
Rama Krishna Gandi /Afr.J.Bio.Sc. 6(Si2) (2024)                                                  ISSN: 2663-2187 
 

 

 https://doi.org/10.33472/AFJBS.6.Si2.2024.2833-2838 

Dynamic Sign Language Recognition Through An Ensemble Of Deep 

Learning Techniques 
 

1Rama Krishna Gandi, 2Mattam Shaik Yaseen,  3Syed Sahail, 4Shaik Sameer,  5Shaik Usman 
                                                                      1 Assistant Professor, 2, 3, 4,5 UG Students 

Department of Computer Science & Engineering, 

Madanapalle Institute of Technology and Science (MITS) 

Madanapalle, Andhra Pradesh  
1gandiramakrisha2@gmail.com 
2yaseenshaik0987@gmail.com 

3sahailsyed42@gmail.com 
4shaiksameer89419@gmail.com 

5shaikusman481@gmail.com 

 

 

 

 

 

 

Volume 6, Issue Si2, 2024 

Received: 09 March 2024 

Accepted: 10 April 2024 

Published: 20 May 2024 
doi:10.33472/AFJBS.6.Si2.2024.2833-2838 

 

 

 

 

 

 

I. INTRODUCTION 
 

One essential component of human contact is 
communication., enabling individuals to express thoughts, 
share ideas, and build relationships. serves as a primary mode 
of communication, embodying a rich linguistic structure that 
allows for the conveyance of complex information its 
widespread use and importance, barriers still exist in 
communication between ASL users and those unfamiliar with 
the language, leading to challenges in education, employment,  
 

 
and access to services. 

new opportunities have emerged to bridge these 

communication gaps. Particularly, shown exceptional 

prowess in image and video recognition tasks,. This project 

aims to harness the potential of CNNs to develop a robust and 

accurate ASL detection system capable of translating ASL 

signs into textual or spoken real-time language use.The 

reason behind this endeavor is twofold: to enhance the 

accessibility of services and information for the Deaf 

community and to facilitate mutual understanding and 

interaction between ASL users and the hearing world. By 

Abstract— The recognition and interpretation of American Sign 

Language (ASL) using computational methods stands as a significant 

advancement in bridging communication gaps between the Deaf 

community and the hearing world. This project aims to develop an 

accurate and By employing deep learning techniques, we propose a 

model that interprets ASL signs from static images and video sequences, 

enabling seamless translation of sign language gestures into textual or 

spoken language.Our methodology encompasses the collection and 

preprocessing of a comprehensive dataset consisting of ASL signs, 

including both alphabet and commonly used phrases. Utilizing state-of-

the-art CNN architectures, the system undergoes rigorous training and 

validation phases to ensure high levels of accuracy and efficiency. 

Robustness and dependability are assessed by gauging the model's 

capacity to correctly identify a broad spectrum of ASL signals in a 

variety of backgrounds and environments. 

Keywords— Sign_Language_Detection, Deep_Learning, Cnn, ensemble  

learning 

 

 

mailto:gandiramakrisha2@gmail.com
mailto:yaseenshaik0987@gmail.com
mailto:sahailsyed42@gmail.com
mailto:shaiksameer89419@gmail.com
mailto:shaikusman481@gmail.com


Rama Krishna Gandi /Afr.J.Bio.Sc. 6(Si2) (2024)                                                                      Page 2834 to 10 
 

 

leveraging the capabilities of CNNs, we propose a solution 

that not only recognizes individual ASL signs with high 

accuracy but also interprets continuous sign language gestures 

from video inputs. 

 

Fig(a)  Sign Language 

 

 
II. Research Work 

 

To facilitate the extraction of signs from video sequences, 

color segmentation is utilized, along with the isolate the  

region. In the realm of object detection, the implementation of 

Faster RCNN enhances the speed of detection by normalizing 

input to a uniform size before processing it through the 

convolutional block. Sign decoding at the sentence level 

involves extracting centroids of both facial and spatial 

elements, determined by fuzzy membership class functions. 

