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Abstract 

The purpose of this paper is to study on migration and immigration of 

prey-predator with limited resources for both the species. The system 

comprises of a prey (S1), a predator (S2) that survives upon S1 with 

migration of prey and immigration of predator. The model equations of 

the system constitute a set of two simultaneous first order non-linear 

ordinary differential equations. The system would be stable if all the 

characteristic roots are negative, in case they are real, and have negative 

real parts, in case they are complex. All the four equilibrium points are 

identified and their stability discussed. The trajectories of solution 

curves for the equilibrium points are established. The global stability of 

linearized equations can be discussed by constructing a suitable 

Liaupnov's function. Further, the Runge-Kutta fourth order technique is 

used to compute the numerical solutions for the growth rate equations. 

Keywords: Prey-Predator Dynamics, Equilibrium States, Liaupnov's 

Function, Numerical Solutions, Non-linear Ordinary Differential 

Equations. 
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1.  Introduction 

Ecology is the study of how living things interact with their surroundings. Ecologists research the 

interactions between organisms and their environments, particularly the number and distribution of 

different types of life on Earth. Ecology can be studied at various levels, from individual organisms to 

populations, communities, ecosystems, and the biosphere. It takes into account both living and non-living 

variables. Every level offers a different perspective on the intricate processes that make up our planet. In 

its most basic form, ecology is a mathematical study of population growth and fluctuations, i.e. plant 

population, animal population or other organic population. The mathematical analysis of ecological issues 

is not a new discipline; in fact, Lotka and Voltera  were early pioneers who laid the groundwork for it. 

Scientists studying ecology have to deal with the dynamics of nature, such as the increase or decrease in 

population sizes of several plant and animal species. The [1] was implementation of mathematical 

modeling in ecological research on the example of the prevalence of odonates in Serbia. [2] 

presented the mathematical modeling of a new bio-inspired evolutionary search algorithm called 

Ecological Systems Algorithm. [3] show that faster-reproducing animals are more likely to have 

nonlinear and high-dimensional dynamics, supporting past ecological theory. [4] studies the birth 

and death processes in interactive random environments where the birth and death rates and the 

dynamics of the state of the environment are dependent on each other. [5] proposed and analyzed 

a detailed mathematical model describing the dynamics of a prey-predator model under the 

influence of an SIS infectious disease by using nonlinear differential equations. [6] highlight the 

effect of prey cannibalism on the interaction between predator and prey. Numerous ecologists made 

contributions to the expansion of this field of study[7, 8]. Numerous researchers have been drawn to study 

predator-prey systems, both continuous and discrete, because of their ability to display complicated 

dynamical behaviour [9-11]. Moreover, Numerous scholars [12–14] and mathematicians [14-17] have 

contributed significant viewpoints, worthwhile tenets, and intriguing applications to the field of 

mathematical ecology that allow for the analysis of the behaviours of various ecological models. In 

intercultural aspects, Hari Prasad investigated the local and global stability of numerous mathematical 

models (both discrete and continuous) of syn-ecology [18–24]. 

 

2.  Basic Equations of the Model 

The basic equation for the model is given by the following system of non-linear ordinary differential 

equations. 

Equation for the growth rate of prey species (S1): 

 
2

1 1 1 11 1 12 1 2 1dN dt a N a N a N N MN= − − −                                                                                   (1)  

Equation for the growth rate of predator species (S2): 

              
2

2 2 2 22 2 21 1 2 2dN dt a N a N a N N IN= − + +                                                                       (2)  

Notation adopted 

N1(t)       : The population strength of prey species (S1) 

N2(t)    : The population strength of predator species (S2) 
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t : Time instant 

ai : Natural growth rates of Si, i = 1, 2 

aii : Self inhibition coefficient of Si, i = 1, 2 

a12, a21 : Interaction coefficients of S1 due to S2 and S2 due to S1 

M, I        : Migration and immigration coefficients of S1and S2 

Further the variables N1, N2 are non-negative and the model parameters a1, a2, a11, a22, a12, a21, M, I are 

assumed to be non-negative constants. 

