have created allied 

tiny power sources for HEV in addition to batteries since battery size and number are significant 

HEV restrictions. The rechargeable battery in plug-in hybrid electric vehicles (PHEVs) may be 

plugged in to boost battery capacity. PHEVs need both electrical and mechanical energy. Thus, 

in PHEVs, an EMS is needed to maintain the battery's and ICE's operational states (EMS). 

According to the different connection topologies between the electric motor, the battery, and the 

internal combustion engine, PHEVs are divided into three groups: series, parallel, and series-

parallel (EM). Flexible operating modes in series-parallel PHEVs may lead to reduced emissions 

and greater driving performance as compared to series or parallel PHEVs. A well-designed EMS 

for series-parallel PHEVs lowers emissions while increasing fuel economy (FE). The objective 

of EMS design is to maintain high efficiency with minimal complexity [9],[12],[14]. 

In a HEV, the primary objective of an EMS is to satisfy power requirements while using the 

least amount of fuel, creating the fewest emissions, and creating the most effective vehicle 

feasible. HEVs provide a difficult challenge for EMS because of their intricate design. EMSs are 

helpful in assessing the fuel economy of HEVs because they can accurately predict the power 

distribution of the engine and motors [15]. Fuzzy Rule-based EMSs are easy to set up and 

maintain. It can handle spoken and numerical data at the same time. Fuzzy logic control (FLC) 

has readily adjustable parameters and provides a high degree of control flexibility. Conventional 

fuzzy control, predictive fuzzy control, and adaptive fuzzy control are the three types of fuzzy 

rule-based EMS [6]. For parallel HEVs, Bathaee et al. [1] developed a fuzzy-based torque 

controller. The necessary battery SOC and ICE torque define the ICE operating points. 

According to Li et al. [3], the power distribution between the battery and the ice may be 

calculated using an FLC-based method, allowing the HEV engine to run more efficiently and 

emit less pollutants. The operating points for the PHEV's engine and motor were also created 

using fuzzy logic-based EMS. Fuel consumption as well as CO, CO2, and NOx emissions 

decreased as a result [7]. Using a rate limiter and fuzzy controller, Akar et al. [8] proposed EMSs 

for battery/ultra-capacitor EVs with multi-objective converters. 

Better results for the EMS of HEVs have been achieved because of the optimization 

algorithms' ability to handle multiple targets. Based on the different driving circumstances, 

Ramadan et al. [22] presented GWO and Artificial Bee Colony (ABC) for energy management in 
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the Fuel Cell HEV (FCHEV). Although GWO-based optimization yields superior results in 

dynamic contexts, ABC offers more commercially feasible options. With plug-in HEVs, it's 

essential to seamlessly go from conventional vehicle mode to pure EV mode (PHEVs). Ding et 

al. [18] looked into a Genetic Algorithm (GA) and a rule-based control method for the EMS of 

PHEVs. Nitrogen oxide and hydrocarbon emissions are reduced using the suggested strategy. 

The surrounding environment and possible driving conditions are very unpredictable in real-

world settings. Conventional EMS systems depend on rigid energy management standards, 

which are useless for solving problems right now [10]. Without any previous knowledge of 

driving or vehicle data, reinforcement learning (RL) algorithms are capable of developing EMS 

systems based on real-time driving conditions. Therefore, parametric research is necessary in 

order to increase fuel economy and develop a universal EMS model that can be used with any 

kind of HEV model [16]. The deep learning-based EMS for HEVs is slower because of the 

drawn-out training process and complicated topologies. Lian et al. [17] looked into the deep 

deterministic policy gradient (DDPG), which uses the expertise of the expert to lower the EMS 

method's training expenses. It featured a general approach that could be used to any kind of 

HEV, more stable operation, more fuel economy, speedier EMS algorithm training, and more. In 

an emergency, the fuel cell may be thought of as a reliable, effective, and portable source of 

power, but repeated usage will raise the system's cost [2],[4]. The EMS of HEVs has recently 

been subjected to a range of optimisation strategies, with promising outcomes in a number of 

dynamic situations. Nevertheless, there is a need to concentrate on the speedier management of 

EMS systems for HEVs with diverse power sources that give maximum power, longer battery 

life, cheaper cost, and can handle dynamic driving scenarios, road conditions, and environmental 

variables [19], [23-26]. 