For inputs comprising sequences of gestures, an LSTM model 

is employed to decipher a continuous array of signs, which are 

then segmented into smaller components for (FBPNN). The 

SIFT descriptor is essential torecognizing both alphabets and 

numerals. 

The suggested algorithm efficiently extracts signs and features 

from continuous video sequences by applying color 

segmentation for hand image identification, although it  

requires a minimally cluttered background for optimal results. Support 

Vector Machines are utilized to differentiate The Viola-Jones algorithm 

aids in facial region removal from video sequences, focusing solely on 

hand signs. Zernike moments serve as the shape descriptor for static 

signs, while curve features are analyzed for dynamic gestures. 

 

 

The model is primarily based on hand movements, which are 

complemented by body placement and face expressions that were 

trained on large datasets.. Feature extraction is performed using the 

convex hull method, with classification via KNN, achieving an accuracy 

rate of 65%. The system compares favorably to popular methods, with 

Faster R-CNN models offering increased detection speed through RPN 

modules. It demonstrates superior gesture location detection accuracy 

compared to YOLO, utilizing a 3D CNN network with four convolution 

blocks and ReLU activation. 

The system preprocesses input sequence images captured by a webcam 

using classifies hand postures using KNN. 

This technique's potential extends to OCR (Optical Character 

Recognition), offering a significant advancement in understanding 

sentence-level signs by speech-impaired individuals through fuzzy 

membership functions. Continuous Sign Language Recognition is 

achieved with an LSTM model, focusing on Indian Sign Language with 

a test dataset comprising 942 signed sentences, achieving accuracies 

integrates MLP and autoencoders for feature globalization, classifying 

via the SoftMax algorithm. It was trained on 1080 videos of 10 

dynamic ISL gestures using NVIDIA Tesla K80 GPUs. The VGG11 

Model, Finally, the binary transformation of detected regions and 

Euclidean distance transformation are key post-processing steps, 

showcasing the versatility and comprehensive nature of this ASL 

detection project. 

III. DATASET 

The MNIST American Hand Sign Language dataset is a comprehensive 

collection designed to facilitate the development and testing of machine 

learning models capable of recognizing American Sign Language (ASL) 

signs. Inspired by the original MNIST dataset, which is widely used for 

benchmarking image processing systems and techniques, this specialized 

dataset focuses on the visual representation of ASL alphabets through hand 

gestures. It plays a crucial role in advancing technologies aimed at bridging 

communication gaps for the people cant hear and hard-of-hearing 

communities by enabling the development of automated ASL recognition 

systems. 

The dataset typically consists of images representing the 26 letters of the 

English alphabet as expressed in ASL hand gestures. These images are 

often grayscale, normalized in size, and centered to ensure consistency and 

ease of use in training CNNs and other machine learning models. Each 

image in the dataset is labeled with its corresponding ASL alphabet letter, 

making it suitable for supervised learning tasks, including classification 

and recognition. 
 

 

 

Fig(b) MNIST Hand Sign Language  

Dataset 

 

Fig(c) MNIST Hand Sign Language Dataset 

 

Feature Extraction: 
Convolutional layers act as filters for extracting out features from 
an image. After passing the image through a number of such 
layers and maxpooling layers which remove excess information, 
we end up with a flattened array of values which are essentially 
the features extracted from the image that will be passed to the 
dense layers for training.. 

Training and testing: 

27855 images in the dataset were divided into two sets of 

training and testing that were 75% and 25%, respectively, 

using scikit-learn's train_test_split function.The network of 



Rama Krishna Gandi /Afr.J.Bio.Sc. 6(Si2) (2024)                                                                      Page 2835 to 10 
 

 

neurons is fed a picture with dimensions of 28x28x1. The 

layers make use of maxpooling and the relu activation 

function. 

                The process for recognizing hand gestures involves: 

 Data Collection: The well-known MNIST American sign 

language dataset, which includes 28x28 grayscale pictures of 

hand signals, was employed by us. 

  

 Data Preprocessing: There is no background in these images. 