3. Equilibrium States
 

The system under investigation has following three equilibrium states as 0; 1,2idN dt i= =  

Fully washed out state:
 1 1 2: 0, 0E N N= =  

Prey washed out state:

 
2 1 2 2 22: 0, ( )E N N k I a= = +                                                           

Predator washed out state: ( )3 1 1 11 2: ,  0E N k M a N= − =                                                        

Normal steady state: 4 1 1 2 2: ,  E N N   = =                                                                   

Where ( ) ( ) ( ) ( )1 22 1 12 2 2 21 1 11 2,a a M a a I a a M a a I = − − + = − + +
                                      

and 11 22 12 21a a a a = +

                                                                                           

(3) 

4.  Methodology 

Stability of Equilibrium States 

Let 1 2( ) ( , ) ( ); 1, 2i i iN t N N N U t i= = + =  where ( )iU t  is a small perturbation over the equilibrium 

point 1 2( , )N N N=  .The basic equations are quasi linearized to obtain the equations for the perturbed 

state as 

            1 1 11 1 12 2 1 12 1 2( 2 )du dt a a N a N M u a N u= − − − −
                                                 

(4)            

            2 21 2 1 2 22 2 21 1 2( 2 )du dt a N u a a N a N I u= + − + +
                                                       

(5) 

The characteristic equation is 0A I− =
                                                                        

(6) 

where
1 11 1 12 2 12 1

21 2 2 22 2 21 1

2

2

a a N a N M a N
A

a N a a N a N I

 − − − −
=  

− + +                                    

(7) 

The equilibrium state is stable, if all the roots of equation (6) are negative, in case they are real  

or have the negative real parts , in case they are complex. 

4.1 Stability of fully washed out state 
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The basic equations are quasi linearized, we get  

               1 1 1 2 2 2( ) ;  ( )du dt a M u du dt a I u= − = +
                                                    

(8) 

The characteristic equation is
 
  1 2( ) ( ) 0a M a I − − − + =

                                                               
(9)

    

The characteristic roots are 
1( )a M− and 2( ).a I+  Since, one root 2( ) 0a I+  is positive. Hence, 1E is 

unstable and the solutions of the equations (8) are 

              
1 2( ) ( )

1 10 2 20;  
a M t a I t

u u e u u e
− +

= =
                                                                              

(10) 

Where 10u  and 20u are the initial values of 1u  and 2u respectively. 

The trajectories in 
1 2u u−

 
plane are ( ) ( )2 1( ) ( )

1 10 2 20

a I a M
u u u u

+ −
=  

4.2 Stability of prey washed out state 

The basic equations are linearized to obtain the equations as 

               1 1 1 1 2 21 2 22 1 2 2( ) ;  ( ) ( )du dt a b u du dt a k I a u a I u= − = + + +
                         

(11) 

Where 
1 12 2 22[ ( )] 0b a k I a M= + +                                                                                           (12) 

The characteristic equation of (11) is
 
  1 1 2( ) ( ) 0a b a I − − + + =

                                               
(13)

   

The characteristic roots are 1 1a b−
 
and  2( )a I− +  

Case (i): When 
1 1,a b  one root is positive. Hence the state 

2E  is unstable. 

 
Case (ii): When 

1 1,a b  both roots are negative. Hence, in this case the state is stable.
   

Case (iii): When 
1 1,a b= one root is zero and other is negative. Hence, 

2E  is neutrally stable.
 

The solutions are given by
 

 
( ) ( ) ( )1 1 1 12( )

1 10 2 20 10 10 10 10;  
a b t a b ta I tu u e u u u e u e 
− −− += = − +

                                                

(14)                                     

10 12 2 22 1 1 2Where ( ) ( )a a I a a b a I = + − + +
                                                                    

(15) 

  
( )( ) 2 1 1( )

2 20 10 10 1 10 10 1

b b a
u u u u u u 

−
= − +  are the trajectories in 

1 2u u−
 
plane. 