The energy regulation in HEVs using hybrid electrical sources is discussed in this work. The 

following is a summary of the paper's main contributions: 

• Performance assessment of suggested optimization approach for various vehicle dynamics and 

restrictions.  

• For HEVs with hybrid electrical sources, an effective multi-objective improved Grey Wolf 

Optimization-based energy management technique is designed. 

The subsequent portions of the article are structured as follows: In Part 2, the proposed GWO-

based EMS for HEVs is covered in great length. The simulation results are thoroughly 

documented in Section 3, and several parametric modifications and their effects on the proposed 
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control strategy are explored. Section 4 presents ideas and future plans for improving the planned 

EMS system. 

2. METHODOLOGY 

A. System Development 

The proposed GWO-based control approach is shown in Fig. 1. Three hybrid electrical 

sources, including a battery bank, a fuel cell, and ultra-capacitors, power the HEV under 

consideration. The ultra-capacitor and fuel are connected to the DC connection using the 

recommended method's bidirectional buck-boost converter and unidirectional boost converter. It 

had a transmission model and a DC-AC converter for supplying electricity to the vehicle's 

engine. 

 

Fig. 1: Configuration of Different Power Sources for HEV 

B. Fuel Cell Model 

This research takes into account the Proton Exchange Membrane Fuel Cell (PEMFC) model, 

which converts the chemical energy of the reactant into electrical energy. The most common 

hydrogen and air-fueled fuel cell stacks may be represented using the universal fuel cell stack 

model provided by the Fuel Cell Stack block. The graphic below depicts a fuel cell electrical 

model that is dependent on fuel flow rate. A fundamental model and a comprehensive model are 

the two main parts of the stack model. 
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Fig. 2: Simulink Model for Fuel cell 

To switch between the two models, choose the level in the mask located under Model Detail 

Level in the block dialogue box. The Simulink model and the fuel cell equivalent circuit are 

shown in Fig. 2 and 3, respectively. 

 

Fig. 3: Equivalent Circuit of Fuel Cell 
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C. GWO for EMS 

The grey wolf is a member of the canid family. Grey wolves are the top predators in the food 

chain due to their position as apex predators. Grey wolves like to live in harmony with the other 

wolves in their pack. A wolf pack normally consists of 5 to 12 wolves. The complicated social 

dominance structure they have is fascinating to see. A male and a female serve as the alphas or 

leaders. The alpha wolf often is in charge of things like waking times, hunting plans, and 

sleeping arrangements. The pack is governed by the alpha's judgements. A fascinating social 

characteristic of grey wolves is group hunting, which they engage in in addition to their social 

hierarchy. 

The first chase, encirclement, and hounding of the prey until it stops moving are the three 

primary stages of grey wolf hunting. The following pursuit, encirclement, and approaching 

assault are the next three phases. Equations 1 and 2 depict the grey wolf around its prey. 

E⃗⃗ = |OB⃗⃗⃗⃗  ⃗. Xp
⃗⃗ ⃗⃗ (k) − X⃗⃗ (k)| (1) 

X⃗⃗ (k + 1) = Xp
⃗⃗ ⃗⃗ (k) − D⃗⃗ . E⃗⃗  (2) 

Where, k represent the iteration count, OB stands for the coefficient vector representing the 

obstacle in hunting, D stands for the distance related coefficient vector, X gives wolf’s position 

and Xp denotes prey position. Equations 3 and 4 are used to calculate the coefficient vectors 

(D⃗⃗  and OB⃗⃗⃗⃗  ⃗) needed for encirclement. 