The images are present in a csv format with 784 columns which 

has to be read into a pandas data frame. Every row represents 

one image with 784 pixel values which needs to be reshaped 

into 28x28 size.The pixel values are also normalized by 

dividing them by 255. This is done for faster convergence of 

the network. 
 

 
Fig(d). Feature Extraction 

Since we are dealing with grayscale images, the number of 

channels is one. For our work, the channel does not convey any 

extra information about the sign gesture. Hence, using RGB 

images does not have any advantage over using grayscale images. 

On the other hand, using grayscale images will lead to faster 

processing times. 

 

       Classification of Gestures 

● Initially, The 1D vectors are reshaped and pixel values are 

normalized. 

● This preprocessed image is then analyzed using a CNN 

model.. 

● The CNN then gives an inference based on its training. 

IV. ALGORITHM USED 

Convolution Neural Network 

 

The conv2D layers operate as filters, extracting 

characteristics from the photos. We have utilized three 

separate layers of 32 filters in total, with a single unit size of 

3x3, next to a a dropout layer and the maximum pooling 

level.There are then three further multivariate 2D layers. 

including sixteen 3x3 filters, succeeded by a maxpooling, 

dropout, and flatten layer. Next, we use a flatten layer, a 

dense for dropping to turn the feature list into a 1D array. 

There are 25 nodes in the final layer that use the activation 

of soft max for classification. 

i) We use relu activation in all but the last layer and padding 

is kept as ‘same’ since the image sizes are small so we do 

not want to lose any information during the process of 

convolution. 

ii) Layer for pooling: Each feature map is handled separately by 

the MaxPooling layer. The initial feature map is split into a group 

of non-producing zones based on the greatest value of each 

overlapping rectangle. This method reduces the spatial dimensions 

of the feature map so that the output reference map is less as the 

input option map.By constricting the spatial dimensions of the 

feature maps, MaxPooling layers lower the amount of computing 

and factors in the network. By giving the representation in an 

abstracted form and enabling the CNN to make judgments 

based on the most salient characteristics from the preceding 

layers, this helps to lessen overfitting.. 

MaxPooling helps the network to become invariant to small 

translations of the input image. Since it takes the maximum 

value in a local pool, slight shifts or translations in the input 

image will still likely result in the same maximum value, 

allowing the network to recognize features regardless of their 

exact location in the input.The MaxPooling layer has two key 

parameters: pool size and stride. The pool size determines the 

size of the region over which the maximum is computed. The 

stride determines the distance between consecutive pooling 

regions.  

 
Fig. (e) Pooling 

 

iii) Dense Layer: In neural networks, fully linked 

layers—also referred to as dense layers—are essential to acquire 

information non-linear mixtures of the high-level information that 

the network's preceding levels were able to extract. The reason 

these layers are called "fully connected" is that every neuron in a 

dense layer receives input from every other neuron in the layer 

above it. creating a densely connected structure.Dense layers 

integrate the features learned by the network so far to make 

predictions. They are typically placed towards the end of a 

CNN after convolutional and pooling layers have extracted 

spatial hierarchies of features.Each neuron in a fully connected 

layer holds a set of weights and a bias, applying a linear 

transformation (dot product) followed by a non-linear 

activation function like ReLU, sigmoid, or tanh to the input 

data. 
iv) Dropout layer: 

The dropout layer is a regularization technique used by neural 

networks to prevent overfitting. When a model learns using 

training data overly well, it overfits and has poor generalization 

to intriguing, unseen data by collecting noise and random 

oscillations. Dropout solves this problem by arbitrarily "falling 

off" (i.e., set to zero) a percentage of the network's neurons at 

each training update. 

 
Architecture used: 

 

The following cnn architectures have been used, which have shown 

very high accuracy on the test dataset. An ensemble of CNN models 

have been used and the best model is taken into consideration. 

 

Model 1: This model aimed at capturing hierarchical features in the 

input images. Dropout layers are strategically placed to prevent 

overfitting. The model concludes with dense layers for classification, 

producing probabilities across 25 output classes. For training, it uses 

categorical cross-entropy loss and the RMSprop optimizer.. 