4.3 Stability of Predator washed out state 

The characteristic equation of the state is
 
  1 2( ) ( ) 0M a a I d − − − + − =

                          
(16)

                                                 

Where 
21 1 11( )d a M a a= −

                                                                                                            
(17) 
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The characteristic roots are 1M a−
 
and  2a I d+ −  

Case (i): If
1 2 1 2 1 2, ; ,  and ,M a a I d M a a I d M a a I d= + = = +   + =  then the state is neutrally 

stable. 

Case (ii): If 
1M a and 2a I d+  then state is stable and the solutions are 

              
( ) ( ) ( )2 21( )

1 10 2 20 20 20 2 20;  
a I d t a I d tM a tu u u e u e u u e 
+ − + −−= − + =

                                

(18)

                                       

                                     

20 2 1 21 11Where [ ( )( )]d a I M a a a = + − − +
                                                                     

(19) 

( )( ) 1 2( ) ( )

1 10 20 20 2 20 20 2

M a a I d
u u u u u u 

− + −
= − +  are the trajectories in 

1 2u u−
 
plane. 

4.4 Stability of normal steady state 

The characteristic equation is ( ) ( )2

2 2 1 21 12 1( ) 0b d a a a M  − − − − =                            (20) 

Let 1  and 2  be the zeros of the quadratic polynomial on the above equation (20). 

When the roots 1 2,   noted to be negative. Hence, the normal steady state is stable and the system of 

equations yield the solutions, 

           
1 2

1 10 2 2 1 10 1 1 2[( ) ( )] [( ) ( )]
t t

u B u e B u e
      = + − + + −                                    (21)                          

         

1

2

2 10 2 11 1 1 1 2 12 1

10 1 11 1 2 1 2 12 1

[( )( ) ( ) ]

    [( )( ) ( ) ]

t

t

u B u a N a N e

B u a N a N e





   

   

= + + −

+ + + −
                                                           (22) 

Where 12 20 1 10 11 1B a u N u a N= +
                                                                                        

(23)

 

The trajectories in 
1 2u u−

 
plane are 1 2 2 1(1 )( )

1 1 2 1 2 2 1 2[( ) ] [( ) ]
qv r qv r q v v

u v u u v u c u
+ + − −

− − =  

Here, 1 2 and v v  are roots of the quadratic equation 
2 0qV rV s+ − =   

Where, 12 2 11 1 22 2 1 2, ,q a N r a N a N V u u= = − =  and 
1c  is arbitrary constant. 

5. Liaupnov’s Function for Global Stability 

The linearized equations (4) and (5) becomes
  

             1
11 1 1 12 1 2;

du
a N u a N u

dt
= − −

 

2
21 2 1 22 2 22

du
a N u a N u

dt
= −

                                             
(24)

 

The characteristic equation is  
2 0p q + + =  
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where  22 2 11 1 11 22 12 21 1 20, 0p a N a N q a a a a N N= +  = +   

Define, ( )1 2,E u u by ( ) 2 2

1 2 1 1 2 2

1
, 2

2
E u u au bu u cu = + + 

 

Where, ( ) ( )  
2 2

21 2 22 2 11 22 12 21 1 2

1
;a a N a N a a a a N N

D

 = + + +
    

( )11 21 12 22 1 2

1
b a a a a N N

D
= +  

( ) ( )  
2 2

11 1 12 1 11 22 12 21 1 2

1
;c a N a N a a a a N N

D

 = + + +
    

( )  ( )22 2 11 1 11 22 12 211 1 2D a N a N a a a a N N= + +  

It is clear that 0, 0D a  .  