D⃗⃗ = 2 × l × r1⃗⃗  ⃗ − l  (3) 

O⃗⃗ = 2 × r2⃗⃗  ⃗ (4) 

The GWO algorithms aims for reduction in the cost function as given in equation 5 and 6. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐺 = 𝐹𝑖𝑡𝐵 + 𝐹𝑖𝑡𝐹𝐶

+ 𝐹𝑖𝑡𝑈𝐶 

(5) 

  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝐺 = 𝛼1𝑃𝐵 + 𝛼2𝑃𝐹𝐶

+ 𝛼3𝑃𝑈𝐶  

(6) 

 

Here 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3  are cost coefficient of battery, fuel cell and ultra-capacitor respectively, 

𝑃𝐵, 𝑃𝐹𝐶and 𝑃𝑈𝐶denotes battery power, fuel cell power and ultra-capacitor power respectively. 

The algorithm for GWO based HEV EMS system is described as follow. 
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3. SIMULATION RESULTS AND DISCUSSIONS 

On a personal computer running Windows, the described system is simulated using 

MATLAB-Simulink. The simulation parameters for the various energy sources are summarized 

in Table1. 

Table 1: Parameter Configurations 

Parameter Value 

Battery Specification 

Rated Capacity 6.5 Ah 

Algorithm: GWO based HEV EMS 

Step 1: Initialization Phase 

Initialize the grey wolf population Xi (i = 1, 2, ..., n) 

N: Number of energy sources (FC, UC, and BT) 

Initialize a, A, and C 

Initialize the distributed generator parameters 

Initialize costing parameters of the generators 

Step 2: Calculate the fitness using equation 1 for each wolf 

𝑋∝ =the best wolf (search agent) 

𝑋𝛽  =the second best wolf (search agent) 

𝑋𝛿   =the third best wolf (search agent) 

Step 3: while (t < Max number of iterations) 

for each wolf  (search agent) 

Update the position of the current search agent by above equations 

Apply weak member replacement strategy 

Apply spiralized learning scheme 

end for 

Update a, A and C 

Calculate the fitness of all search agents 

Update 𝑋∝, 𝑋𝛽, and 𝑋𝛿  

t = t+1 

end while 

return 𝑋∝ (Best Solution) 
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Internal Resistance 2 mΩ 

Nominal Voltage 1.18 V 

Rated Capacity 6.5 Ah 

Maximum Capacity 7 Ah 

Fully Charged Voltage 1.39 V 

Nominal Discharge Current 1.3 A 

Capacity @ Nominal Voltage 6.25 Ah 

Exponential Voltage 1.28 V 

Exponential Capacity 1.3 Ah 

Fuel Cell Specification 

Type of cell PEMFC 

Number of Cells 8 

Nominal Stack efficiency (%) 55 % 

Voltage range 98 – 100 V 

Operating temperature (Celsius) 65 degree 

Nominal Air flow rate (lpm) 300 

Nominal fuel supply pressure (bar) 1.5 bar 

Nominal air supply pressure (bar) 1 bar 

H2 99.92 % 

O2 21 % 

H2O 1 % 
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Fig. 4 and 5, respectively, indicate the performance of the FC and battery. The voltage and 

power rating of the FC are shown in Fig. 4. The voltage and SOC of the battery as determined by 

simulation of the battery model are shown in Fig. 5. 

 

Fig. 4: Performance of FC 

 

Fig. 5: Performance of Battery 
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It is discovered that the suggested EMS model can power the HEV for a longer amount of 

time, as shown in Fig. 6, when the findings are confirmed for different values of the battery state 

of charge, ultra-capacitor charging, the need for FC power, and the demand for load. Since the 

system only utilises the FC power source in emergencies, petrol prices are decreased. 

 

Fig. 6: Simulation Results for GWO-Based EMS 

Less FC power is often used when the battery SOC is higher, according to observations. 