Rama Krishna Gandi /Afr.J.Bio.Sc. 6(Si2) (2024)                                                                      Page 2836 to 10 
 

 

 

 
Fig. Architecture of model 1 

 

Model 2: Model 2 adopts a similar convolutional architecture to Model 

1 but integrates batch normalization layers after certain convolutional 

and pooling operations, enhancing training stability and convergence 

speed. Dropout layers are incorporated for regularization, and the 

model's structure culminates in dense layers for classification. It also 

uses the multi-class classification tasks' softmax activation function 

. 

 
Fig. Architecture of model 2 

 

Model 3: This model features a simplified architecture compared to the 

previous ones, with fewer convolutional layers and no dropout. Batch 

normalization is applied after selected convolutional to aid in training. aims 

to strike a balance between complexity and performance, with a focus on 

capturing essential features for accurate classification. 

 

 

 

 
Fig. Architecture of model 3 

 

Model 4: Model 4 experiments with a different architectural approach, starting 

with a reduced number of convolutional layers compared to Models 1 and 2. It 

incorporates batch normalization early in the network to stabilize training. 

However, unlike the other models, it uses two consecutive convolutional 

layers with smaller filter sizes before introducing batch normalization. The 

model concludes with dense layers for classification into 25 output classes. 

 

 
 

Fig. Architecture of Model 4 

 

Activation function: 

 
One of the most popular activated functions in neural networks, 

particularly CNNs, is ReLU, or Rectified Linear Unit. The formula 

for the function is f(x)=max(0,x). 



Rama Krishna Gandi /Afr.J.Bio.Sc. 6(Si2) (2024)                                                                      Page 2837 to 10 
 

 

 

ReLU adds the non-linear to the model despite its simplicity, which 

enables it to recognize intricate patterns in the data. 

 

For multi-class classification tasks, the softmax function is usually 

utilized in the final results layer of a neural network. By taking the 

increasing of each output and normalizing it by dividing by the total 

of all the exponentials, it turns the raw output scores (commonly 

referred to as logits) via the network into probabilities. The 

definition of the function is: 

 
 

 
Fig. (f) Relu Activation Function [16] 

 

 

 
Fig. (g) Softmax Activation Function 

 

V. Procedure 

● The MNIST american hand sign language dataset is acquired and 
preprocessed. 

● During preprocessing we convert the pixel values into a 2 dimensional 
numpy array and perform normalization by dividing them by 255. 

● After that we build the CNN and train it using the training set obtained 
from a 0.75-0.25 random split of the dataset. 

● After training we evaluate the model on the testing set. 

● We can take a picture from a camera and preprocess it and then send it to 
the network for inference. 

 
VI. MODEL COMPARISON 

 

The CNN outperformed the model trained using transfer learning with 

vgg16 as its base. Moreover, the training was brisk since image sizes 

were small and all images are grayscale. The model had 99.3% 

validation accuracy during training and 99.07% accuracy on the 

testing dataset.  

 

 
 

Fig. (h) Loss Plots versus epoch 

 

 
 

 

Fig. (i) Accuracy Plots versus epochs 

 
VII. OBSERVATIONS 

In the first eleven epochs out of 30, we have a validation 
accuracy of 94%. In the last ten epochs the validation 
accuracy increased from 95% to 97%. The accuracy on the 
test dataset is 97.14%. 

 

Fig. (j) Result 

 

VIII. CONCLUSION 

We created a light convolutional model for american sign language 
detection and it produced an accuracy of over 97.14%. This method can 
be extended to include numbers and Indian sign language as well. After 
that a real-time system can be created that will take the image feed from 
a video capture device and decipher the hand sign upon inspection. 
Further experimentation with different types of pre-trained models can be 
performed. Initial use of vgg16 did not yield satisfactory results, mostly 
due to the low resolution of the images. On the other hand, while using 



Rama Krishna Gandi /Afr.J.Bio.Sc. 6(Si2) (2024)                                                                      Page 2838 to 10 
 

 

real-time images these pre-trained models may come in hand  
IX REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 