Also, 
2( )ac b− ( ) ( )  

2 2

21 2 22 2 11 22 12 21 1 2

1
a N a N a a a a N N

D

  = + + +    
X    

( ) ( )  
2 2

11 1 12 1 11 22 12 21 1 2

1
a N a N a a a a N N

D

  + + +    
( )

2

11 21 12 22 1 2

1
a a a a N N

D

 
− + 
 

 

( ) ( )   ( ) ( )   
2 2 2 2

21 2 22 2 11 22 12 21 11 1 12 1 11 22 12 212

1
a N a N a a a a a N a N a a a a

D

    = + + + + +        
 

( ) ( ) ( ) ( )
2 2 2 2

21 2 22 2 11 1 12 1a N a N a N a N   + + +
      

2 20 ( ) 0D ac b  −   

Therefore ( )1 2,E u u is positive definite. Further, we find  

1 2

1 2

. .
du duE E

u dt u dt

 
+

 
( )1 2 11 1 1 12 1 2( )au bu a N u a N u= + − − 1 2 21 2 1 22 2 2( )( )bu cu a N u a N u+ + −  

Substituting the terms , ,a b c we have 1 2

1 2

. . 0
du duE E

u dt u dt

 
+ 

 
is negative definite. 

This implies ( )1 2,E u u exists as to linear system to Liapunov’s function  

Now, we discuss ( )1 2,E u u as Liapunov’s function to non linear system. 

( )1 1 2 1 1 11 1 12 2, ( );F N N N a a N a N M= − − −  ( )2 1 2 2 2 22 2 21 1, ( )F N N N a a N a N I= − + +
                                                                

 

Letting 1 1 1 2 2 2,N N u N N u= + = + ,  

( ) ( ) ( )1
1 1 1 11 1 1 12 2 2

du
N u a a N u a N u M

dt
 = + − + − + −
 
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         11 1 1 12 1 2 1 1 2 1 1 2( , ) ( , ) a N u a N u f u u F u u= − − + =   

( ) ( ) ( )2
2 2 2 22 2 2 21 1 1

du
N u a a N u a N u I

dt
 = + − + + + +
 

 

         21 2 1 22 2 2 2 1 2 2 1 2( , ) ( , ) a N u a N u f u u F u u= − + =  

Now, 1 2
1 2

1 2 1 2

. . . .
du duE E E E

F F
u u u dt u dt

   
+ = +

   
 

( )1 2 11 1 1 12 1 2 1 1 2( ( , ))au bu a N u a N u f u u= + − − + + 1 2 21 2 1 22 2 2 2 1 2( )( ( , ))bu cu a N u a N u f u u+ + − +  

   Introducing the polar coordinates
1 2cos , sinu r u r = = and solving we get  

Therefore 1 2

1 2

. . 0
E E

F F
u u

 
+ 

 
 is negative definite.  

Furthermore ( )1 2,E u u is positive definite with reason 1 2

1 2

. .
E E

F F
u u

 
+

 
  is negative definite with the 

conclusion that point of equilibrium is asymptotically “stable”. 

6. Numerical Study 

 

Table: Parameter Values 

Fig.No. a1 a11 a12 M  a2 a22 a21 I N10 N20 t* 

1 3.23 0.13 1.30 0.73 0.67 1.10 0.20 0.90 0.56 0.46 5.80 

2 1.26 3.186 0.666 1.386 0.72 2.16 1.134 0.846 3.474 5.184 - 

3 0.53 0.30 0.20 0.20 0.30 0.47 0.37 0.33 9.44 0.88 0.90 

4 14.944 1.08 0.846 3.906 1.08 0.594 0.414 0.486 2.646 0.45 1.00 

5 6.84 1.026 0.594 0.594 8.28 14.76 16.794 2.466 0.50 0.90 - 

6 16.56 2.40 6.40 8.56 0.24 2.96 1.04 0.80 1.50 5.00 0.91 

7 19.06 2.00 0.94 0.00 0.94 0.80 0.66 0.94 1.00 1.00 0.72 

8 0.001 1.04 0.56 0.56 0.56 9.04 0.24 0.56 2.56 0.56 2.01 
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Figure 1: N1=0.56, N2=0.46 