Nonetheless, FC power is often used to power HEVs when the battery SOC falls below 40% of 

the battery's entire capacity. Results from the simulation are done under dynamic vehicle and 

environmental conditions at different speeds. The simulation findings show that during the 

battery's discharge state, the recommended GWO aids in providing power to the HEV to meet its 

electrical needs. The GWO can manage the unpredictable behaviour of the driving cycle and 

offers the greatest control of power source selection at the lowest cost. By offering a variety of 
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pollution-free sources for the vehicle's fuel, it also demonstrates the HEV's zero-emission status. 

Deep learning algorithms have shown amazing contributions in a number of signal processing 

applications in recent years [27-30] because of their rapid conversions, high accuracy, reliability, 

and effectiveness. Future deep learning-based systems may be utilised to improve driving and 

vehicle condition data in order to provide synthetic data for simulations using the currently 

constrained datasets [21-33]. Once again, it may be used to improve accuracy, reduce control 

time, handle multiple EMS control objectives, and provide universal EMS for varied HEV types. 

The performance is compared based on the drop in the battery SOC and % energy efficiency. 

The energy efficiency is computed based on total power provided by the hybrid power sources 

divided by total power requirement. It is observed that the battery drop is sharp in fuzzy logic 

based EMS techniques [123] but small in GA tuned Fuzzy Logic [26], Deep Q-learning [101] 

and proposed GWO. The proposed GWO presents the energy efficiency of the 92.50 % which 

has shown the 1.6 % -15% improvements in the energy efficiency over traditional techniques. 

Thus, it is observed that the optimization based EMS schemes performs better compared with 

traditional techniques and fuzzy logic based EMS under various conditions. It is powerful to 

provide the optimal solution in the dynamic control variables and helps to attain the pollution-

free, reliable and robust EMS scheme for the HEVs to improve its performance. 

The outcomes of the proposed EMS are compared with several traditional EMS approaches and 

it is found that the proposed approach provides better performance compared with existing state 

of arts for the EMS of the HEVs as given in Table 2. 

Table 2: Comparative analysis of proposed scheme with existing EMS schemes 

Author and Year Method SOC Drop 
% Energy 

Efficiency 

Mohammad Suhail 

et al., 2021 [34]  
Fuzzy Logic control Sharp 88 % 

Jichao Liu et al., 

2017 [35] 

Genetic Algorithm 

& PSO 
Small 89.20% 

Yue et al., 2019, 

[36] 

Genetic algorithm 

based Fuzzy Logic 
Small 90 % 

Tang et al., 2022 

[37] 
Deep Q-Learning Small 91.04 % 
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Fuzzy logic based 

EMS 
Fuzzy Logic Sharp 89 % 

Proposed GWO 

based EMS 
GWO Small 92.50 % 

 

It is observed that the proposed algorithm provides significant improvement over the traditional 

EMS in terms of fuel efficiency. It provides 5.11%, 3.93%, 2.77%, 1.64%, and 3.93% 

improvement in the fuel efficiency over FLC, GA-PSO, GA-Fuzzy, Deep Q-learning and Fuzzy 

logic control respectively. The proposed GWO helps to attain the dynamic control over the 

different conditions to provide the optimal power to the EV. Further, the drop in the battery SOC 

much lower compared to the existing state of arts. 

 

4. CONCLUSIONS AND FUTURE SCOPE 

Hence, this paper advises using a GWO-based hybrid energy source for the EMS of HEVS in 

order to satisfy the power need and decrease pollution caused by the emission of hydrocarbon 

and nitrogen oxides, based on the cost profile. The suggested GWO provides an inexpensive and 

green solution to raise the efficiency of the HEVs while taking into consideration the various 

driving scenarios. The suggested EMS may be enhanced in the future by accounting for various 

real-time environmental conditions and driving patterns. Several deep learning algorithms may 

be used to the EMS for various HEVs for data augmentation and control to improve the system's 

performance under a variety of driving and environmental conditions. HEVs may be included to 

the plan while also taking into account renewable energy sources. 
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