 

Figure 2: N1=3.474, N2=5.184 

 

Figure 3: N1=9.44, N2=0.88 
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Figure 4: N1=2.646, N2=0.45 

 

Figure 5: N1=0.50, N2=0.90 

 

Figure 6: N1=1.50, N2=5.00 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

N1

N2

Time

P
o

p
u

la
ti

o
n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10

N1

N2

Time

P
o

p
u

la
ti

o
n

0

1

2

3

4

5

6

0 2 4 6 8 10

N1

N2

Time

P
o

p
u

la
ti

o
n



Ch.Soma Shekar/Afr.J.Bio.Sc.6(14) (2024)                                                            Page5202of 13 

 

Figure 7: N1=1.00, N2=1.00 

 

Figure 8: N1=2.56, N2=0.56 

7. Discussions and Conclusion 

Situation 1: In this case the immigration coefficient is greater than migration coefficient. Further, the 

prey and predator increases at same extent and suddenly decreases up to time t* and thereafter remains 

same throughout as shown in the Figure 1. 

 

Situation 2: This is a case where both the species Prey and Predator decrease initially. The Predator is the 

dominant one as it dominates the prey throughout. In course of time we notice a steady variation with no 

appreciable growth rate in both the species. Further, the immigration coefficient is less than migration 

coefficient. (Figure 2). 

 

Situation 3: Initially the prey is dominant over the predator but if suffers a steep fall and after an instant 

t* the dominance is reversed. The predator has a steep rise initially and then suffers fall. The migration 

coefficient is same as the interaction coefficient a12 and the natural growth is equal to a11. (Figure 3).   

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

N1

N2

Time

P
o

p
u

la
ti

o
n

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

N1

N2

Time

P
o

p
u

la
ti

o
n



Ch.Soma Shekar/Afr.J.Bio.Sc.6(14) (2024)                                                            Page5203of 13 

 

Situation 4: Initially there is a steep rise in the growth rate of the predator as it dominates the prey and 

after a time instant t* there is a fall in the growth rate of the predator and the prey outnumbers the 

predator. Also we notice that the prey has a steady rise as illustrated in Figure 4. 

 

Situation 5: In this case the predator would always dominate over the prey. The interaction coefficient a12 

is same as the migration coefficient. Further we notice that both the species have a steady variation with 

no appreciable growth rates. (Figure 5). 

 

Situation 6: Initially the predator is dominant over the prey up to a time instant t* after which the prey 

dominates over the predator. In this case we observe that the prey initially has a steady increase and in 

course of time both the species coexist with a steady variation and no appreciable growth. (Figure 6). 

Situation 7: In this case the initial conditions of the prey and predator species are identical. Initially there 

is a steep rise in the growth rate of the predator as it dominates the prey and after a time instant t* there is 

a fall in the growth rate of the predator and the prey outnumbers the predator. (Figure 7). 

Situation 8: In this case both the species suffer a fall initially and after an instant t* the prey exists at a 

very low rate and the Predator becomes extinct at t*. The natural growth rate of prey is very low. (Figure 

8). 

The present paper deals with an investigation on the stability of two species ecology consisting of a prey-

predator with limited resources. The system comprises of a prey (S1), a predator (S2) that survives upon S1 

with migration of prey and immigration of predator. All possible equilibrium points of the model are 

identified and criteria for their stability is discussed. It is observed that, in all four equilibrium points,  

(i) The prey washed out state is stable when 1 1a b  and is neutrally stable when
1 1.a b=  

(ii) The predator washed out state is stable when 
1M a ; 2a I d+   and is neutrally stable when

1 2 1 2 1 2, ; ,  and ,M a a I d M a a I d M a a I d= + = = +   + =  

(iii) The normal steady state is stable when 1 2,   are negative. 

Further, the trajectories of solution curves for all equilibrium states are illustrated. 
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